v8/src/hydrogen.cc

12505 lines
435 KiB
C++
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/hydrogen.h"
#include <algorithm>
#include "src/v8.h"
#include "src/allocation-site-scopes.h"
#include "src/codegen.h"
#include "src/full-codegen.h"
#include "src/hashmap.h"
#include "src/hydrogen-bce.h"
#include "src/hydrogen-bch.h"
#include "src/hydrogen-canonicalize.h"
#include "src/hydrogen-check-elimination.h"
#include "src/hydrogen-dce.h"
#include "src/hydrogen-dehoist.h"
#include "src/hydrogen-environment-liveness.h"
#include "src/hydrogen-escape-analysis.h"
#include "src/hydrogen-gvn.h"
#include "src/hydrogen-infer-representation.h"
#include "src/hydrogen-infer-types.h"
#include "src/hydrogen-load-elimination.h"
#include "src/hydrogen-mark-deoptimize.h"
#include "src/hydrogen-mark-unreachable.h"
#include "src/hydrogen-osr.h"
#include "src/hydrogen-range-analysis.h"
#include "src/hydrogen-redundant-phi.h"
#include "src/hydrogen-removable-simulates.h"
#include "src/hydrogen-representation-changes.h"
#include "src/hydrogen-sce.h"
#include "src/hydrogen-store-elimination.h"
#include "src/hydrogen-uint32-analysis.h"
#include "src/ic/call-optimization.h"
// GetRootConstructor
#include "src/ic/ic-inl.h"
#include "src/lithium-allocator.h"
#include "src/parser.h"
#include "src/runtime.h"
#include "src/scopeinfo.h"
#include "src/scopes.h"
#include "src/typing.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/lithium-codegen-ia32.h" // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/x64/lithium-codegen-x64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/lithium-codegen-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/arm/lithium-codegen-arm.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/lithium-codegen-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/lithium-codegen-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/x87/lithium-codegen-x87.h" // NOLINT
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
HBasicBlock::HBasicBlock(HGraph* graph)
: block_id_(graph->GetNextBlockID()),
graph_(graph),
phis_(4, graph->zone()),
first_(NULL),
last_(NULL),
end_(NULL),
loop_information_(NULL),
predecessors_(2, graph->zone()),
dominator_(NULL),
dominated_blocks_(4, graph->zone()),
last_environment_(NULL),
argument_count_(-1),
first_instruction_index_(-1),
last_instruction_index_(-1),
deleted_phis_(4, graph->zone()),
parent_loop_header_(NULL),
inlined_entry_block_(NULL),
is_inline_return_target_(false),
is_reachable_(true),
dominates_loop_successors_(false),
is_osr_entry_(false),
is_ordered_(false) { }
Isolate* HBasicBlock::isolate() const {
return graph_->isolate();
}
void HBasicBlock::MarkUnreachable() {
is_reachable_ = false;
}
void HBasicBlock::AttachLoopInformation() {
DCHECK(!IsLoopHeader());
loop_information_ = new(zone()) HLoopInformation(this, zone());
}
void HBasicBlock::DetachLoopInformation() {
DCHECK(IsLoopHeader());
loop_information_ = NULL;
}
void HBasicBlock::AddPhi(HPhi* phi) {
DCHECK(!IsStartBlock());
phis_.Add(phi, zone());
phi->SetBlock(this);
}
void HBasicBlock::RemovePhi(HPhi* phi) {
DCHECK(phi->block() == this);
DCHECK(phis_.Contains(phi));
phi->Kill();
phis_.RemoveElement(phi);
phi->SetBlock(NULL);
}
void HBasicBlock::AddInstruction(HInstruction* instr,
HSourcePosition position) {
DCHECK(!IsStartBlock() || !IsFinished());
DCHECK(!instr->IsLinked());
DCHECK(!IsFinished());
if (!position.IsUnknown()) {
instr->set_position(position);
}
if (first_ == NULL) {
DCHECK(last_environment() != NULL);
DCHECK(!last_environment()->ast_id().IsNone());
HBlockEntry* entry = new(zone()) HBlockEntry();
entry->InitializeAsFirst(this);
if (!position.IsUnknown()) {
entry->set_position(position);
} else {
DCHECK(!FLAG_hydrogen_track_positions ||
!graph()->info()->IsOptimizing());
}
first_ = last_ = entry;
}
instr->InsertAfter(last_);
}
HPhi* HBasicBlock::AddNewPhi(int merged_index) {
if (graph()->IsInsideNoSideEffectsScope()) {
merged_index = HPhi::kInvalidMergedIndex;
}
HPhi* phi = new(zone()) HPhi(merged_index, zone());
AddPhi(phi);
return phi;
}
HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
RemovableSimulate removable) {
DCHECK(HasEnvironment());
HEnvironment* environment = last_environment();
DCHECK(ast_id.IsNone() ||
ast_id == BailoutId::StubEntry() ||
environment->closure()->shared()->VerifyBailoutId(ast_id));
int push_count = environment->push_count();
int pop_count = environment->pop_count();
HSimulate* instr =
new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
#ifdef DEBUG
instr->set_closure(environment->closure());
#endif
// Order of pushed values: newest (top of stack) first. This allows
// HSimulate::MergeWith() to easily append additional pushed values
// that are older (from further down the stack).
for (int i = 0; i < push_count; ++i) {
instr->AddPushedValue(environment->ExpressionStackAt(i));
}
for (GrowableBitVector::Iterator it(environment->assigned_variables(),
zone());
!it.Done();
it.Advance()) {
int index = it.Current();
instr->AddAssignedValue(index, environment->Lookup(index));
}
environment->ClearHistory();
return instr;
}
void HBasicBlock::Finish(HControlInstruction* end, HSourcePosition position) {
DCHECK(!IsFinished());
AddInstruction(end, position);
end_ = end;
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
it.Current()->RegisterPredecessor(this);
}
}
void HBasicBlock::Goto(HBasicBlock* block,
HSourcePosition position,
FunctionState* state,
bool add_simulate) {
bool drop_extra = state != NULL &&
state->inlining_kind() == NORMAL_RETURN;
if (block->IsInlineReturnTarget()) {
HEnvironment* env = last_environment();
int argument_count = env->arguments_environment()->parameter_count();
AddInstruction(new(zone())
HLeaveInlined(state->entry(), argument_count),
position);
UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
}
if (add_simulate) AddNewSimulate(BailoutId::None(), position);
HGoto* instr = new(zone()) HGoto(block);
Finish(instr, position);
}
void HBasicBlock::AddLeaveInlined(HValue* return_value,
FunctionState* state,
HSourcePosition position) {
HBasicBlock* target = state->function_return();
bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
DCHECK(target->IsInlineReturnTarget());
DCHECK(return_value != NULL);
HEnvironment* env = last_environment();
int argument_count = env->arguments_environment()->parameter_count();
AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
position);
UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
last_environment()->Push(return_value);
AddNewSimulate(BailoutId::None(), position);
HGoto* instr = new(zone()) HGoto(target);
Finish(instr, position);
}
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
DCHECK(!HasEnvironment());
DCHECK(first() == NULL);
UpdateEnvironment(env);
}
void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
last_environment_ = env;
graph()->update_maximum_environment_size(env->first_expression_index());
}
void HBasicBlock::SetJoinId(BailoutId ast_id) {
int length = predecessors_.length();
DCHECK(length > 0);
for (int i = 0; i < length; i++) {
HBasicBlock* predecessor = predecessors_[i];
DCHECK(predecessor->end()->IsGoto());
HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
DCHECK(i != 0 ||
(predecessor->last_environment()->closure().is_null() ||
predecessor->last_environment()->closure()->shared()
->VerifyBailoutId(ast_id)));
simulate->set_ast_id(ast_id);
predecessor->last_environment()->set_ast_id(ast_id);
}
}
bool HBasicBlock::Dominates(HBasicBlock* other) const {
HBasicBlock* current = other->dominator();
while (current != NULL) {
if (current == this) return true;
current = current->dominator();
}
return false;
}
bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
if (this == other) return true;
return Dominates(other);
}
int HBasicBlock::LoopNestingDepth() const {
const HBasicBlock* current = this;
int result = (current->IsLoopHeader()) ? 1 : 0;
while (current->parent_loop_header() != NULL) {
current = current->parent_loop_header();
result++;
}
return result;
}
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
DCHECK(IsLoopHeader());
SetJoinId(stmt->EntryId());
if (predecessors()->length() == 1) {
// This is a degenerated loop.
DetachLoopInformation();
return;
}
// Only the first entry into the loop is from outside the loop. All other
// entries must be back edges.
for (int i = 1; i < predecessors()->length(); ++i) {
loop_information()->RegisterBackEdge(predecessors()->at(i));
}
}
void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
DCHECK(IsFinished());
HBasicBlock* succ_block = end()->SuccessorAt(succ);
DCHECK(succ_block->predecessors()->length() == 1);
succ_block->MarkUnreachable();
}
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
if (HasPredecessor()) {
// Only loop header blocks can have a predecessor added after
// instructions have been added to the block (they have phis for all
// values in the environment, these phis may be eliminated later).
DCHECK(IsLoopHeader() || first_ == NULL);
HEnvironment* incoming_env = pred->last_environment();
if (IsLoopHeader()) {
DCHECK(phis()->length() == incoming_env->length());
for (int i = 0; i < phis_.length(); ++i) {
phis_[i]->AddInput(incoming_env->values()->at(i));
}
} else {
last_environment()->AddIncomingEdge(this, pred->last_environment());
}
} else if (!HasEnvironment() && !IsFinished()) {
DCHECK(!IsLoopHeader());
SetInitialEnvironment(pred->last_environment()->Copy());
}
predecessors_.Add(pred, zone());
}
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
DCHECK(!dominated_blocks_.Contains(block));
// Keep the list of dominated blocks sorted such that if there is two
// succeeding block in this list, the predecessor is before the successor.
int index = 0;
while (index < dominated_blocks_.length() &&
dominated_blocks_[index]->block_id() < block->block_id()) {
++index;
}
dominated_blocks_.InsertAt(index, block, zone());
}
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
if (dominator_ == NULL) {
dominator_ = other;
other->AddDominatedBlock(this);
} else if (other->dominator() != NULL) {
HBasicBlock* first = dominator_;
HBasicBlock* second = other;
while (first != second) {
if (first->block_id() > second->block_id()) {
first = first->dominator();
} else {
second = second->dominator();
}
DCHECK(first != NULL && second != NULL);
}
if (dominator_ != first) {
DCHECK(dominator_->dominated_blocks_.Contains(this));
dominator_->dominated_blocks_.RemoveElement(this);
dominator_ = first;
first->AddDominatedBlock(this);
}
}
}
void HBasicBlock::AssignLoopSuccessorDominators() {
// Mark blocks that dominate all subsequent reachable blocks inside their
// loop. Exploit the fact that blocks are sorted in reverse post order. When
// the loop is visited in increasing block id order, if the number of
// non-loop-exiting successor edges at the dominator_candidate block doesn't
// exceed the number of previously encountered predecessor edges, there is no
// path from the loop header to any block with higher id that doesn't go
// through the dominator_candidate block. In this case, the
// dominator_candidate block is guaranteed to dominate all blocks reachable
// from it with higher ids.
HBasicBlock* last = loop_information()->GetLastBackEdge();
int outstanding_successors = 1; // one edge from the pre-header
// Header always dominates everything.
MarkAsLoopSuccessorDominator();
for (int j = block_id(); j <= last->block_id(); ++j) {
HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
for (HPredecessorIterator it(dominator_candidate); !it.Done();
it.Advance()) {
HBasicBlock* predecessor = it.Current();
// Don't count back edges.
if (predecessor->block_id() < dominator_candidate->block_id()) {
outstanding_successors--;
}
}
// If more successors than predecessors have been seen in the loop up to
// now, it's not possible to guarantee that the current block dominates
// all of the blocks with higher IDs. In this case, assume conservatively
// that those paths through loop that don't go through the current block
// contain all of the loop's dependencies. Also be careful to record
// dominator information about the current loop that's being processed,
// and not nested loops, which will be processed when
// AssignLoopSuccessorDominators gets called on their header.
DCHECK(outstanding_successors >= 0);
HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
if (outstanding_successors == 0 &&
(parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
dominator_candidate->MarkAsLoopSuccessorDominator();
}
HControlInstruction* end = dominator_candidate->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
HBasicBlock* successor = it.Current();
// Only count successors that remain inside the loop and don't loop back
// to a loop header.
if (successor->block_id() > dominator_candidate->block_id() &&
successor->block_id() <= last->block_id()) {
// Backwards edges must land on loop headers.
DCHECK(successor->block_id() > dominator_candidate->block_id() ||
successor->IsLoopHeader());
outstanding_successors++;
}
}
}
}
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
for (int i = 0; i < predecessors_.length(); ++i) {
if (predecessors_[i] == predecessor) return i;
}
UNREACHABLE();
return -1;
}
#ifdef DEBUG
void HBasicBlock::Verify() {
// Check that every block is finished.
DCHECK(IsFinished());
DCHECK(block_id() >= 0);
// Check that the incoming edges are in edge split form.
if (predecessors_.length() > 1) {
for (int i = 0; i < predecessors_.length(); ++i) {
DCHECK(predecessors_[i]->end()->SecondSuccessor() == NULL);
}
}
}
#endif
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
this->back_edges_.Add(block, block->zone());
AddBlock(block);
}
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
int max_id = -1;
HBasicBlock* result = NULL;
for (int i = 0; i < back_edges_.length(); ++i) {
HBasicBlock* cur = back_edges_[i];
if (cur->block_id() > max_id) {
max_id = cur->block_id();
result = cur;
}
}
return result;
}
void HLoopInformation::AddBlock(HBasicBlock* block) {
if (block == loop_header()) return;
if (block->parent_loop_header() == loop_header()) return;
if (block->parent_loop_header() != NULL) {
AddBlock(block->parent_loop_header());
} else {
block->set_parent_loop_header(loop_header());
blocks_.Add(block, block->zone());
for (int i = 0; i < block->predecessors()->length(); ++i) {
AddBlock(block->predecessors()->at(i));
}
}
}
#ifdef DEBUG
// Checks reachability of the blocks in this graph and stores a bit in
// the BitVector "reachable()" for every block that can be reached
// from the start block of the graph. If "dont_visit" is non-null, the given
// block is treated as if it would not be part of the graph. "visited_count()"
// returns the number of reachable blocks.
class ReachabilityAnalyzer BASE_EMBEDDED {
public:
ReachabilityAnalyzer(HBasicBlock* entry_block,
int block_count,
HBasicBlock* dont_visit)
: visited_count_(0),
stack_(16, entry_block->zone()),
reachable_(block_count, entry_block->zone()),
dont_visit_(dont_visit) {
PushBlock(entry_block);
Analyze();
}
int visited_count() const { return visited_count_; }
const BitVector* reachable() const { return &reachable_; }
private:
void PushBlock(HBasicBlock* block) {
if (block != NULL && block != dont_visit_ &&
!reachable_.Contains(block->block_id())) {
reachable_.Add(block->block_id());
stack_.Add(block, block->zone());
visited_count_++;
}
}
void Analyze() {
while (!stack_.is_empty()) {
HControlInstruction* end = stack_.RemoveLast()->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
PushBlock(it.Current());
}
}
}
int visited_count_;
ZoneList<HBasicBlock*> stack_;
BitVector reachable_;
HBasicBlock* dont_visit_;
};
void HGraph::Verify(bool do_full_verify) const {
Heap::RelocationLock relocation_lock(isolate()->heap());
AllowHandleDereference allow_deref;
AllowDeferredHandleDereference allow_deferred_deref;
for (int i = 0; i < blocks_.length(); i++) {
HBasicBlock* block = blocks_.at(i);
block->Verify();
// Check that every block contains at least one node and that only the last
// node is a control instruction.
