v8/src/handles.h

352 lines
10 KiB
C
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HANDLES_H_
#define V8_HANDLES_H_
#include "src/objects.h"
namespace v8 {
namespace internal {
// Forward declarations.
class DeferredHandles;
class HandleScopeImplementer;
// A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
// into a Handle requires checking that it does not point to NULL. This
// ensures NULL checks before use.
// Do not use MaybeHandle as argument type.
template<typename T>
class MaybeHandle {
public:
V8_INLINE MaybeHandle() : location_(nullptr) {}
// Constructor for handling automatic up casting from Handle.
// Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
template <class S> MaybeHandle(Handle<S> handle) {
#ifdef DEBUG
T* a = nullptr;
S* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
this->location_ = reinterpret_cast<T**>(handle.location());
}
// Constructor for handling automatic up casting.
// Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected.
template <class S> MaybeHandle(MaybeHandle<S> maybe_handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
location_ = reinterpret_cast<T**>(maybe_handle.location_);
}
V8_INLINE void Assert() const { DCHECK_NOT_NULL(location_); }
V8_INLINE void Check() const { CHECK_NOT_NULL(location_); }
V8_INLINE Handle<T> ToHandleChecked() const {
Check();
return Handle<T>(location_);
}
// Convert to a Handle with a type that can be upcasted to.
template <class S>
V8_INLINE bool ToHandle(Handle<S>* out) const {
if (location_ == NULL) {
*out = Handle<T>::null();
return false;
} else {
*out = Handle<T>(location_);
return true;
}
}
bool is_null() const { return location_ == NULL; }
protected:
T** location_;
// MaybeHandles of different classes are allowed to access each
// other's location_.
template<class S> friend class MaybeHandle;
};
// Base class for Handles. Don't use this directly.
class HandleBase {
public:
V8_INLINE explicit HandleBase(Object** location = nullptr)
: location_(location) {}
V8_INLINE explicit HandleBase(HandleBase const& other)
: location_(other.location_) {}
explicit HandleBase(HeapObject* object);
explicit HandleBase(Object* object, Isolate* isolate);
V8_INLINE ~HandleBase() {}
// Check if this handle refers to the exact same object as the other handle.
V8_INLINE bool is_identical_to(HandleBase const& other) const {
// Dereferencing deferred handles to check object equality is safe.
SLOW_DCHECK(is_null() || IsDereferenceAllowed(NO_DEFERRED_CHECK));
SLOW_DCHECK(other.is_null() ||
other.IsDereferenceAllowed(NO_DEFERRED_CHECK));
if (location_ == other.location_) return true;
if (location_ == nullptr || other.location_ == nullptr) return false;
return *location_ == *other.location_;
}
// Check if this handle is a NULL handle.
V8_INLINE bool is_null() const { return location_ == nullptr; }
protected:
// Provides the C++ deference operator.
V8_INLINE Object* operator*() const {
SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return *location_;
}
// Returns the address to where the raw pointer is stored.
V8_INLINE Object** location() const {
SLOW_DCHECK(location_ == nullptr ||
IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return location_;
}
enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
#ifdef DEBUG
bool IsDereferenceAllowed(DereferenceCheckMode mode) const;
#else
V8_INLINE bool IsDereferenceAllowed(DereferenceCheckMode) const {
return true;
}
#endif // DEBUG
Object** location_;
};
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
// Handles are only valid within a HandleScope.
// When a handle is created for an object a cell is allocated in the heap.
template <typename T>
class Handle final : public HandleBase {
public:
V8_INLINE explicit Handle(T** location)
: HandleBase(reinterpret_cast<Object**>(location)) {}
V8_INLINE explicit Handle(T* object) : HandleBase(object) {}
V8_INLINE Handle(T* object, Isolate* isolate) : HandleBase(object, isolate) {}
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
V8_INLINE Handle() {}
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <class S>
V8_INLINE Handle(Handle<S> const& other)
: HandleBase(other) {
T* a = nullptr;
S* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
}
V8_INLINE T* operator->() const { return operator*(); }
// Provides the C++ dereference operator.
V8_INLINE T* operator*() const {
return reinterpret_cast<T*>(HandleBase::operator*());
}
// Returns the address to where the raw pointer is stored.