HInstruction* current = block->first();
DCHECK(current != NULL && current->IsBlockEntry());
while (current != NULL) {
DCHECK((current->next() == NULL) == current->IsControlInstruction());
DCHECK(current->block() == block);
current->Verify();
current = current->next();
}
// Check that successors are correctly set.
HBasicBlock* first = block->end()->FirstSuccessor();
HBasicBlock* second = block->end()->SecondSuccessor();
DCHECK(second == NULL || first != NULL);
// Check that the predecessor array is correct.
if (first != NULL) {
DCHECK(first->predecessors()->Contains(block));
if (second != NULL) {
DCHECK(second->predecessors()->Contains(block));
}
}
// Check that phis have correct arguments.
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
phi->Verify();
}
// Check that all join blocks have predecessors that end with an
// unconditional goto and agree on their environment node id.
if (block->predecessors()->length() >= 2) {
BailoutId id =
block->predecessors()->first()->last_environment()->ast_id();
for (int k = 0; k < block->predecessors()->length(); k++) {
HBasicBlock* predecessor = block->predecessors()->at(k);
DCHECK(predecessor->end()->IsGoto() ||
predecessor->end()->IsDeoptimize());
DCHECK(predecessor->last_environment()->ast_id() == id);
}
}
}
// Check special property of first block to have no predecessors.
DCHECK(blocks_.at(0)->predecessors()->is_empty());
if (do_full_verify) {
// Check that the graph is fully connected.
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
DCHECK(analyzer.visited_count() == blocks_.length());
// Check that entry block dominator is NULL.
DCHECK(entry_block_->dominator() == NULL);
// Check dominators.
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_.at(i);
if (block->dominator() == NULL) {
// Only start block may have no dominator assigned to.
DCHECK(i == 0);
} else {
// Assert that block is unreachable if dominator must not be visited.
ReachabilityAnalyzer dominator_analyzer(entry_block_,
blocks_.length(),
block->dominator());
DCHECK(!dominator_analyzer.reachable()->Contains(block->block_id()));
}
}
}
}
#endif
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
int32_t value) {
if (!pointer->is_set()) {
// Can't pass GetInvalidContext() to HConstant::New, because that will
// recursively call GetConstant
HConstant* constant = HConstant::New(zone(), NULL, value);
constant->InsertAfter(entry_block()->first());
pointer->set(constant);
return constant;
}
return ReinsertConstantIfNecessary(pointer->get());
}
HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
if (!constant->IsLinked()) {
// The constant was removed from the graph. Reinsert.
constant->ClearFlag(HValue::kIsDead);
constant->InsertAfter(entry_block()->first());
}
return constant;
}
HConstant* HGraph::GetConstant0() {
return GetConstant(&constant_0_, 0);
}
HConstant* HGraph::GetConstant1() {
return GetConstant(&constant_1_, 1);
}
HConstant* HGraph::GetConstantMinus1() {
return GetConstant(&constant_minus1_, -1);
}
#define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value) \
HConstant* HGraph::GetConstant##Name() { \
if (!constant_##name##_.is_set()) { \
HConstant* constant = new(zone()) HConstant( \
Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()), \
false, \
Representation::Tagged(), \
htype, \
true, \
boolean_value, \
false, \
ODDBALL_TYPE); \
constant->InsertAfter(entry_block()->first()); \
constant_##name##_.set(constant); \
} \
return ReinsertConstantIfNecessary(constant_##name##_.get()); \
}
DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
#undef DEFINE_GET_CONSTANT
#define DEFINE_IS_CONSTANT(Name, name) \
bool HGraph::IsConstant##Name(HConstant* constant) { \
return constant_##name##_.is_set() && constant == constant_##name##_.get(); \
}
DEFINE_IS_CONSTANT(Undefined, undefined)
DEFINE_IS_CONSTANT(0, 0)
DEFINE_IS_CONSTANT(1, 1)
DEFINE_IS_CONSTANT(Minus1, minus1)
DEFINE_IS_CONSTANT(True, true)
DEFINE_IS_CONSTANT(False, false)
DEFINE_IS_CONSTANT(Hole, the_hole)
DEFINE_IS_CONSTANT(Null, null)
#undef DEFINE_IS_CONSTANT
HConstant* HGraph::GetInvalidContext() {
return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
}
bool HGraph::IsStandardConstant(HConstant* constant) {
if (IsConstantUndefined(constant)) return true;
if (IsConstant0(constant)) return true;
if (IsConstant1(constant)) return true;
if (IsConstantMinus1(constant)) return true;
if (IsConstantTrue(constant)) return true;
if (IsConstantFalse(constant)) return true;
if (IsConstantHole(constant)) return true;
if (IsConstantNull(constant)) return true;
return false;
}
HGraphBuilder::IfBuilder::IfBuilder() : builder_(NULL), needs_compare_(true) {}
HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
: needs_compare_(true) {
Initialize(builder);
}
HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder,
HIfContinuation* continuation)
: needs_compare_(false), first_true_block_(NULL), first_false_block_(NULL) {
InitializeDontCreateBlocks(builder);
continuation->Continue(&first_true_block_, &first_false_block_);
}
void HGraphBuilder::IfBuilder::InitializeDontCreateBlocks(
HGraphBuilder* builder) {
builder_ = builder;
finished_ = false;
did_then_ = false;
did_else_ = false;
did_else_if_ = false;
did_and_ = false;
did_or_ = false;
captured_ = false;
pending_merge_block_ = false;
split_edge_merge_block_ = NULL;
merge_at_join_blocks_ = NULL;
normal_merge_at_join_block_count_ = 0;
deopt_merge_at_join_block_count_ = 0;
}
void HGraphBuilder::IfBuilder::Initialize(HGraphBuilder* builder) {
InitializeDontCreateBlocks(builder);
HEnvironment* env = builder->environment();
first_true_block_ = builder->CreateBasicBlock(env->Copy());
first_false_block_ = builder->CreateBasicBlock(env->Copy());
}
HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
HControlInstruction* compare) {
DCHECK(did_then_ == did_else_);
if (did_else_) {
// Handle if-then-elseif
did_else_if_ = true;
did_else_ = false;
did_then_ = false;
did_and_ = false;
did_or_ = false;
pending_merge_block_ = false;
split_edge_merge_block_ = NULL;
HEnvironment* env = builder()->environment();
first_true_block_ = builder()->CreateBasicBlock(env->Copy());
first_false_block_ = builder()->CreateBasicBlock(env->Copy());
}
if (split_edge_merge_block_ != NULL) {
HEnvironment* env = first_false_block_->last_environment();
HBasicBlock* split_edge = builder()->CreateBasicBlock(env->Copy());
if (did_or_) {
compare->SetSuccessorAt(0, split_edge);
compare->SetSuccessorAt(1, first_false_block_);
} else {
compare->SetSuccessorAt(0, first_true_block_);
compare->SetSuccessorAt(1, split_edge);
}
builder()->GotoNoSimulate(split_edge, split_edge_merge_block_);
} else {
compare->SetSuccessorAt(0, first_true_block_);
compare->SetSuccessorAt(1, first_false_block_);
}
builder()->FinishCurrentBlock(compare);
needs_compare_ = false;
return compare;
}
void HGraphBuilder::IfBuilder::Or() {
DCHECK(!needs_compare_);
DCHECK(!did_and_);
did_or_ = true;
HEnvironment* env = first_false_block_->last_environment();
if (split_edge_merge_block_ == NULL) {
split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
builder()->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
first_true_block_ = split_edge_merge_block_;
}
builder()->set_current_block(first_false_block_);
first_false_block_ = builder()->CreateBasicBlock(env->Copy());
}
void HGraphBuilder::IfBuilder::And() {
DCHECK(!needs_compare_);
DCHECK(!did_or_);
did_and_ = true;
HEnvironment* env = first_false_block_->last_environment();
if (split_edge_merge_block_ == NULL) {
split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
builder()->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
first_false_block_ = split_edge_merge_block_;
}
builder()->set_current_block(first_true_block_);
first_true_block_ = builder()->CreateBasicBlock(env->Copy());
}
void HGraphBuilder::IfBuilder::CaptureContinuation(
HIfContinuation* continuation) {
DCHECK(!did_else_if_);
DCHECK(!finished_);
DCHECK(!captured_);
HBasicBlock* true_block = NULL;
HBasicBlock* false_block = NULL;
Finish(&true_block, &false_block);
DCHECK(true_block != NULL);
DCHECK(false_block != NULL);
continuation->Capture(true_block, false_block);
captured_ = true;
builder()->set_current_block(NULL);
End();
}
void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
DCHECK(!did_else_if_);
DCHECK(!finished_);
DCHECK(!captured_);
HBasicBlock* true_block = NULL;
HBasicBlock* false_block = NULL;
Finish(&true_block, &false_block);
merge_at_join_blocks_ = NULL;
if (true_block != NULL && !true_block->IsFinished()) {
DCHECK(continuation->IsTrueReachable());
builder()->GotoNoSimulate(true_block, continuation->true_branch());
}
if (false_block != NULL && !false_block->IsFinished()) {
DCHECK(continuation->IsFalseReachable());
builder()->GotoNoSimulate(false_block, continuation->false_branch());
}
captured_ = true;
End();
}
void HGraphBuilder::IfBuilder::Then() {
DCHECK(!captured_);
DCHECK(!finished_);
did_then_ = true;
if (needs_compare_) {
// Handle if's without any expressions, they jump directly to the "else"
// branch. However, we must pretend that the "then" branch is reachable,
// so that the graph builder visits it and sees any live range extending
// constructs within it.
HConstant* constant_false = builder()->graph()->GetConstantFalse();
ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
boolean_type.Add(ToBooleanStub::BOOLEAN);
HBranch* branch = builder()->New<HBranch>(
constant_false, boolean_type, first_true_block_, first_false_block_);
builder()->FinishCurrentBlock(branch);
}
builder()->set_current_block(first_true_block_);
pending_merge_block_ = true;
}
void HGraphBuilder::IfBuilder::Else() {
DCHECK(did_then_);
DCHECK(!captured_);
DCHECK(!finished_);
AddMergeAtJoinBlock(false);
builder()->set_current_block(first_false_block_);
pending_merge_block_ = true;
did_else_ = true;
}
void HGraphBuilder::IfBuilder::Deopt(const char* reason) {
DCHECK(did_then_);
builder()->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
AddMergeAtJoinBlock(true);
}
void HGraphBuilder::IfBuilder::Return(HValue* value) {
HValue* parameter_count = builder()->graph()->GetConstantMinus1();
builder()->FinishExitCurrentBlock(
builder()->New<HReturn>(value, parameter_count));
AddMergeAtJoinBlock(false);
}
void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
if (!pending_merge_block_) return;
HBasicBlock* block = builder()->current_block();
DCHECK(block == NULL || !block->IsFinished());
MergeAtJoinBlock* record = new (builder()->zone())
MergeAtJoinBlock(block, deopt, merge_at_join_blocks_);
merge_at_join_blocks_ = record;
if (block != NULL) {
DCHECK(block->end() == NULL);
if (deopt) {
normal_merge_at_join_block_count_++;
} else {
deopt_merge_at_join_block_count_++;
}
}
builder()->set_current_block(NULL);
pending_merge_block_ = false;
}
void HGraphBuilder::IfBuilder::Finish() {
DCHECK(!finished_);
if (!did_then_) {
Then();
}
AddMergeAtJoinBlock(false);
if (!did_else_) {
Else();
AddMergeAtJoinBlock(false);
}
finished_ = true;
}
void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
HBasicBlock** else_continuation) {
Finish();
MergeAtJoinBlock* else_record = merge_at_join_blocks_;
if (else_continuation != NULL) {
*else_continuation = else_record->block_;
}
MergeAtJoinBlock* then_record = else_record->next_;
if (then_continuation != NULL) {
*then_continuation = then_record->block_;
}
DCHECK(then_record->next_ == NULL);
}
void HGraphBuilder::IfBuilder::End() {
if (captured_) return;
Finish();
int total_merged_blocks = normal_merge_at_join_block_count_ +
deopt_merge_at_join_block_count_;
DCHECK(total_merged_blocks >= 1);
HBasicBlock* merge_block =
total_merged_blocks == 1 ? NULL : builder()->graph()->CreateBasicBlock();
// Merge non-deopt blocks first to ensure environment has right size for
// padding.
MergeAtJoinBlock* current = merge_at_join_blocks_;
while (current != NULL) {
if (!current->deopt_ && current->block_ != NULL) {
// If there is only one block that makes it through to the end of the
// if, then just set it as the current block and continue rather then
// creating an unnecessary merge block.
if (total_merged_blocks == 1) {
builder()->set_current_block(current->block_);
return;
}
builder()->GotoNoSimulate(current->block_, merge_block);
}
current = current->next_;
}
// Merge deopt blocks, padding when necessary.
current = merge_at_join_blocks_;
while (current != NULL) {
if (current->deopt_ && current->block_ != NULL) {
current->block_->FinishExit(HAbnormalExit::New(builder()->zone(), NULL),
HSourcePosition::Unknown());
}
current = current->next_;
}
builder()->set_current_block(merge_block);
}
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder) {
Initialize(builder, NULL, kWhileTrue, NULL);
}
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
LoopBuilder::Direction direction) {
Initialize(builder, context, direction, builder->graph()->GetConstant1());
}
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
LoopBuilder::Direction direction,
HValue* increment_amount) {
Initialize(builder, context, direction, increment_amount);
increment_amount_ = increment_amount;
}
void HGraphBuilder::LoopBuilder::Initialize(HGraphBuilder* builder,
HValue* context,
Direction direction,
HValue* increment_amount) {
builder_ = builder;
context_ = context;
direction_ = direction;
increment_amount_ = increment_amount;
finished_ = false;
header_block_ = builder->CreateLoopHeaderBlock();
body_block_ = NULL;
exit_block_ = NULL;
exit_trampoline_block_ = NULL;
}
HValue* HGraphBuilder::LoopBuilder::BeginBody(
HValue* initial,
HValue* terminating,
Token::Value token) {
DCHECK(direction_ != kWhileTrue);
HEnvironment* env = builder_->environment();
phi_ = header_block_->AddNewPhi(env->values()->length());
phi_->AddInput(initial);
env->Push(initial);
builder_->GotoNoSimulate(header_block_);
HEnvironment* body_env = env->Copy();
HEnvironment* exit_env = env->Copy();
// Remove the phi from the expression stack
body_env->Pop();
exit_env->Pop();
body_block_ = builder_->CreateBasicBlock(body_env);
exit_block_ = builder_->CreateBasicBlock(exit_env);
builder_->set_current_block(header_block_);
env->Pop();
builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
phi_, terminating, token, body_block_, exit_block_));
builder_->set_current_block(body_block_);
if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
HValue* one = builder_->graph()->GetConstant1();
if (direction_ == kPreIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, one);
} else {
increment_ = HSub::New(zone(), context_, phi_, one);
}
increment_->ClearFlag(HValue::kCanOverflow);
builder_->AddInstruction(increment_);
return increment_;
} else {
return phi_;
}
}
void HGraphBuilder::LoopBuilder::BeginBody(int drop_count) {
DCHECK(direction_ == kWhileTrue);
HEnvironment* env = builder_->environment();
builder_->GotoNoSimulate(header_block_);
builder_->set_current_block(header_block_);
env->Drop(drop_count);
}
void HGraphBuilder::LoopBuilder::Break() {
if (exit_trampoline_block_ == NULL) {
// Its the first time we saw a break.
if (direction_ == kWhileTrue) {
HEnvironment* env = builder_->environment()->Copy();
exit_trampoline_block_ = builder_->CreateBasicBlock(env);
} else {
HEnvironment* env = exit_block_->last_environment()->Copy();
exit_trampoline_block_ = builder_->CreateBasicBlock(env);
builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
}
}
builder_->GotoNoSimulate(exit_trampoline_block_);
builder_->set_current_block(NULL);
}
void HGraphBuilder::LoopBuilder::EndBody() {
DCHECK(!finished_);
if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
if (direction_ == kPostIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, increment_amount_);
} else {
increment_ = HSub::New(zone(), context_, phi_, increment_amount_);
}
increment_->ClearFlag(HValue::kCanOverflow);
builder_->AddInstruction(increment_);
}
if (direction_ != kWhileTrue) {
// Push the new increment value on the expression stack to merge into
// the phi.
builder_->environment()->Push(increment_);
}
HBasicBlock* last_block = builder_->current_block();
builder_->GotoNoSimulate(last_block, header_block_);
header_block_->loop_information()->RegisterBackEdge(last_block);
if (exit_trampoline_block_ != NULL) {
builder_->set_current_block(exit_trampoline_block_);
} else {
builder_->set_current_block(exit_block_);
}
finished_ = true;
}
HGraph* HGraphBuilder::CreateGraph() {
graph_ = new(zone()) HGraph(info_);
if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
CompilationPhase phase("H_Block building", info_);
set_current_block(graph()->entry_block());
if (!BuildGraph()) return NULL;
graph()->FinalizeUniqueness();
return graph_;
}
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
DCHECK(current_block() != NULL);
DCHECK(!FLAG_hydrogen_track_positions ||
!position_.IsUnknown() ||
!info_->IsOptimizing());
current_block()->AddInstruction(instr, source_position());
if (graph()->IsInsideNoSideEffectsScope()) {
instr->SetFlag(HValue::kHasNoObservableSideEffects);
}
return instr;
}
void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
DCHECK(!FLAG_hydrogen_track_positions ||
!info_->IsOptimizing() ||
!position_.IsUnknown());
current_block()->Finish(last, source_position());
if (last->IsReturn() || last->IsAbnormalExit()) {
set_current_block(NULL);
}
}
void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
DCHECK(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
!position_.IsUnknown());
current_block()->FinishExit(instruction, source_position());
if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
set_current_block(NULL);
}
}
void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
if (FLAG_native_code_counters && counter->Enabled()) {
HValue* reference = Add<HConstant>(ExternalReference(counter));
HValue* old_value = Add<HLoadNamedField>(
reference, static_cast<HValue*>(NULL), HObjectAccess::ForCounter());
HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
new_value->ClearFlag(HValue::kCanOverflow); // Ignore counter overflow
Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
new_value, STORE_TO_INITIALIZED_ENTRY);
}
}
void HGraphBuilder::AddSimulate(BailoutId id,
RemovableSimulate removable) {
DCHECK(current_block() != NULL);
DCHECK(!graph()->IsInsideNoSideEffectsScope());
current_block()->AddNewSimulate(id, source_position(), removable);
}
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
HBasicBlock* b = graph()->CreateBasicBlock();
b->SetInitialEnvironment(env);
return b;
}
HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
HBasicBlock* header = graph()->CreateBasicBlock();
HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
header->SetInitialEnvironment(entry_env);
header->AttachLoopInformation();
return header;
}
HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
HValue* map = Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
HValue* bit_field2 = Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
HObjectAccess::ForMapBitField2());
return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
}
HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
if (obj->type().IsHeapObject()) return obj;
return Add<HCheckHeapObject>(obj);
}
void HGraphBuilder::FinishExitWithHardDeoptimization(const char* reason) {
Add<HDeoptimize>(reason, Deoptimizer::EAGER);
FinishExitCurrentBlock(New<HAbnormalExit>());
}
HValue* HGraphBuilder::BuildCheckString(HValue* string) {
if (!string->type().IsString()) {
DCHECK(!string->IsConstant() ||
!HConstant::cast(string)->HasStringValue());
BuildCheckHeapObject(string);
return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
}
return string;
}
HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
if (object->type().IsJSObject()) return object;
if (function->IsConstant() &&
HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
Handle<JSFunction> f = Handle<JSFunction>::cast(
HConstant::cast(function)->handle(isolate()));
SharedFunctionInfo* shared = f->shared();
if (shared->strict_mode() == STRICT || shared->native()) return object;
}
return Add<HWrapReceiver>(object, function);
}
HValue* HGraphBuilder::BuildCheckForCapacityGrow(
HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length,
HValue* key,
bool is_js_array,
PropertyAccessType access_type) {
IfBuilder length_checker(this);
Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
length_checker.If<HCompareNumericAndBranch>(key, length, token);
length_checker.Then();
HValue* current_capacity = AddLoadFixedArrayLength(elements);
IfBuilder capacity_checker(this);
capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
Token::GTE);
capacity_checker.Then();
HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
HValue* max_capacity = AddUncasted<HAdd>(current_capacity, max_gap);
Add<HBoundsCheck>(key, max_capacity);
HValue* new_capacity = BuildNewElementsCapacity(key);
HValue* new_elements = BuildGrowElementsCapacity(object, elements,
kind, kind, length,
new_capacity);
environment()->Push(new_elements);
capacity_checker.Else();
environment()->Push(elements);
capacity_checker.End();
if (is_js_array) {
HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
new_length->ClearFlag(HValue::kCanOverflow);
Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
new_length);
}
if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
HValue* checked_elements = environment()->Top();
// Write zero to ensure that the new element is initialized with some smi.
Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
}
length_checker.Else();
Add<HBoundsCheck>(key, length);
environment()->Push(elements);
length_checker.End();
return environment()->Pop();
}
HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length) {
Factory* factory = isolate()->factory();
IfBuilder cow_checker(this);
cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
cow_checker.Then();
HValue* capacity = AddLoadFixedArrayLength(elements);
HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
kind, length, capacity);
environment()->Push(new_elements);
cow_checker.Else();
environment()->Push(elements);
cow_checker.End();
return environment()->Pop();
}
void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
HValue* map,
ElementsKind from_kind,
ElementsKind to_kind,
bool is_jsarray) {
DCHECK(!IsFastHoleyElementsKind(from_kind) ||
IsFastHoleyElementsKind(to_kind));
if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
Add<HTrapAllocationMemento>(object);
}
if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
HInstruction* elements = AddLoadElements(object);
HInstruction* empty_fixed_array = Add<HConstant>(
isolate()->factory()->empty_fixed_array());
IfBuilder if_builder(this);
if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
if_builder.Then();
HInstruction* elements_length = AddLoadFixedArrayLength(elements);
HInstruction* array_length = is_jsarray
? Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
HObjectAccess::ForArrayLength(from_kind))
: elements_length;
BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
array_length, elements_length);
if_builder.End();
}
Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
}
void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
int bit_field_mask) {
// Check that the object isn't a smi.
Add<HCheckHeapObject>(receiver);
// Get the map of the receiver.
HValue* map = Add<HLoadNamedField>(receiver, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
// Check the instance type and if an access check is needed, this can be
// done with a single load, since both bytes are adjacent in the map.
HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
HValue* instance_type_and_bit_field =
Add<HLoadNamedField>(map, static_cast<HValue*>(NULL), access);
HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
instance_type_and_bit_field,
mask);
HValue* sub_result = AddUncasted<HSub>(and_result,
Add<HConstant>(JS_OBJECT_TYPE));
Add<HBoundsCheck>(sub_result,
Add<HConstant>(LAST_JS_OBJECT_TYPE + 1 - JS_OBJECT_TYPE));
}
void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
HIfContinuation* join_continuation) {
// The sometimes unintuitively backward ordering of the ifs below is
// convoluted, but necessary. All of the paths must guarantee that the
// if-true of the continuation returns a smi element index and the if-false of
// the continuation returns either a symbol or a unique string key. All other
// object types cause a deopt to fall back to the runtime.
IfBuilder key_smi_if(this);
key_smi_if.If<HIsSmiAndBranch>(key);
key_smi_if.Then();
{
Push(key); // Nothing to do, just continue to true of continuation.
}
key_smi_if.Else();
{
HValue* map = Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
HValue* instance_type =
Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
HObjectAccess::ForMapInstanceType());
// Non-unique string, check for a string with a hash code that is actually
// an index.
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
IfBuilder not_string_or_name_if(this);
not_string_or_name_if.If<HCompareNumericAndBranch>(
instance_type,
Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
Token::GT);
not_string_or_name_if.Then();
{
// Non-smi, non-Name, non-String: Try to convert to smi in case of
// HeapNumber.
// TODO(danno): This could call some variant of ToString
Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
}
not_string_or_name_if.Else();
{
// String or Name: check explicitly for Name, they can short-circuit
// directly to unique non-index key path.
IfBuilder not_symbol_if(this);
not_symbol_if.If<HCompareNumericAndBranch>(
instance_type,
Add<HConstant>(SYMBOL_TYPE),
Token::NE);
not_symbol_if.Then();
{
// String: check whether the String is a String of an index. If it is,
// extract the index value from the hash.
HValue* hash =
Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
HObjectAccess::ForNameHashField());
HValue* not_index_mask = Add<HConstant>(static_cast<int>(
String::kContainsCachedArrayIndexMask));
HValue* not_index_test = AddUncasted<HBitwise>(
Token::BIT_AND, hash, not_index_mask);
IfBuilder string_index_if(this);
string_index_if.If<HCompareNumericAndBranch>(not_index_test,
graph()->GetConstant0(),
Token::EQ);
string_index_if.Then();
{
// String with index in hash: extract string and merge to index path.
Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
}
string_index_if.Else();
{
// Key is a non-index String, check for uniqueness/internalization.
// If it's not internalized yet, internalize it now.
HValue* not_internalized_bit = AddUncasted<HBitwise>(
Token::BIT_AND,
instance_type,
Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
IfBuilder internalized(this);
internalized.If<HCompareNumericAndBranch>(not_internalized_bit,
graph()->GetConstant0(),
Token::EQ);
internalized.Then();
Push(key);
internalized.Else();
Add<HPushArguments>(key);
HValue* intern_key = Add<HCallRuntime>(
isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kInternalizeString), 1);
Push(intern_key);
internalized.End();
// Key guaranteed to be a unique string
}
string_index_if.JoinContinuation(join_continuation);
}
not_symbol_if.Else();
{
Push(key); // Key is symbol
}
not_symbol_if.JoinContinuation(join_continuation);
}
not_string_or_name_if.JoinContinuation(join_continuation);
}
key_smi_if.JoinContinuation(join_continuation);
}
void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
// Get the the instance type of the receiver, and make sure that it is
// not one of the global object types.
HValue* map = Add<HLoadNamedField>(receiver, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
HValue* instance_type =
Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
HObjectAccess::ForMapInstanceType());
STATIC_ASSERT(JS_BUILTINS_OBJECT_TYPE == JS_GLOBAL_OBJECT_TYPE + 1);
HValue* min_global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
HValue* max_global_type = Add<HConstant>(JS_BUILTINS_OBJECT_TYPE);
IfBuilder if_global_object(this);
if_global_object.If<HCompareNumericAndBranch>(instance_type,
max_global_type,
Token::LTE);
if_global_object.And();
if_global_object.If<HCompareNumericAndBranch>(instance_type,
min_global_type,
Token::GTE);
if_global_object.ThenDeopt("receiver was a global object");
if_global_object.End();
}
void HGraphBuilder::BuildTestForDictionaryProperties(
HValue* object,
HIfContinuation* continuation) {
HValue* properties = Add<HLoadNamedField>(
object, static_cast<HValue*>(NULL),
HObjectAccess::ForPropertiesPointer());
HValue* properties_map =
Add<HLoadNamedField>(properties, static_cast<HValue*>(NULL),
HObjectAccess::ForMap());
HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
IfBuilder builder(this);
builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
builder.CaptureContinuation(continuation);
}
HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
HValue* key) {
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
HValue* object_map =
Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
HObjectAccess::ForMapAsInteger32());
HValue* shifted_map = AddUncasted<HShr>(
object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
HValue* string_hash =
Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
HObjectAccess::ForStringHashField());
HValue* shifted_hash = AddUncasted<HShr>(
string_hash, Add<HConstant>(String::kHashShift));
HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
shifted_hash);
int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
Add<HConstant>(mask));
}
HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
HValue* seed = Add<HConstant>(seed_value);
HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
// hash = ~hash + (hash << 15);
HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
graph()->GetConstantMinus1());
hash = AddUncasted<HAdd>(shifted_hash, not_hash);
// hash = hash ^ (hash >> 12);
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
// hash = hash + (hash << 2);
shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
hash = AddUncasted<HAdd>(hash, shifted_hash);
// hash = hash ^ (hash >> 4);
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
// hash = hash * 2057;
hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
hash->ClearFlag(HValue::kCanOverflow);
// hash = hash ^ (hash >> 16);
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
}
HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(HValue* receiver,
HValue* elements,
HValue* key,
HValue* hash) {
HValue* capacity = Add<HLoadKeyed>(
elements,
Add<HConstant>(NameDictionary::kCapacityIndex),
static_cast<HValue*>(NULL),
FAST_ELEMENTS);
HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
mask->ChangeRepresentation(Representation::Integer32());
mask->ClearFlag(HValue::kCanOverflow);
HValue* entry = hash;
HValue* count = graph()->GetConstant1();
Push(entry);
Push(count);
HIfContinuation return_or_loop_continuation(graph()->CreateBasicBlock(),
graph()->CreateBasicBlock());
HIfContinuation found_key_match_continuation(graph()->CreateBasicBlock(),
graph()->CreateBasicBlock());
LoopBuilder probe_loop(this);
probe_loop.BeginBody(2); // Drop entry, count from last environment to
// appease live range building without simulates.
count = Pop();
entry = Pop();
entry = AddUncasted<HBitwise>(Token::BIT_AND, entry, mask);
int entry_size = SeededNumberDictionary::kEntrySize;
HValue* base_index = AddUncasted<HMul>(entry, Add<HConstant>(entry_size));
base_index->ClearFlag(HValue::kCanOverflow);
int start_offset = SeededNumberDictionary::kElementsStartIndex;
HValue* key_index =
AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset));
key_index->ClearFlag(HValue::kCanOverflow);
HValue* candidate_key = Add<HLoadKeyed>(
elements, key_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
IfBuilder if_undefined(this);
if_undefined.If<HCompareObjectEqAndBranch>(candidate_key,
graph()->GetConstantUndefined());
if_undefined.Then();
{
// element == undefined means "not found". Call the runtime.
// TODO(jkummerow): walk the prototype chain instead.
Add<HPushArguments>(receiver, key);
Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kKeyedGetProperty),
2));
}
if_undefined.Else();
{
IfBuilder if_match(this);
if_match.If<HCompareObjectEqAndBranch>(candidate_key, key);
if_match.Then();
if_match.Else();
// Update non-internalized string in the dictionary with internalized key?