V8_INLINE T** location() const {
return reinterpret_cast<T**>(HandleBase::location());
}
template <class S>
V8_INLINE static Handle<T> cast(Handle<S> const& other) {
T::cast(*reinterpret_cast<T**>(other.location_));
return Handle<T>(reinterpret_cast<T**>(other.location_));
}
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
static Handle<T> null() { return Handle<T>(); }
// Closes the given scope, but lets this handle escape. See
// implementation in api.h.
inline Handle<T> EscapeFrom(v8::EscapableHandleScope* scope);
private:
// Handles of different classes are allowed to access each other's location_.
template<class S> friend class Handle;
};
// Convenience wrapper.
template<class T>
inline Handle<T> handle(T* t, Isolate* isolate) {
return Handle<T>(t, isolate);
}
// Convenience wrapper.
template <class T>
inline Handle<T> handle(T* t) {
return Handle<T>(t);
}
// Key comparison function for Map handles.
inline bool operator<(const Handle<Map>& lhs, const Handle<Map>& rhs) {
// This is safe because maps don't move.
return *lhs < *rhs;
}
// A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is
// deleted or another handle scope is created. If there is already a
// handle scope and a new one is created, all allocations will take
// place in the new handle scope until it is deleted. After that,
// new handles will again be allocated in the original handle scope.
//
// After the handle scope of a local handle has been deleted the
// garbage collector will no longer track the object stored in the
// handle and may deallocate it. The behavior of accessing a handle
// for which the handle scope has been deleted is undefined.
class HandleScope final {
public:
explicit HandleScope(Isolate* isolate);
~HandleScope();
// Counts the number of allocated handles.
static int NumberOfHandles(Isolate* isolate);
// Creates a new handle with the given value.
static Object** CreateHandle(Isolate* isolate, Object* value);
template <typename T>
static T** CreateHandle(Isolate* isolate, T* value) {
return reinterpret_cast<T**>(
CreateHandle(isolate, static_cast<Object*>(value)));
}
// Deallocates any extensions used by the current scope.
static void DeleteExtensions(Isolate* isolate);
static Address current_next_address(Isolate* isolate);
static Address current_limit_address(Isolate* isolate);
static Address current_level_address(Isolate* isolate);
// Closes the HandleScope (invalidating all handles
// created in the scope of the HandleScope) and returns
// a Handle backed by the parent scope holding the
// value of the argument handle.
Handle<Object> CloseAndEscape(Handle<Object> handle);
template <typename T>
Handle<T> CloseAndEscape(Handle<T> handle) {
return Handle<T>::cast(CloseAndEscape(Handle<Object>::cast(handle)));
}
Isolate* isolate() const { return isolate_; }
private:
friend class v8::HandleScope;
friend class v8::internal::DeferredHandles;
friend class v8::internal::HandleScopeImplementer;
friend class v8::internal::Isolate;
// Prevent heap allocation or illegal handle scopes.
void* operator new(size_t size) = delete;
void operator delete(void* size_t) = delete;
// Close the handle scope resetting limits to a previous state.
static void CloseScope(Isolate* isolate, Object** prev_next,
Object** prev_limit);
// Extend the handle scope making room for more handles.
static Object** Extend(Isolate* isolate);
#ifdef ENABLE_HANDLE_ZAPPING
// Zaps the handles in the half-open interval [start, end).
static void ZapRange(Object** start, Object** end);
#endif
Isolate* const isolate_;
Object** prev_next_;
Object** prev_limit_;
DISALLOW_COPY_AND_ASSIGN(HandleScope);
};
class DeferredHandleScope {
public:
explicit DeferredHandleScope(Isolate* isolate);
// The DeferredHandles object returned stores the Handles created
// since the creation of this DeferredHandleScope. The Handles are
// alive as long as the DeferredHandles object is alive.
DeferredHandles* Detach();
~DeferredHandleScope();
private:
Object** prev_limit_;
Object** prev_next_;
HandleScopeImplementer* impl_;
#ifdef DEBUG
bool handles_detached_;
int prev_level_;
#endif
friend class HandleScopeImplementer;
};
// Seal off the current HandleScope so that new handles can only be created
// if a new HandleScope is entered.
class SealHandleScope final {
public:
#ifndef DEBUG
explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope() {}
#else
explicit SealHandleScope(Isolate* isolate);
~SealHandleScope();
private:
Isolate* const isolate_;
Object** limit_;
int level_;
#endif // DEBUG
private:
DISALLOW_COPY_AND_ASSIGN(SealHandleScope);
};
struct HandleScopeData {
internal::Object** next;
internal::Object** limit;
int level;
void Initialize() {
next = limit = nullptr;
level = 0;
}
};
} // namespace internal
} // namespace v8
#endif // V8_HANDLES_H_