IfBuilder if_update_with_internalized(this);
HValue* smi_check =
if_update_with_internalized.IfNot<HIsSmiAndBranch>(candidate_key);
if_update_with_internalized.And();
HValue* map = AddLoadMap(candidate_key, smi_check);
HValue* instance_type = Add<HLoadNamedField>(
map, static_cast<HValue*>(NULL), HObjectAccess::ForMapInstanceType());
HValue* not_internalized_bit = AddUncasted<HBitwise>(
Token::BIT_AND, instance_type,
Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
if_update_with_internalized.If<HCompareNumericAndBranch>(
not_internalized_bit, graph()->GetConstant0(), Token::NE);
if_update_with_internalized.And();
if_update_with_internalized.IfNot<HCompareObjectEqAndBranch>(
candidate_key, graph()->GetConstantHole());
if_update_with_internalized.AndIf<HStringCompareAndBranch>(candidate_key,
key, Token::EQ);
if_update_with_internalized.Then();
// Replace a key that is a non-internalized string by the equivalent
// internalized string for faster further lookups.
Add<HStoreKeyed>(elements, key_index, key, FAST_ELEMENTS);
if_update_with_internalized.Else();
if_update_with_internalized.JoinContinuation(&found_key_match_continuation);
if_match.JoinContinuation(&found_key_match_continuation);
IfBuilder found_key_match(this, &found_key_match_continuation);
found_key_match.Then();
// Key at current probe matches. Relevant bits in the |details| field must
// be zero, otherwise the dictionary element requires special handling.
HValue* details_index =
AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 2));
details_index->ClearFlag(HValue::kCanOverflow);
HValue* details = Add<HLoadKeyed>(
elements, details_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
int details_mask = PropertyDetails::TypeField::kMask |
PropertyDetails::DeletedField::kMask;
details = AddUncasted<HBitwise>(Token::BIT_AND, details,
Add<HConstant>(details_mask));
IfBuilder details_compare(this);
details_compare.If<HCompareNumericAndBranch>(
details, graph()->GetConstant0(), Token::EQ);
details_compare.Then();
HValue* result_index =
AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 1));
result_index->ClearFlag(HValue::kCanOverflow);
Push(Add<HLoadKeyed>(elements, result_index, static_cast<HValue*>(NULL),
FAST_ELEMENTS));
details_compare.Else();
Add<HPushArguments>(receiver, key);
Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kKeyedGetProperty),
2));
details_compare.End();
found_key_match.Else();
found_key_match.JoinContinuation(&return_or_loop_continuation);
}
if_undefined.JoinContinuation(&return_or_loop_continuation);
IfBuilder return_or_loop(this, &return_or_loop_continuation);
return_or_loop.Then();
probe_loop.Break();
return_or_loop.Else();
entry = AddUncasted<HAdd>(entry, count);
entry->ClearFlag(HValue::kCanOverflow);
count = AddUncasted<HAdd>(count, graph()->GetConstant1());
count->ClearFlag(HValue::kCanOverflow);
Push(entry);
Push(count);
probe_loop.EndBody();
return_or_loop.End();
return Pop();
}
HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
HValue* index,
HValue* input) {
NoObservableSideEffectsScope scope(this);
HConstant* max_length = Add<HConstant>(JSObject::kInitialMaxFastElementArray);
Add<HBoundsCheck>(length, max_length);
// Generate size calculation code here in order to make it dominate
// the JSRegExpResult allocation.
ElementsKind elements_kind = FAST_ELEMENTS;
HValue* size = BuildCalculateElementsSize(elements_kind, length);
// Allocate the JSRegExpResult and the FixedArray in one step.
HValue* result = Add<HAllocate>(
Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
NOT_TENURED, JS_ARRAY_TYPE);
// Initialize the JSRegExpResult header.
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
HValue* native_context = Add<HLoadNamedField>(
global_object, static_cast<HValue*>(NULL),
HObjectAccess::ForGlobalObjectNativeContext());
Add<HStoreNamedField>(
result, HObjectAccess::ForMap(),
Add<HLoadNamedField>(
native_context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
HConstant* empty_fixed_array =
Add<HConstant>(isolate()->factory()->empty_fixed_array());
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
empty_fixed_array);
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
empty_fixed_array);
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
// Initialize the additional fields.
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
index);
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
input);
// Allocate and initialize the elements header.
HAllocate* elements = BuildAllocateElements(elements_kind, size);
BuildInitializeElementsHeader(elements, elements_kind, length);
if (!elements->has_size_upper_bound()) {
HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
elements_kind, max_length->Integer32Value());
elements->set_size_upper_bound(size_in_bytes_upper_bound);
}
Add<HStoreNamedField>(
result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
elements);
// Initialize the elements contents with undefined.
BuildFillElementsWithValue(
elements, elements_kind, graph()->GetConstant0(), length,
graph()->GetConstantUndefined());
return result;
}
HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
NoObservableSideEffectsScope scope(this);
// Convert constant numbers at compile time.
if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
Handle<Object> number = HConstant::cast(object)->handle(isolate());
Handle<String> result = isolate()->factory()->NumberToString(number);
return Add<HConstant>(result);
}
// Create a joinable continuation.
HIfContinuation found(graph()->CreateBasicBlock(),
graph()->CreateBasicBlock());
// Load the number string cache.
HValue* number_string_cache =
Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
HValue* mask = AddLoadFixedArrayLength(number_string_cache);
mask->set_type(HType::Smi());
mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
// Check whether object is a smi.
IfBuilder if_objectissmi(this);
if_objectissmi.If<HIsSmiAndBranch>(object);
if_objectissmi.Then();
{
// Compute hash for smi similar to smi_get_hash().
HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
// Load the key.
HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
static_cast<HValue*>(NULL),
FAST_ELEMENTS, ALLOW_RETURN_HOLE);
// Check if object == key.
IfBuilder if_objectiskey(this);
if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
if_objectiskey.Then();
{
// Make the key_index available.
Push(key_index);
}
if_objectiskey.JoinContinuation(&found);
}
if_objectissmi.Else();
{
if (type->Is(Type::SignedSmall())) {
if_objectissmi.Deopt("Expected smi");
} else {
// Check if the object is a heap number.
IfBuilder if_objectisnumber(this);
HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
object, isolate()->factory()->heap_number_map());
if_objectisnumber.Then();
{
// Compute hash for heap number similar to double_get_hash().
HValue* low = Add<HLoadNamedField>(
object, objectisnumber,
HObjectAccess::ForHeapNumberValueLowestBits());
HValue* high = Add<HLoadNamedField>(
object, objectisnumber,
HObjectAccess::ForHeapNumberValueHighestBits());
HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
// Load the key.
HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
static_cast<HValue*>(NULL),
FAST_ELEMENTS, ALLOW_RETURN_HOLE);
// Check if the key is a heap number and compare it with the object.
IfBuilder if_keyisnotsmi(this);
HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
if_keyisnotsmi.Then();
{
IfBuilder if_keyisheapnumber(this);
if_keyisheapnumber.If<HCompareMap>(
key, isolate()->factory()->heap_number_map());
if_keyisheapnumber.Then();
{
// Check if values of key and object match.
IfBuilder if_keyeqobject(this);
if_keyeqobject.If<HCompareNumericAndBranch>(
Add<HLoadNamedField>(key, keyisnotsmi,
HObjectAccess::ForHeapNumberValue()),
Add<HLoadNamedField>(object, objectisnumber,
HObjectAccess::ForHeapNumberValue()),
Token::EQ);
if_keyeqobject.Then();
{
// Make the key_index available.
Push(key_index);
}
if_keyeqobject.JoinContinuation(&found);
}
if_keyisheapnumber.JoinContinuation(&found);
}
if_keyisnotsmi.JoinContinuation(&found);
}
if_objectisnumber.Else();
{
if (type->Is(Type::Number())) {
if_objectisnumber.Deopt("Expected heap number");
}
}
if_objectisnumber.JoinContinuation(&found);
}
}
if_objectissmi.JoinContinuation(&found);
// Check for cache hit.
IfBuilder if_found(this, &found);
if_found.Then();
{
// Count number to string operation in native code.
AddIncrementCounter(isolate()->counters()->number_to_string_native());
// Load the value in case of cache hit.
HValue* key_index = Pop();
HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
Push(Add<HLoadKeyed>(number_string_cache, value_index,
static_cast<HValue*>(NULL),
FAST_ELEMENTS, ALLOW_RETURN_HOLE));
}
if_found.Else();
{
// Cache miss, fallback to runtime.
Add<HPushArguments>(object);
Push(Add<HCallRuntime>(
isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
1));
}
if_found.End();
return Pop();
}
HAllocate* HGraphBuilder::BuildAllocate(
HValue* object_size,
HType type,
InstanceType instance_type,
HAllocationMode allocation_mode) {
// Compute the effective allocation size.
HValue* size = object_size;
if (allocation_mode.CreateAllocationMementos()) {
size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
size->ClearFlag(HValue::kCanOverflow);
}
// Perform the actual allocation.
HAllocate* object = Add<HAllocate>(
size, type, allocation_mode.GetPretenureMode(),
instance_type, allocation_mode.feedback_site());
// Setup the allocation memento.
if (allocation_mode.CreateAllocationMementos()) {
BuildCreateAllocationMemento(
object, object_size, allocation_mode.current_site());
}
return object;
}
HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
HValue* right_length) {
// Compute the combined string length and check against max string length.
HValue* length = AddUncasted<HAdd>(left_length, right_length);
// Check that length <= kMaxLength <=> length < MaxLength + 1.
HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
Add<HBoundsCheck>(length, max_length);
return length;
}
HValue* HGraphBuilder::BuildCreateConsString(
HValue* length,
HValue* left,
HValue* right,
HAllocationMode allocation_mode) {
// Determine the string instance types.
HInstruction* left_instance_type = AddLoadStringInstanceType(left);
HInstruction* right_instance_type = AddLoadStringInstanceType(right);
// Allocate the cons string object. HAllocate does not care whether we
// pass CONS_STRING_TYPE or CONS_ASCII_STRING_TYPE here, so we just use
// CONS_STRING_TYPE here. Below we decide whether the cons string is
// one-byte or two-byte and set the appropriate map.
DCHECK(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
CONS_ASCII_STRING_TYPE));
HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
HType::String(), CONS_STRING_TYPE,
allocation_mode);
// Compute intersection and difference of instance types.
HValue* anded_instance_types = AddUncasted<HBitwise>(
Token::BIT_AND, left_instance_type, right_instance_type);
HValue* xored_instance_types = AddUncasted<HBitwise>(
Token::BIT_XOR, left_instance_type, right_instance_type);
// We create a one-byte cons string if
// 1. both strings are one-byte, or
// 2. at least one of the strings is two-byte, but happens to contain only
// one-byte characters.
// To do this, we check
// 1. if both strings are one-byte, or if the one-byte data hint is set in
// both strings, or
// 2. if one of the strings has the one-byte data hint set and the other
// string is one-byte.
IfBuilder if_onebyte(this);
STATIC_ASSERT(kOneByteStringTag != 0);
STATIC_ASSERT(kOneByteDataHintMask != 0);
if_onebyte.If<HCompareNumericAndBranch>(
AddUncasted<HBitwise>(
Token::BIT_AND, anded_instance_types,
Add<HConstant>(static_cast<int32_t>(
kStringEncodingMask | kOneByteDataHintMask))),
graph()->GetConstant0(), Token::NE);
if_onebyte.Or();
STATIC_ASSERT(kOneByteStringTag != 0 &&
kOneByteDataHintTag != 0 &&
kOneByteDataHintTag != kOneByteStringTag);
if_onebyte.If<HCompareNumericAndBranch>(
AddUncasted<HBitwise>(
Token::BIT_AND, xored_instance_types,
Add<HConstant>(static_cast<int32_t>(
kOneByteStringTag | kOneByteDataHintTag))),
Add<HConstant>(static_cast<int32_t>(
kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
if_onebyte.Then();
{
// We can safely skip the write barrier for storing the map here.
Add<HStoreNamedField>(
result, HObjectAccess::ForMap(),
Add<HConstant>(isolate()->factory()->cons_ascii_string_map()));
}
if_onebyte.Else();
{
// We can safely skip the write barrier for storing the map here.
Add<HStoreNamedField>(
result, HObjectAccess::ForMap(),
Add<HConstant>(isolate()->factory()->cons_string_map()));
}
if_onebyte.End();
// Initialize the cons string fields.
Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
Add<HConstant>(String::kEmptyHashField));
Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
// Count the native string addition.
AddIncrementCounter(isolate()->counters()->string_add_native());
return result;
}
void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
HValue* src_offset,
String::Encoding src_encoding,
HValue* dst,
HValue* dst_offset,
String::Encoding dst_encoding,
HValue* length) {
DCHECK(dst_encoding != String::ONE_BYTE_ENCODING ||
src_encoding == String::ONE_BYTE_ENCODING);
LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
{
HValue* src_index = AddUncasted<HAdd>(src_offset, index);
HValue* value =
AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
}
loop.EndBody();
}
HValue* HGraphBuilder::BuildObjectSizeAlignment(
HValue* unaligned_size, int header_size) {
DCHECK((header_size & kObjectAlignmentMask) == 0);
HValue* size = AddUncasted<HAdd>(
unaligned_size, Add<HConstant>(static_cast<int32_t>(
header_size + kObjectAlignmentMask)));
size->ClearFlag(HValue::kCanOverflow);
return AddUncasted<HBitwise>(
Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
~kObjectAlignmentMask)));
}
HValue* HGraphBuilder::BuildUncheckedStringAdd(
HValue* left,
HValue* right,
HAllocationMode allocation_mode) {
// Determine the string lengths.
HValue* left_length = AddLoadStringLength(left);
HValue* right_length = AddLoadStringLength(right);
// Compute the combined string length.
HValue* length = BuildAddStringLengths(left_length, right_length);
// Do some manual constant folding here.
if (left_length->IsConstant()) {
HConstant* c_left_length = HConstant::cast(left_length);
DCHECK_NE(0, c_left_length->Integer32Value());
if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
// The right string contains at least one character.
return BuildCreateConsString(length, left, right, allocation_mode);
}
} else if (right_length->IsConstant()) {
HConstant* c_right_length = HConstant::cast(right_length);
DCHECK_NE(0, c_right_length->Integer32Value());
if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
// The left string contains at least one character.
return BuildCreateConsString(length, left, right, allocation_mode);
}
}
// Check if we should create a cons string.
IfBuilder if_createcons(this);
if_createcons.If<HCompareNumericAndBranch>(
length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
if_createcons.Then();
{
// Create a cons string.
Push(BuildCreateConsString(length, left, right, allocation_mode));
}
if_createcons.Else();
{
// Determine the string instance types.
HValue* left_instance_type = AddLoadStringInstanceType(left);
HValue* right_instance_type = AddLoadStringInstanceType(right);
// Compute union and difference of instance types.
HValue* ored_instance_types = AddUncasted<HBitwise>(
Token::BIT_OR, left_instance_type, right_instance_type);
HValue* xored_instance_types = AddUncasted<HBitwise>(
Token::BIT_XOR, left_instance_type, right_instance_type);
// Check if both strings have the same encoding and both are
// sequential.
IfBuilder if_sameencodingandsequential(this);
if_sameencodingandsequential.If<HCompareNumericAndBranch>(
AddUncasted<HBitwise>(
Token::BIT_AND, xored_instance_types,
Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
graph()->GetConstant0(), Token::EQ);
if_sameencodingandsequential.And();
STATIC_ASSERT(kSeqStringTag == 0);
if_sameencodingandsequential.If<HCompareNumericAndBranch>(
AddUncasted<HBitwise>(
Token::BIT_AND, ored_instance_types,
Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
graph()->GetConstant0(), Token::EQ);
if_sameencodingandsequential.Then();
{
HConstant* string_map =
Add<HConstant>(isolate()->factory()->string_map());
HConstant* ascii_string_map =
Add<HConstant>(isolate()->factory()->ascii_string_map());
// Determine map and size depending on whether result is one-byte string.
IfBuilder if_onebyte(this);
STATIC_ASSERT(kOneByteStringTag != 0);
if_onebyte.If<HCompareNumericAndBranch>(
AddUncasted<HBitwise>(
Token::BIT_AND, ored_instance_types,
Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
graph()->GetConstant0(), Token::NE);
if_onebyte.Then();
{
// Allocate sequential one-byte string object.
Push(length);
Push(ascii_string_map);
}
if_onebyte.Else();
{
// Allocate sequential two-byte string object.
HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
size->ClearFlag(HValue::kCanOverflow);
size->SetFlag(HValue::kUint32);
Push(size);
Push(string_map);
}
if_onebyte.End();
HValue* map = Pop();
// Calculate the number of bytes needed for the characters in the
// string while observing object alignment.
STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
// Allocate the string object. HAllocate does not care whether we pass
// STRING_TYPE or ASCII_STRING_TYPE here, so we just use STRING_TYPE here.
HAllocate* result = BuildAllocate(
size, HType::String(), STRING_TYPE, allocation_mode);
Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
// Initialize the string fields.
Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
Add<HConstant>(String::kEmptyHashField));
Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
// Copy characters to the result string.
IfBuilder if_twobyte(this);
if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
if_twobyte.Then();
{
// Copy characters from the left string.
BuildCopySeqStringChars(
left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
left_length);
// Copy characters from the right string.
BuildCopySeqStringChars(
right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
result, left_length, String::TWO_BYTE_ENCODING,
right_length);
}
if_twobyte.Else();
{
// Copy characters from the left string.
BuildCopySeqStringChars(
left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
left_length);
// Copy characters from the right string.
BuildCopySeqStringChars(
right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
result, left_length, String::ONE_BYTE_ENCODING,
right_length);
}
if_twobyte.End();
// Count the native string addition.
AddIncrementCounter(isolate()->counters()->string_add_native());
// Return the sequential string.
Push(result);
}
if_sameencodingandsequential.Else();
{
// Fallback to the runtime to add the two strings.
Add<HPushArguments>(left, right);
Push(Add<HCallRuntime>(
isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kStringAdd),
2));
}
if_sameencodingandsequential.End();
}
if_createcons.End();
return Pop();
}
HValue* HGraphBuilder::BuildStringAdd(
HValue* left,
HValue* right,
HAllocationMode allocation_mode) {
NoObservableSideEffectsScope no_effects(this);
// Determine string lengths.
HValue* left_length = AddLoadStringLength(left);
HValue* right_length = AddLoadStringLength(right);
// Check if left string is empty.
IfBuilder if_leftempty(this);
if_leftempty.If<HCompareNumericAndBranch>(
left_length, graph()->GetConstant0(), Token::EQ);
if_leftempty.Then();
{
// Count the native string addition.
AddIncrementCounter(isolate()->counters()->string_add_native());
// Just return the right string.
Push(right);
}
if_leftempty.Else();
{
// Check if right string is empty.
IfBuilder if_rightempty(this);
if_rightempty.If<HCompareNumericAndBranch>(
right_length, graph()->GetConstant0(), Token::EQ);
if_rightempty.Then();
{
// Count the native string addition.
AddIncrementCounter(isolate()->counters()->string_add_native());
// Just return the left string.
Push(left);
}
if_rightempty.Else();
{
// Add the two non-empty strings.
Push(BuildUncheckedStringAdd(left, right, allocation_mode));
}
if_rightempty.End();
}
if_leftempty.End();
return Pop();
}
HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
HValue* checked_object,
HValue* key,
HValue* val,
bool is_js_array,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode,
KeyedAccessStoreMode store_mode) {
DCHECK((!IsExternalArrayElementsKind(elements_kind) &&
!IsFixedTypedArrayElementsKind(elements_kind)) ||
!is_js_array);
// No GVNFlag is necessary for ElementsKind if there is an explicit dependency
// on a HElementsTransition instruction. The flag can also be removed if the
// map to check has FAST_HOLEY_ELEMENTS, since there can be no further
// ElementsKind transitions. Finally, the dependency can be removed for stores
// for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
// generated store code.
if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
(elements_kind == FAST_ELEMENTS && access_type == STORE)) {
checked_object->ClearDependsOnFlag(kElementsKind);
}
bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
bool fast_elements = IsFastObjectElementsKind(elements_kind);
HValue* elements = AddLoadElements(checked_object);
if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
HCheckMaps* check_cow_map = Add<HCheckMaps>(
elements, isolate()->factory()->fixed_array_map());
check_cow_map->ClearDependsOnFlag(kElementsKind);
}
HInstruction* length = NULL;
if (is_js_array) {
length = Add<HLoadNamedField>(
checked_object->ActualValue(), checked_object,
HObjectAccess::ForArrayLength(elements_kind));
} else {
length = AddLoadFixedArrayLength(elements);
}
length->set_type(HType::Smi());
HValue* checked_key = NULL;
if (IsExternalArrayElementsKind(elements_kind) ||
IsFixedTypedArrayElementsKind(elements_kind)) {
HValue* backing_store;
if (IsExternalArrayElementsKind(elements_kind)) {
backing_store = Add<HLoadNamedField>(
elements, static_cast<HValue*>(NULL),
HObjectAccess::ForExternalArrayExternalPointer());
} else {
backing_store = elements;
}
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
NoObservableSideEffectsScope no_effects(this);
IfBuilder length_checker(this);
length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
length_checker.Then();
IfBuilder negative_checker(this);
HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
key, graph()->GetConstant0(), Token::GTE);
negative_checker.Then();
HInstruction* result = AddElementAccess(
backing_store, key, val, bounds_check, elements_kind, access_type);
negative_checker.ElseDeopt("Negative key encountered");
negative_checker.End();
length_checker.End();
return result;
} else {
DCHECK(store_mode == STANDARD_STORE);
checked_key = Add<HBoundsCheck>(key, length);
return AddElementAccess(
backing_store, checked_key, val,
checked_object, elements_kind, access_type);
}
}
DCHECK(fast_smi_only_elements ||
fast_elements ||
IsFastDoubleElementsKind(elements_kind));
// In case val is stored into a fast smi array, assure that the value is a smi
// before manipulating the backing store. Otherwise the actual store may
// deopt, leaving the backing store in an invalid state.
if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
!val->type().IsSmi()) {
val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
}
if (IsGrowStoreMode(store_mode)) {
NoObservableSideEffectsScope no_effects(this);
Representation representation = HStoreKeyed::RequiredValueRepresentation(
elements_kind, STORE_TO_INITIALIZED_ENTRY);
val = AddUncasted<HForceRepresentation>(val, representation);
elements = BuildCheckForCapacityGrow(checked_object, elements,
elements_kind, length, key,
is_js_array, access_type);
checked_key = key;
} else {
checked_key = Add<HBoundsCheck>(key, length);
if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
NoObservableSideEffectsScope no_effects(this);
elements = BuildCopyElementsOnWrite(checked_object, elements,
elements_kind, length);
} else {
HCheckMaps* check_cow_map = Add<HCheckMaps>(
elements, isolate()->factory()->fixed_array_map());
check_cow_map->ClearDependsOnFlag(kElementsKind);
}
}
}
return AddElementAccess(elements, checked_key, val, checked_object,
elements_kind, access_type, load_mode);
}
HValue* HGraphBuilder::BuildAllocateArrayFromLength(
JSArrayBuilder* array_builder,
HValue* length_argument) {
if (length_argument->IsConstant() &&
HConstant::cast(length_argument)->HasSmiValue()) {
int array_length = HConstant::cast(length_argument)->Integer32Value();
if (array_length == 0) {
return array_builder->AllocateEmptyArray();
} else {
return array_builder->AllocateArray(length_argument,
array_length,
length_argument);
}
}
HValue* constant_zero = graph()->GetConstant0();
HConstant* max_alloc_length =
Add<HConstant>(JSObject::kInitialMaxFastElementArray);
HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
max_alloc_length);
IfBuilder if_builder(this);
if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
Token::EQ);
if_builder.Then();
const int initial_capacity = JSArray::kPreallocatedArrayElements;
HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
Push(initial_capacity_node); // capacity
Push(constant_zero); // length
if_builder.Else();
if (!(top_info()->IsStub()) &&
IsFastPackedElementsKind(array_builder->kind())) {
// We'll come back later with better (holey) feedback.
if_builder.Deopt("Holey array despite packed elements_kind feedback");
} else {
Push(checked_length); // capacity
Push(checked_length); // length
}
if_builder.End();
// Figure out total size
HValue* length = Pop();
HValue* capacity = Pop();
return array_builder->AllocateArray(capacity, max_alloc_length, length);
}
HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
HValue* capacity) {
int elements_size = IsFastDoubleElementsKind(kind)
? kDoubleSize
: kPointerSize;
HConstant* elements_size_value = Add<HConstant>(elements_size);
HInstruction* mul = HMul::NewImul(zone(), context(),
capacity->ActualValue(),
elements_size_value);
AddInstruction(mul);
mul->ClearFlag(HValue::kCanOverflow);
STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
HValue* total_size = AddUncasted<HAdd>(mul, header_size);
total_size->ClearFlag(HValue::kCanOverflow);
return total_size;
}
HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
int base_size = JSArray::kSize;
if (mode == TRACK_ALLOCATION_SITE) {
base_size += AllocationMemento::kSize;
}
HConstant* size_in_bytes = Add<HConstant>(base_size);
return Add<HAllocate>(
size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
}
HConstant* HGraphBuilder::EstablishElementsAllocationSize(
ElementsKind kind,
int capacity) {
int base_size = IsFastDoubleElementsKind(kind)
? FixedDoubleArray::SizeFor(capacity)
: FixedArray::SizeFor(capacity);
return Add<HConstant>(base_size);
}
HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
HValue* size_in_bytes) {
InstanceType instance_type = IsFastDoubleElementsKind(kind)
? FIXED_DOUBLE_ARRAY_TYPE
: FIXED_ARRAY_TYPE;
return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
instance_type);
}
void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
ElementsKind kind,
HValue* capacity) {
Factory* factory = isolate()->factory();
Handle<Map> map = IsFastDoubleElementsKind(kind)
? factory->fixed_double_array_map()
: factory->fixed_array_map();
Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
capacity);
}
HValue* HGraphBuilder::BuildAllocateElementsAndInitializeElementsHeader(
ElementsKind kind,
HValue* capacity) {
// The HForceRepresentation is to prevent possible deopt on int-smi
// conversion after allocation but before the new object fields are set.
capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
HValue* new_elements = BuildAllocateElements(kind, size_in_bytes);
BuildInitializeElementsHeader(new_elements, kind, capacity);
return new_elements;
}
void HGraphBuilder::BuildJSArrayHeader(HValue* array,
HValue* array_map,
HValue* elements,
AllocationSiteMode mode,
ElementsKind elements_kind,
HValue* allocation_site_payload,
HValue* length_field) {
Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
HConstant* empty_fixed_array =
Add<HConstant>(isolate()->factory()->empty_fixed_array());
Add<HStoreNamedField>(
array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
Add<HStoreNamedField>(
array, HObjectAccess::ForElementsPointer(),
elements != NULL ? elements : empty_fixed_array);
Add<HStoreNamedField>(
array, HObjectAccess::ForArrayLength(elements_kind), length_field);
if (mode == TRACK_ALLOCATION_SITE) {
BuildCreateAllocationMemento(
array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
}
}
HInstruction* HGraphBuilder::AddElementAccess(
HValue* elements,
HValue* checked_key,
HValue* val,
HValue* dependency,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode) {
if (access_type == STORE) {
DCHECK(val != NULL);
if (elements_kind == EXTERNAL_UINT8_CLAMPED_ELEMENTS ||
elements_kind == UINT8_CLAMPED_ELEMENTS) {
val = Add<HClampToUint8>(val);
}
return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
STORE_TO_INITIALIZED_ENTRY);
}
DCHECK(access_type == LOAD);
DCHECK(val == NULL);
HLoadKeyed* load = Add<HLoadKeyed>(
elements, checked_key, dependency, elements_kind, load_mode);
if (FLAG_opt_safe_uint32_operations &&
(elements_kind == EXTERNAL_UINT32_ELEMENTS ||
elements_kind == UINT32_ELEMENTS)) {
graph()->RecordUint32Instruction(load);
}
return load;
}
HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
HValue* dependency) {
return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
}
HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
HValue* dependency) {
return Add<HLoadNamedField>(
object, dependency, HObjectAccess::ForElementsPointer());
}
HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
HValue* array,
HValue* dependency) {
return Add<HLoadNamedField>(
array, dependency, HObjectAccess::ForFixedArrayLength());
}
HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
ElementsKind kind,
HValue* dependency) {
return Add<HLoadNamedField>(
array, dependency, HObjectAccess::ForArrayLength(kind));
}
HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
graph_->GetConstant1());
HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
new_capacity->ClearFlag(HValue::kCanOverflow);
HValue* min_growth = Add<HConstant>(16);
new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
new_capacity->ClearFlag(HValue::kCanOverflow);
return new_capacity;
}
HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
HValue* elements,
ElementsKind kind,
ElementsKind new_kind,
HValue* length,
HValue* new_capacity) {
Add<HBoundsCheck>(new_capacity, Add<HConstant>(
(Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
ElementsKindToShiftSize(new_kind)));
HValue* new_elements = BuildAllocateElementsAndInitializeElementsHeader(
new_kind, new_capacity);
BuildCopyElements(elements, kind, new_elements,
new_kind, length, new_capacity);
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
new_elements);
return new_elements;
}
void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to,
HValue* value) {
if (to == NULL) {
to = AddLoadFixedArrayLength(elements);
}
// Special loop unfolding case
STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
kElementLoopUnrollThreshold);
int initial_capacity = -1;
if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
int constant_from = from->GetInteger32Constant();
int constant_to = to->GetInteger32Constant();
if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
initial_capacity = constant_to;
}
}
// Since we're about to store a hole value, the store instruction below must
// assume an elements kind that supports heap object values.
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
elements_kind = FAST_HOLEY_ELEMENTS;
}
if (initial_capacity >= 0) {
for (int i = 0; i < initial_capacity; i++) {
HInstruction* key = Add<HConstant>(i);
Add<HStoreKeyed>(elements, key, value, elements_kind);
}
} else {
// Carefully loop backwards so that the "from" remains live through the loop
// rather than the to. This often corresponds to keeping length live rather
// then capacity, which helps register allocation, since length is used more
// other than capacity after filling with holes.
LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
HValue* key = builder.BeginBody(to, from, Token::GT);
HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
adjusted_key->ClearFlag(HValue::kCanOverflow);
Add<HStoreKeyed>(elements, adjusted_key, value, elements_kind);
builder.EndBody();
}
}
void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to) {
// Fast elements kinds need to be initialized in case statements below cause a
// garbage collection.
Factory* factory = isolate()->factory();
double nan_double = FixedDoubleArray::hole_nan_as_double();
HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
? Add<HConstant>(factory->the_hole_value())
: Add<HConstant>(nan_double);
BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
}
void HGraphBuilder::BuildCopyElements(HValue* from_elements,
ElementsKind from_elements_kind,
HValue* to_elements,
ElementsKind to_elements_kind,
HValue* length,
HValue* capacity) {
int constant_capacity = -1;
if (capacity != NULL &&
capacity->IsConstant() &&
HConstant::cast(capacity)->HasInteger32Value()) {
int constant_candidate = HConstant::cast(capacity)->Integer32Value();
if (constant_candidate <= kElementLoopUnrollThreshold) {
constant_capacity = constant_candidate;
}
}
bool pre_fill_with_holes =
IsFastDoubleElementsKind(from_elements_kind) &&
IsFastObjectElementsKind(to_elements_kind);
if (pre_fill_with_holes) {
// If the copy might trigger a GC, make sure that the FixedArray is
// pre-initialized with holes to make sure that it's always in a
// consistent state.
BuildFillElementsWithHole(to_elements, to_elements_kind,
graph()->GetConstant0(), NULL);
}
if (constant_capacity != -1) {
// Unroll the loop for small elements kinds.
for (int i = 0; i < constant_capacity; i++) {
HValue* key_constant = Add<HConstant>(i);
HInstruction* value = Add<HLoadKeyed>(from_elements, key_constant,
static_cast<HValue*>(NULL),
from_elements_kind);
Add<HStoreKeyed>(to_elements, key_constant, value, to_elements_kind);
}
} else {
if (!pre_fill_with_holes &&
(capacity == NULL || !length->Equals(capacity))) {
BuildFillElementsWithHole(to_elements, to_elements_kind,
length, NULL);
}
if (capacity == NULL) {
capacity = AddLoadFixedArrayLength(to_elements);
}
LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
Token::GT);
key = AddUncasted<HSub>(key, graph()->GetConstant1());
key->ClearFlag(HValue::kCanOverflow);
HValue* element = Add<HLoadKeyed>(from_elements, key,
static_cast<HValue*>(NULL),
from_elements_kind,
ALLOW_RETURN_HOLE);
ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
IsFastSmiElementsKind(to_elements_kind))
? FAST_HOLEY_ELEMENTS : to_elements_kind;
if (IsHoleyElementsKind(from_elements_kind) &&
from_elements_kind != to_elements_kind) {
IfBuilder if_hole(this);
if_hole.If<HCompareHoleAndBranch>(element);
if_hole.Then();
HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
? Add<HConstant>(FixedDoubleArray::hole_nan_as_double())
: graph()->GetConstantHole();
Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
if_hole.Else();
HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
store->SetFlag(HValue::kAllowUndefinedAsNaN);
if_hole.End();
} else {
HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
store->SetFlag(HValue::kAllowUndefinedAsNaN);
}
builder.EndBody();
}
Counters* counters = isolate()->counters();
AddIncrementCounter(counters->inlined_copied_elements());
}
HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind) {
HAllocate* array = AllocateJSArrayObject(mode);
HValue* map = AddLoadMap(boilerplate);
HValue* elements = AddLoadElements(boilerplate);
HValue* length = AddLoadArrayLength(boilerplate, kind);
BuildJSArrayHeader(array,
map,
elements,
mode,
FAST_ELEMENTS,
allocation_site,
length);
return array;
}
HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode) {
HAllocate* array = AllocateJSArrayObject(mode);
HValue* map = AddLoadMap(boilerplate);
BuildJSArrayHeader(array,
map,
NULL, // set elements to empty fixed array
mode,
FAST_ELEMENTS,
allocation_site,
graph()->GetConstant0());
return array;
}
HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind) {
HValue* boilerplate_elements = AddLoadElements(boilerplate);
HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
// Generate size calculation code here in order to make it dominate
// the JSArray allocation.
HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
// Create empty JSArray object for now, store elimination should remove
// redundant initialization of elements and length fields and at the same
// time the object will be fully prepared for GC if it happens during
// elements allocation.
HValue* result = BuildCloneShallowArrayEmpty(
boilerplate, allocation_site, mode);
HAllocate* elements = BuildAllocateElements(kind, elements_size);
// This function implicitly relies on the fact that the
// FastCloneShallowArrayStub is called only for literals shorter than
// JSObject::kInitialMaxFastElementArray.
// Can't add HBoundsCheck here because otherwise the stub will eager a frame.
HConstant* size_upper_bound = EstablishElementsAllocationSize(
kind, JSObject::kInitialMaxFastElementArray);
elements->set_size_upper_bound(size_upper_bound);
Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
// The allocation for the cloned array above causes register pressure on
// machines with low register counts. Force a reload of the boilerplate
// elements here to free up a register for the allocation to avoid unnecessary
// spillage.
boilerplate_elements = AddLoadElements(boilerplate);
boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
// Copy the elements array header.
for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
Add<HStoreNamedField>(elements, access,
Add<HLoadNamedField>(boilerplate_elements,
static_cast<HValue*>(NULL), access));
}
// And the result of the length
HValue* length = AddLoadArrayLength(boilerplate, kind);
Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
BuildCopyElements(boilerplate_elements, kind, elements,
kind, length, NULL);
return result;
}
void HGraphBuilder::BuildCompareNil(
HValue* value,
Type* type,
HIfContinuation* continuation) {
IfBuilder if_nil(this);
bool some_case_handled = false;
bool some_case_missing = false;
if (type->Maybe(Type::Null())) {
if (some_case_handled) if_nil.Or();
if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
some_case_handled = true;
} else {
some_case_missing = true;
}
if (type->Maybe(Type::Undefined())) {
if (some_case_handled) if_nil.Or();
if_nil.If<HCompareObjectEqAndBranch>(value,
graph()->GetConstantUndefined());
some_case_handled = true;
} else {
some_case_missing = true;
}
if (type->Maybe(Type::Undetectable())) {
if (some_case_handled) if_nil.Or();
if_nil.If<HIsUndetectableAndBranch>(value);
some_case_handled = true;
} else {
some_case_missing = true;
}
if (some_case_missing) {
if_nil.Then();
if_nil.Else();
if (type->NumClasses() == 1) {
BuildCheckHeapObject(value);
// For ICs, the map checked below is a sentinel map that gets replaced by
// the monomorphic map when the code is used as a template to generate a
// new IC. For optimized functions, there is no sentinel map, the map
// emitted below is the actual monomorphic map.
Add<HCheckMaps>(value, type->Classes().Current());
} else {
if_nil.Deopt("Too many undetectable types");
}
}
if_nil.CaptureContinuation(continuation);
}
void HGraphBuilder::BuildCreateAllocationMemento(
HValue* previous_object,
HValue* previous_object_size,
HValue* allocation_site) {
DCHECK(allocation_site != NULL);
HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
previous_object, previous_object_size, HType::HeapObject());
AddStoreMapConstant(
allocation_memento, isolate()->factory()->allocation_memento_map());
Add<HStoreNamedField>(
allocation_memento,
HObjectAccess::ForAllocationMementoSite(),
allocation_site);
if (FLAG_allocation_site_pretenuring) {
HValue* memento_create_count = Add<HLoadNamedField>(
allocation_site, static_cast<HValue*>(NULL),
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureCreateCountOffset));
memento_create_count = AddUncasted<HAdd>(
memento_create_count, graph()->GetConstant1());
// This smi value is reset to zero after every gc, overflow isn't a problem
// since the counter is bounded by the new space size.
memento_create_count->ClearFlag(HValue::kCanOverflow);
Add<HStoreNamedField>(
allocation_site, HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureCreateCountOffset), memento_create_count);
}
}
HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
// Get the global context, then the native context
HInstruction* context =
Add<HLoadNamedField>(closure, static_cast<HValue*>(NULL),
HObjectAccess::ForFunctionContextPointer());
HInstruction* global_object = Add<HLoadNamedField>(
context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
GlobalObject::kNativeContextOffset);
return Add<HLoadNamedField>(
global_object, static_cast<HValue*>(NULL), access);
}
HInstruction* HGraphBuilder::BuildGetNativeContext() {
// Get the global context, then the native context
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
return Add<HLoadNamedField>(
global_object, static_cast<HValue*>(NULL),
HObjectAccess::ForObservableJSObjectOffset(
GlobalObject::kNativeContextOffset));
}
HInstruction* HGraphBuilder::BuildGetArrayFunction() {
HInstruction* native_context = BuildGetNativeContext();
HInstruction* index =
Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
return Add<HLoadKeyed>(
native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
}
HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* allocation_site_payload,
HValue* constructor_function,
AllocationSiteOverrideMode override_mode) :
builder_(builder),
kind_(kind),
allocation_site_payload_(allocation_site_payload),
constructor_function_(constructor_function) {
DCHECK(!allocation_site_payload->IsConstant() ||
HConstant::cast(allocation_site_payload)->handle(
builder_->isolate())->IsAllocationSite());
mode_ = override_mode == DISABLE_ALLOCATION_SITES
? DONT_TRACK_ALLOCATION_SITE
: AllocationSite::GetMode(kind);
}
HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* constructor_function) :
builder_(builder),
kind_(kind),
mode_(DONT_TRACK_ALLOCATION_SITE),
allocation_site_payload_(NULL),
constructor_function_(constructor_function) {
}
HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
if (!builder()->top_info()->IsStub()) {
// A constant map is fine.
Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
builder()->isolate());
return builder()->Add<HConstant>(map);
}
if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
// No need for a context lookup if the kind_ matches the initial
// map, because we can just load the map in that case.
HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
return builder()->Add<HLoadNamedField>(
constructor_function_, static_cast<HValue*>(NULL), access);
}
// TODO(mvstanton): we should always have a constructor function if we
// are creating a stub.
HInstruction* native_context = constructor_function_ != NULL
? builder()->BuildGetNativeContext(constructor_function_)
: builder()->BuildGetNativeContext();
HInstruction* index = builder()->Add<HConstant>(
static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
HInstruction* map_array = builder()->Add<HLoadKeyed>(
native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
HInstruction* kind_index = builder()->Add<HConstant>(kind_);
return builder()->Add<HLoadKeyed>(
map_array, kind_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
}
HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
// Find the map near the constructor function
HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
return builder()->Add<HLoadNamedField>(
constructor_function_, static_cast<HValue*>(NULL), access);
}
HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
return AllocateArray(capacity,
capacity,
builder()->graph()->GetConstant0());
}
HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
HValue* capacity,
HConstant* capacity_upper_bound,
HValue* length_field,
FillMode fill_mode) {
return AllocateArray(capacity,
capacity_upper_bound->GetInteger32Constant(),
length_field,
fill_mode);
}
HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
HValue* capacity,
int capacity_upper_bound,
HValue* length_field,
FillMode fill_mode) {
HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
? HConstant::cast(capacity)
: builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
if (!elements_location_->has_size_upper_bound()) {
elements_location_->set_size_upper_bound(elememts_size_upper_bound);
}
return array;
}
HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
HValue* capacity,
HValue* length_field,
FillMode fill_mode) {
// These HForceRepresentations are because we store these as fields in the
// objects we construct, and an int32-to-smi HChange could deopt. Accept
// the deopt possibility now, before allocation occurs.
capacity =
builder()->AddUncasted<HForceRepresentation>(capacity,
Representation::Smi());
length_field =
builder()->AddUncasted<HForceRepresentation>(length_field,
Representation::Smi());
// Generate size calculation code here in order to make it dominate
// the JSArray allocation.
HValue* elements_size =
builder()->BuildCalculateElementsSize(kind_, capacity);
// Allocate (dealing with failure appropriately)
HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
// Fill in the fields: map, properties, length
HValue* map;
if (allocation_site_payload_ == NULL) {
map = EmitInternalMapCode();
} else {
map = EmitMapCode();
}
builder()->BuildJSArrayHeader(array_object,
map,
NULL, // set elements to empty fixed array
mode_,
kind_,
allocation_site_payload_,
length_field);
// Allocate and initialize the elements
elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
// Set the elements
builder()->Add<HStoreNamedField>(
array_object, HObjectAccess::ForElementsPointer(), elements_location_);
if (fill_mode == FILL_WITH_HOLE) {
builder()->BuildFillElementsWithHole(elements_location_, kind_,
graph()->GetConstant0(), capacity);
}
return array_object;
}
HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
GlobalObject::kBuiltinsOffset);
HValue* builtins = Add<HLoadNamedField>(
global_object, static_cast<HValue*>(NULL), access);
HObjectAccess function_access = HObjectAccess::ForObservableJSObjectOffset(
JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
return Add<HLoadNamedField>(
builtins, static_cast<HValue*>(NULL), function_access);
}
HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
: HGraphBuilder(info),
function_state_(NULL),
initial_function_state_(this, info, NORMAL_RETURN, 0),
ast_context_(NULL),
break_scope_(NULL),
inlined_count_(0),
globals_(10, info->zone()),
inline_bailout_(false),
osr_(new(info->zone()) HOsrBuilder(this)) {
// This is not initialized in the initializer list because the
// constructor for the initial state relies on function_state_ == NULL
// to know it's the initial state.
function_state_= &initial_function_state_;
InitializeAstVisitor(info->zone());
if (FLAG_hydrogen_track_positions) {
SetSourcePosition(info->shared_info()->start_position());
}
}
HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
HBasicBlock* second,
BailoutId join_id) {
if (first == NULL) {
return second;
} else if (second == NULL) {
return first;
} else {
HBasicBlock* join_block = graph()->CreateBasicBlock();
Goto(first, join_block);
Goto(second, join_block);
join_block->SetJoinId(join_id);
return join_block;
}
}
HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
HBasicBlock* exit_block,
HBasicBlock* continue_block) {
if (continue_block != NULL) {
if (exit_block != NULL) Goto(exit_block, continue_block);
continue_block->SetJoinId(statement->ContinueId());
return continue_block;
}
return exit_block;
}
HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
HBasicBlock* loop_entry,
HBasicBlock* body_exit,
HBasicBlock* loop_successor,
HBasicBlock* break_block) {
if (body_exit != NULL) Goto(body_exit, loop_entry);
loop_entry->PostProcessLoopHeader(statement);
if (break_block != NULL) {
if (loop_successor != NULL) Goto(loop_successor, break_block);
break_block->SetJoinId(statement->ExitId());
return break_block;
}
return loop_successor;
}
// Build a new loop header block and set it as the current block.
HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
Goto(loop_entry);
set_current_block(loop_entry);
return loop_entry;
}
HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
IterationStatement* statement) {
HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
? osr()->BuildOsrLoopEntry(statement)
: BuildLoopEntry();
return loop_entry;
}
void HBasicBlock::FinishExit(HControlInstruction* instruction,
HSourcePosition position) {
Finish(instruction, position);
ClearEnvironment();
}
OStream& operator<<(OStream& os, const HBasicBlock& b) {
return os << "B" << b.block_id();
}
HGraph::HGraph(CompilationInfo* info)
: isolate_(info->isolate()),
next_block_id_(0),
entry_block_(NULL),
blocks_(8, info->zone()),
values_(16, info->zone()),
phi_list_(NULL),
uint32_instructions_(NULL),
osr_(NULL),
info_(info),
zone_(info->zone()),
is_recursive_(false),
use_optimistic_licm_(false),
depends_on_empty_array_proto_elements_(false),
type_change_checksum_(0),
maximum_environment_size_(0),
no_side_effects_scope_count_(0),
disallow_adding_new_values_(false),
next_inline_id_(0),
inlined_functions_(5, info->zone()) {
if (info->IsStub()) {
HydrogenCodeStub* stub = info->code_stub();
CodeStubInterfaceDescriptor* descriptor = stub->GetInterfaceDescriptor();
start_environment_ = new(zone_) HEnvironment(
zone_, descriptor->GetEnvironmentParameterCount());
} else {
TraceInlinedFunction(info->shared_info(), HSourcePosition::Unknown());
start_environment_ =
new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
}
start_environment_->set_ast_id(BailoutId::FunctionEntry());
entry_block_ = CreateBasicBlock();
entry_block_->SetInitialEnvironment(start_environment_);
}
HBasicBlock* HGraph::CreateBasicBlock() {
HBasicBlock* result = new(zone()) HBasicBlock(this);
blocks_.Add(result, zone());
return result;
}
void HGraph::FinalizeUniqueness() {
DisallowHeapAllocation no_gc;
DCHECK(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
it.Current()->FinalizeUniqueness();
}
}
}
int HGraph::TraceInlinedFunction(
Handle<SharedFunctionInfo> shared,
HSourcePosition position) {
if (!FLAG_hydrogen_track_positions) {
return 0;
}
int id = 0;
for (; id < inlined_functions_.length(); id++) {
if (inlined_functions_[id].shared().is_identical_to(shared)) {
break;
}
}
if (id == inlined_functions_.length()) {
inlined_functions_.Add(InlinedFunctionInfo(shared), zone());
if (!shared->script()->IsUndefined()) {
Handle<Script> script(Script::cast(shared->script()));
if (!script->source()->IsUndefined()) {
CodeTracer::Scope tracing_scopex(isolate()->GetCodeTracer());
OFStream os(tracing_scopex.file());
os << "--- FUNCTION SOURCE (" << shared->DebugName()->ToCString().get()
<< ") id{" << info()->optimization_id() << "," << id << "} ---\n";
{
ConsStringIteratorOp op;
StringCharacterStream stream(String::cast(script->source()),
&op,
shared->start_position());
// fun->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len =
shared->end_position() - shared->start_position() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.HasMore()) {
os << AsReversiblyEscapedUC16(stream.GetNext());
}
}
}
os << "\n--- END ---\n";
}
}
}
int inline_id = next_inline_id_++;
if (inline_id != 0) {
CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "INLINE (" << shared->DebugName()->ToCString().get() << ") id{"
<< info()->optimization_id() << "," << id << "} AS " << inline_id
<< " AT " << position << endl;
}
return inline_id;
}
int HGraph::SourcePositionToScriptPosition(HSourcePosition pos) {
if (!FLAG_hydrogen_track_positions || pos.IsUnknown()) {
return pos.raw();
}
return inlined_functions_[pos.inlining_id()].start_position() +
pos.position();
}
// Block ordering was implemented with two mutually recursive methods,
// HGraph::Postorder and HGraph::PostorderLoopBlocks.
// The recursion could lead to stack overflow so the algorithm has been
// implemented iteratively.
// At a high level the algorithm looks like this:
//
// Postorder(block, loop_header) : {
// if (block has already been visited or is of another loop) return;
// mark block as visited;
// if (block is a loop header) {
// VisitLoopMembers(block, loop_header);
// VisitSuccessorsOfLoopHeader(block);
// } else {
// VisitSuccessors(block)
// }
// put block in result list;
// }
//
// VisitLoopMembers(block, outer_loop_header) {
// foreach (block b in block loop members) {
// VisitSuccessorsOfLoopMember(b, outer_loop_header);
// if (b is loop header) VisitLoopMembers(b);
// }
// }
//
// VisitSuccessorsOfLoopMember(block, outer_loop_header) {
// foreach (block b in block successors) Postorder(b, outer_loop_header)
// }
//
// VisitSuccessorsOfLoopHeader(block) {
// foreach (block b in block successors) Postorder(b, block)
// }
//
// VisitSuccessors(block, loop_header) {
// foreach (block b in block successors) Postorder(b, loop_header)
// }
//
// The ordering is started calling Postorder(entry, NULL).
//
// Each instance of PostorderProcessor represents the "stack frame" of the
// recursion, and particularly keeps the state of the loop (iteration) of the
// "Visit..." function it represents.
// To recycle memory we keep all the frames in a double linked list but
// this means that we cannot use constructors to initialize the frames.
//
class PostorderProcessor : public ZoneObject {
public:
// Back link (towards the stack bottom).
PostorderProcessor* parent() {return father_; }
// Forward link (towards the stack top).
PostorderProcessor* child() {return child_; }
HBasicBlock* block() { return block_; }
HLoopInformation* loop() { return loop_; }
HBasicBlock* loop_header() { return loop_header_; }
static PostorderProcessor* CreateEntryProcessor(Zone* zone,
HBasicBlock* block) {
PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
return result->SetupSuccessors(zone, block, NULL);
}
PostorderProcessor* PerformStep(Zone* zone,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* next =
PerformNonBacktrackingStep(zone, order);
if (next != NULL) {
return next;
} else {
return Backtrack(zone, order);
}
}
private:
explicit PostorderProcessor(PostorderProcessor* father)
: father_(father), child_(NULL), successor_iterator(NULL) { }
// Each enum value states the cycle whose state is kept by this instance.
enum LoopKind {
NONE,
SUCCESSORS,
SUCCESSORS_OF_LOOP_HEADER,
LOOP_MEMBERS,
SUCCESSORS_OF_LOOP_MEMBER
};
// Each "Setup..." method is like a constructor for a cycle state.
PostorderProcessor* SetupSuccessors(Zone* zone,
HBasicBlock* block,
HBasicBlock* loop_header) {
if (block == NULL || block->IsOrdered() ||
block->parent_loop_header() != loop_header) {
kind_ = NONE;
block_ = NULL;
loop_ = NULL;
loop_header_ = NULL;
return this;
} else {
block_ = block;
loop_ = NULL;
block->MarkAsOrdered();
if (block->IsLoopHeader()) {
kind_ = SUCCESSORS_OF_LOOP_HEADER;
loop_header_ = block;
InitializeSuccessors();
PostorderProcessor* result = Push(zone);
return result->SetupLoopMembers(zone, block, block->loop_information(),
loop_header);
} else {
DCHECK(block->IsFinished());
kind_ = SUCCESSORS;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
}
}
PostorderProcessor* SetupLoopMembers(Zone* zone,
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = LOOP_MEMBERS;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeLoopMembers();
return this;
}
PostorderProcessor* SetupSuccessorsOfLoopMember(
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = SUCCESSORS_OF_LOOP_MEMBER;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
// This method "allocates" a new stack frame.
PostorderProcessor* Push(Zone* zone) {
if (child_ == NULL) {
child_ = new(zone) PostorderProcessor(this);
}
return child_;
}
void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
DCHECK(block_->end()->FirstSuccessor() == NULL ||
order->Contains(block_->end()->FirstSuccessor()) ||
block_->end()->FirstSuccessor()->IsLoopHeader());
DCHECK(block_->end()->SecondSuccessor() == NULL ||
order->Contains(block_->end()->SecondSuccessor()) ||
block_->end()->SecondSuccessor()->IsLoopHeader());
order->Add(block_, zone);
}
// This method is the basic block to walk up the stack.
PostorderProcessor* Pop(Zone* zone,
ZoneList<HBasicBlock*>* order) {
switch (kind_) {
case SUCCESSORS:
case SUCCESSORS_OF_LOOP_HEADER:
ClosePostorder(order, zone);
return father_;
case LOOP_MEMBERS:
return father_;
case SUCCESSORS_OF_LOOP_MEMBER:
if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
// In this case we need to perform a LOOP_MEMBERS cycle so we
// initialize it and return this instead of father.
return SetupLoopMembers(zone, block(),
block()->loop_information(), loop_header_);
} else {
return father_;
}
case NONE:
return father_;
}
UNREACHABLE();
return NULL;
}
// Walks up the stack.
PostorderProcessor* Backtrack(Zone* zone,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* parent = Pop(zone, order);
while (parent != NULL) {
PostorderProcessor* next =
parent->PerformNonBacktrackingStep(zone, order);
if (next != NULL) {
return next;
} else {
parent = parent->Pop(zone, order);
}
}
return NULL;
}
PostorderProcessor* PerformNonBacktrackingStep(
Zone* zone,
ZoneList<HBasicBlock*>* order) {
HBasicBlock* next_block;
switch (kind_) {
case SUCCESSORS:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block, loop_header_);
}
break;
case SUCCESSORS_OF_LOOP_HEADER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block, block());
}
break;
case LOOP_MEMBERS:
next_block = AdvanceLoopMembers();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessorsOfLoopMember(next_block,
loop_, loop_header_);
}
break;
case SUCCESSORS_OF_LOOP_MEMBER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block, loop_header_);
}
break;
case NONE:
return NULL;
}
return NULL;
}
// The following two methods implement a "foreach b in successors" cycle.
void InitializeSuccessors() {
loop_index = 0;
loop_length = 0;
successor_iterator = HSuccessorIterator(block_->end());
}
HBasicBlock* AdvanceSuccessors() {
if (!successor_iterator.Done()) {
HBasicBlock* result = successor_iterator.Current();
successor_iterator.Advance();
return result;
}
return NULL;
}
// The following two methods implement a "foreach b in loop members" cycle.
void InitializeLoopMembers() {
loop_index = 0;
loop_length = loop_->blocks()->length();
}
HBasicBlock* AdvanceLoopMembers() {
if (loop_index < loop_length) {
HBasicBlock* result = loop_->blocks()->at(loop_index);
loop_index++;
return result;
} else {
return NULL;
}
}
LoopKind kind_;
PostorderProcessor* father_;
PostorderProcessor* child_;
HLoopInformation* loop_;
HBasicBlock* block_;
HBasicBlock* loop_header_;
int loop_index;
int loop_length;
HSuccessorIterator successor_iterator;
};
void HGraph::OrderBlocks() {
CompilationPhase phase("H_Block ordering", info());
#ifdef DEBUG
// Initially the blocks must not be ordered.
for (int i = 0; i < blocks_.length(); ++i) {
DCHECK(!blocks_[i]->IsOrdered());
}
#endif
PostorderProcessor* postorder =
PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
blocks_.Rewind(0);
while (postorder) {
postorder = postorder->PerformStep(zone(), &blocks_);
}
#ifdef DEBUG
// Now all blocks must be marked as ordered.
for (int i = 0; i < blocks_.length(); ++i) {
DCHECK(blocks_[i]->IsOrdered());
}
#endif
// Reverse block list and assign block IDs.
for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
HBasicBlock* bi = blocks_[i];
HBasicBlock* bj = blocks_[j];
bi->set_block_id(j);
bj->set_block_id(i);
blocks_[i] = bj;
blocks_[j] = bi;
}
}
void HGraph::AssignDominators() {
HPhase phase("H_Assign dominators", this);
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_[i];
if (block->IsLoopHeader()) {
// Only the first predecessor of a loop header is from outside the loop.
// All others are back edges, and thus cannot dominate the loop header.
block->AssignCommonDominator(block->predecessors()->first());
block->AssignLoopSuccessorDominators();
} else {
for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
}
}
}
}
bool HGraph::CheckArgumentsPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// We don't support phi uses of arguments for now.
if (phi->CheckFlag(HValue::kIsArguments)) return false;
}
}
return true;
}
bool HGraph::CheckConstPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// Check for the hole value (from an uninitialized const).
for (int k = 0; k < phi->OperandCount(); k++) {
if (phi->OperandAt(k) == GetConstantHole()) return false;
}
}
}
return true;
}
void HGraph::CollectPhis() {
int block_count = blocks_.length();
phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
phi_list_->Add(phi, zone());
}
}
}
// Implementation of utility class to encapsulate the translation state for
// a (possibly inlined) function.
FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
CompilationInfo* info,
InliningKind inlining_kind,
int inlining_id)
: owner_(owner),
compilation_info_(info),
call_context_(NULL),
inlining_kind_(inlining_kind),
function_return_(NULL),
test_context_(NULL),
entry_(NULL),
arguments_object_(NULL),
arguments_elements_(NULL),
inlining_id_(inlining_id),
outer_source_position_(HSourcePosition::Unknown()),
outer_(owner->function_state()) {
if (outer_ != NULL) {
// State for an inline function.
if (owner->ast_context()->IsTest()) {
HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
if_true->MarkAsInlineReturnTarget(owner->current_block());
if_false->MarkAsInlineReturnTarget(owner->current_block());
TestContext* outer_test_context = TestContext::cast(owner->ast_context());
Expression* cond = outer_test_context->condition();
// The AstContext constructor pushed on the context stack. This newed
// instance is the reason that AstContext can't be BASE_EMBEDDED.
test_context_ = new TestContext(owner, cond, if_true, if_false);
} else {
function_return_ = owner->graph()->CreateBasicBlock();
function_return()->MarkAsInlineReturnTarget(owner->current_block());
}
// Set this after possibly allocating a new TestContext above.
call_context_ = owner->ast_context();
}
// Push on the state stack.
owner->set_function_state(this);
if (FLAG_hydrogen_track_positions) {
outer_source_position_ = owner->source_position();
owner->EnterInlinedSource(
info->shared_info()->start_position(),
inlining_id);
owner->SetSourcePosition(info->shared_info()->start_position());
}
}
FunctionState::~FunctionState() {
delete test_context_;
owner_->set_function_state(outer_);
if (FLAG_hydrogen_track_positions) {
owner_->set_source_position(outer_source_position_);
owner_->EnterInlinedSource(
outer_->compilation_info()->shared_info()->start_position(),
outer_->inlining_id());
}
}
// Implementation of utility classes to represent an expression's context in
// the AST.
AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
: owner_(owner),
kind_(kind),
outer_(owner->ast_context()),
for_typeof_(false) {
owner->set_ast_context(this); // Push.
#ifdef DEBUG
DCHECK(owner->environment()->frame_type() == JS_FUNCTION);
original_length_ = owner->environment()->length();
#endif
}
AstContext::~AstContext() {
owner_->set_ast_context(outer_); // Pop.
}
EffectContext::~EffectContext() {
DCHECK(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
ValueContext::~ValueContext() {
DCHECK(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ + 1 &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
void EffectContext::ReturnValue(HValue* value) {
// The value is simply ignored.
}
void ValueContext::ReturnValue(HValue* value) {
// The value is tracked in the bailout environment, and communicated
// through the environment as the result of the expression.
if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
owner()->Bailout(kBadValueContextForArgumentsValue);
}
owner()->Push(value);
}
void TestContext::ReturnValue(HValue* value) {
BuildBranch(value);
}
void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
DCHECK(!instr->IsControlInstruction());
owner()->AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
}
}
void EffectContext::ReturnControl(HControlInstruction* instr,
BailoutId ast_id) {
DCHECK(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->FinishCurrentBlock(instr);
HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
owner()->set_current_block(join);
}
void EffectContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* true_branch = NULL;
HBasicBlock* false_branch = NULL;
continuation->Continue(&true_branch, &false_branch);
if (!continuation->IsTrueReachable()) {
owner()->set_current_block(false_branch);
} else if (!continuation->IsFalseReachable()) {
owner()->set_current_block(true_branch);
} else {
HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
owner()->set_current_block(join);
}
}
void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
DCHECK(!instr->IsControlInstruction());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
}
owner()->AddInstruction(instr);
owner()->Push(instr);
if (instr->HasObservableSideEffects()) {
owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
}
}
void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
DCHECK(!instr->HasObservableSideEffects());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
}
HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, materialize_true);
instr->SetSuccessorAt(1, materialize_false);
owner()->FinishCurrentBlock(instr);
owner()->set_current_block(materialize_true);
owner()->Push(owner()->graph()->GetConstantTrue());
owner()->set_current_block(materialize_false);
owner()->Push(owner()->graph()->GetConstantFalse());
HBasicBlock* join =
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
owner()->set_current_block(join);
}
void ValueContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* materialize_true = NULL;
HBasicBlock* materialize_false = NULL;
continuation->Continue(&materialize_true, &materialize_false);
if (continuation->IsTrueReachable()) {
owner()->set_current_block(materialize_true);
owner()->Push(owner()->graph()->GetConstantTrue());
owner()->set_current_block(materialize_true);
}
if (continuation->IsFalseReachable()) {
owner()->set_current_block(materialize_false);
owner()->Push(owner()->graph()->GetConstantFalse());
owner()->set_current_block(materialize_false);
}
if (continuation->TrueAndFalseReachable()) {
HBasicBlock* join =
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
owner()->set_current_block(join);
}
}
void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
DCHECK(!instr->IsControlInstruction());
HOptimizedGraphBuilder* builder = owner();
builder->AddInstruction(instr);
// We expect a simulate after every expression with side effects, though
// this one isn't actually needed (and wouldn't work if it were targeted).
if (instr->HasObservableSideEffects()) {
builder->Push(instr);
builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
builder->Pop();
}
BuildBranch(instr);
}
void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
DCHECK(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->FinishCurrentBlock(instr);
owner()->Goto(empty_true, if_true(), owner()->function_state());
owner()->Goto(empty_false, if_false(), owner()->function_state());
owner()->set_current_block(NULL);
}
void TestContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* true_branch = NULL;
HBasicBlock* false_branch = NULL;
continuation->Continue(&true_branch, &false_branch);
if (continuation->IsTrueReachable()) {
owner()->Goto(true_branch, if_true(), owner()->function_state());
}
if (continuation->IsFalseReachable()) {
owner()->Goto(false_branch, if_false(), owner()->function_state());
}
owner()->set_current_block(NULL);
}
void TestContext::BuildBranch(HValue* value) {
// We expect the graph to be in edge-split form: there is no edge that
// connects a branch node to a join node. We conservatively ensure that
// property by always adding an empty block on the outgoing edges of this
// branch.
HOptimizedGraphBuilder* builder = owner();
if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
builder->Bailout(kArgumentsObjectValueInATestContext);
}
ToBooleanStub::Types expected(condition()->to_boolean_types());
ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
}
// HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
#define CHECK_BAILOUT(call) \
do { \
call; \
if (HasStackOverflow()) return; \
} while (false)
#define CHECK_ALIVE(call) \
do { \
call; \
if (HasStackOverflow() || current_block() == NULL) return; \
} while (false)
#define CHECK_ALIVE_OR_RETURN(call, value) \
do { \
call; \
if (HasStackOverflow() || current_block() == NULL) return value; \
} while (false)
void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
current_info()->set_bailout_reason(reason);
SetStackOverflow();
}
void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
EffectContext for_effect(this);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
ArgumentsAllowedFlag flag) {
ValueContext for_value(this, flag);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
for_value.set_for_typeof(true);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block) {
TestContext for_test(this, expr, true_block, false_block);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitExpressions(
ZoneList<Expression*>* exprs) {
for (int i = 0; i < exprs->length(); ++i) {
CHECK_ALIVE(VisitForValue(exprs->at(i)));
}
}
bool HOptimizedGraphBuilder::BuildGraph() {
if (current_info()->function()->is_generator()) {
Bailout(kFunctionIsAGenerator);
return false;
}
Scope* scope = current_info()->scope();
if (scope->HasIllegalRedeclaration()) {
Bailout(kFunctionWithIllegalRedeclaration);
return false;
}
if (scope->calls_eval()) {
Bailout(kFunctionCallsEval);
return false;
}
SetUpScope(scope);
// Add an edge to the body entry. This is warty: the graph's start
// environment will be used by the Lithium translation as the initial
// environment on graph entry, but it has now been mutated by the
// Hydrogen translation of the instructions in the start block. This
// environment uses values which have not been defined yet. These
// Hydrogen instructions will then be replayed by the Lithium
// translation, so they cannot have an environment effect. The edge to
// the body's entry block (along with some special logic for the start
// block in HInstruction::InsertAfter) seals the start block from
// getting unwanted instructions inserted.
//
// TODO(kmillikin): Fix this. Stop mutating the initial environment.
// Make the Hydrogen instructions in the initial block into Hydrogen
// values (but not instructions), present in the initial environment and
// not replayed by the Lithium translation.
HEnvironment* initial_env = environment()->CopyWithoutHistory();
HBasicBlock* body_entry = CreateBasicBlock(initial_env);
Goto(body_entry);
body_entry->SetJoinId(BailoutId::FunctionEntry());
set_current_block(body_entry);
// Handle implicit declaration of the function name in named function
// expressions before other declarations.
if (scope->is_function_scope() && scope->function() != NULL) {
VisitVariableDeclaration(scope->function());
}
VisitDeclarations(scope->declarations());
Add<HSimulate>(BailoutId::Declarations());
Add<HStackCheck>(HStackCheck::kFunctionEntry);
VisitStatements(current_info()->function()->body());
if (HasStackOverflow()) return false;
if (current_block() != NULL) {
Add<HReturn>(graph()->GetConstantUndefined());
set_current_block(NULL);
}
// If the checksum of the number of type info changes is the same as the
// last time this function was compiled, then this recompile is likely not
// due to missing/inadequate type feedback, but rather too aggressive
// optimization. Disable optimistic LICM in that case.
Handle<Code> unoptimized_code(current_info()->shared_info()->code());
DCHECK(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
int checksum = type_info->own_type_change_checksum();
int composite_checksum = graph()->update_type_change_checksum(checksum);
graph()->set_use_optimistic_licm(
!type_info->matches_inlined_type_change_checksum(composite_checksum));
type_info->set_inlined_type_change_checksum(composite_checksum);
// Perform any necessary OSR-specific cleanups or changes to the graph.
osr()->FinishGraph();
return true;
}
bool HGraph::Optimize(BailoutReason* bailout_reason) {
OrderBlocks();
AssignDominators();
// We need to create a HConstant "zero" now so that GVN will fold every
// zero-valued constant in the graph together.
// The constant is needed to make idef-based bounds check work: the pass
// evaluates relations with "zero" and that zero cannot be created after GVN.
GetConstant0();
#ifdef DEBUG
// Do a full verify after building the graph and computing dominators.
Verify(true);
#endif
if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
Run<HEnvironmentLivenessAnalysisPhase>();
}
if (!CheckConstPhiUses()) {
*bailout_reason = kUnsupportedPhiUseOfConstVariable;
return false;
}
Run<HRedundantPhiEliminationPhase>();
if (!CheckArgumentsPhiUses()) {
*bailout_reason = kUnsupportedPhiUseOfArguments;
return false;
}
// Find and mark unreachable code to simplify optimizations, especially gvn,
// where unreachable code could unnecessarily defeat LICM.
Run<HMarkUnreachableBlocksPhase>();
if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
CollectPhis();
if (has_osr()) osr()->FinishOsrValues();
Run<HInferRepresentationPhase>();
// Remove HSimulate instructions that have turned out not to be needed
// after all by folding them into the following HSimulate.
// This must happen after inferring representations.
Run<HMergeRemovableSimulatesPhase>();
Run<HMarkDeoptimizeOnUndefinedPhase>();
Run<HRepresentationChangesPhase>();
Run<HInferTypesPhase>();
// Must be performed before canonicalization to ensure that Canonicalize
// will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
// zero.
if (FLAG_opt_safe_uint32_operations) Run<HUint32AnalysisPhase>();
if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
Run<HRangeAnalysisPhase>();
Run<HComputeChangeUndefinedToNaN>();
// Eliminate redundant stack checks on backwards branches.
Run<HStackCheckEliminationPhase>();
if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
RestoreActualValues();
// Find unreachable code a second time, GVN and other optimizations may have
// made blocks unreachable that were previously reachable.
Run<HMarkUnreachableBlocksPhase>();
return true;
}
void HGraph::RestoreActualValues() {
HPhase phase("H_Restore actual values", this);
for (int block_index = 0; block_index < blocks()->length(); block_index++) {
HBasicBlock* block = blocks()->at(block_index);
#ifdef DEBUG
for (int i = 0; i < block->phis()->length(); i++) {
HPhi* phi = block->phis()->at(i);
DCHECK(phi->ActualValue() == phi);
}
#endif
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (instruction->ActualValue() == instruction) continue;
if (instruction->CheckFlag(HValue::kIsDead)) {
// The instruction was marked as deleted but left in the graph
// as a control flow dependency point for subsequent
// instructions.
instruction->DeleteAndReplaceWith(instruction->ActualValue());
} else {
DCHECK(instruction->IsInformativeDefinition());
if (instruction->IsPurelyInformativeDefinition()) {
instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
} else {
instruction->ReplaceAllUsesWith(instruction->ActualValue());
}
}
}
}
}
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
ZoneList<HValue*> arguments(count, zone());
for (int i = 0; i < count; ++i) {
arguments.Add(Pop(), zone());
}
HPushArguments* push_args = New<HPushArguments>();
while (!arguments.is_empty()) {
push_args->AddInput(arguments.RemoveLast());
}
AddInstruction(push_args);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
}
template <class Instruction>
HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
PushArgumentsFromEnvironment(call->argument_count());
return call;
}
void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
// First special is HContext.
HInstruction* context = Add<HContext>();
environment()->BindContext(context);
// Create an arguments object containing the initial parameters. Set the
// initial values of parameters including "this" having parameter index 0.
DCHECK_EQ(scope->num_parameters() + 1, environment()->parameter_count());
HArgumentsObject* arguments_object =
New<HArgumentsObject>(environment()->parameter_count());
for (int i = 0; i < environment()->parameter_count(); ++i) {
HInstruction* parameter = Add<HParameter>(i);
arguments_object->AddArgument(parameter, zone());
environment()->Bind(i, parameter);
}
AddInstruction(arguments_object);
graph()->SetArgumentsObject(arguments_object);
HConstant* undefined_constant = graph()->GetConstantUndefined();
// Initialize specials and locals to undefined.
for (int i = environment()->parameter_count() + 1;
i < environment()->length();
++i) {
environment()->Bind(i, undefined_constant);
}
// Handle the arguments and arguments shadow variables specially (they do
// not have declarations).
if (scope->arguments() != NULL) {
if (!scope->arguments()->IsStackAllocated()) {
return Bailout(kContextAllocatedArguments);
}
environment()->Bind(scope->arguments(),
graph()->GetArgumentsObject());
}
}
void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
CHECK_ALIVE(Visit(stmt));
if (stmt->IsJump()) break;
}
}
void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Scope* outer_scope = scope();
Scope* scope = stmt->scope();
BreakAndContinueInfo break_info(stmt, outer_scope);
{ BreakAndContinueScope push(&break_info, this);
if (scope != NULL) {
// Load the function object.
Scope* declaration_scope = scope->DeclarationScope();
HInstruction* function;
HValue* outer_context = environment()->context();
if (declaration_scope->is_global_scope() ||
declaration_scope->is_eval_scope()) {
function = new(zone()) HLoadContextSlot(
outer_context, Context::CLOSURE_INDEX, HLoadContextSlot::kNoCheck);
} else {
function = New<HThisFunction>();
}
AddInstruction(function);
// Allocate a block context and store it to the stack frame.
HInstruction* inner_context = Add<HAllocateBlockContext>(
outer_context, function, scope->GetScopeInfo());
HInstruction* instr = Add<HStoreFrameContext>(inner_context);
if (instr->HasObservableSideEffects()) {
AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
}
set_scope(scope);
environment()->BindContext(inner_context);
VisitDeclarations(scope->declarations());
AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
}
CHECK_BAILOUT(VisitStatements(stmt->statements()));
}
set_scope(outer_scope);
if (scope != NULL && current_block() != NULL) {
HValue* inner_context = environment()->context();
HValue* outer_context = Add<HLoadNamedField>(
inner_context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
HInstruction* instr = Add<HStoreFrameContext>(outer_context);
if (instr->HasObservableSideEffects()) {
AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
}
environment()->BindContext(outer_context);
}
HBasicBlock* break_block = break_info.break_block();
if (break_block != NULL) {
if (current_block() != NULL) Goto(break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
void HOptimizedGraphBuilder::VisitExpressionStatement(
ExpressionStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
VisitForEffect(stmt->expression());
}
void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
}
void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (stmt->condition()->ToBooleanIsTrue()) {
Add<HSimulate>(stmt->ThenId());
Visit(stmt->then_statement());
} else if (stmt->condition()->ToBooleanIsFalse()) {
Add<HSimulate>(stmt->ElseId());
Visit(stmt->else_statement());
} else {
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(stmt->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(stmt->then_statement()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(stmt->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(stmt->else_statement()));
cond_false = current_block();
} else {
cond_false = NULL;
}
HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
set_current_block(join);
}
}
HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
BreakableStatement* stmt,
BreakType type,
Scope** scope,
int* drop_extra) {
*drop_extra = 0;
BreakAndContinueScope* current = this;
while (current != NULL && current->info()->target() != stmt) {
*drop_extra += current->info()->drop_extra();
current = current->next();
}
DCHECK(current != NULL); // Always found (unless stack is malformed).
*scope = current->info()->scope();
if (type == BREAK) {
*drop_extra += current->info()->drop_extra();
}
HBasicBlock* block = NULL;
switch (type) {
case BREAK:
block = current->info()->break_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_break_block(block);
}
break;
case CONTINUE:
block = current->info()->continue_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_continue_block(block);
}
break;
}
return block;
}
void HOptimizedGraphBuilder::VisitContinueStatement(
ContinueStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Scope* outer_scope = NULL;
Scope* inner_scope = scope();
int drop_extra = 0;
HBasicBlock* continue_block = break_scope()->Get(
stmt->target(), BreakAndContinueScope::CONTINUE,
&outer_scope, &drop_extra);
HValue* context = environment()->context();
Drop(drop_extra);
int context_pop_count = inner_scope->ContextChainLength(outer_scope);
if (context_pop_count > 0) {
while (context_pop_count-- > 0) {
HInstruction* context_instruction = Add<HLoadNamedField>(
context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
context = context_instruction;
}
HInstruction* instr = Add<HStoreFrameContext>(context);
if (instr->HasObservableSideEffects()) {
AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
}
environment()->BindContext(context);
}
Goto(continue_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Scope* outer_scope = NULL;
Scope* inner_scope = scope();
int drop_extra = 0;
HBasicBlock* break_block = break_scope()->Get(
stmt->target(), BreakAndContinueScope::BREAK,
&outer_scope, &drop_extra);
HValue* context = environment()->context();
Drop(drop_extra);
int context_pop_count = inner_scope->ContextChainLength(outer_scope);
if (context_pop_count > 0) {
while (context_pop_count-- > 0) {
HInstruction* context_instruction = Add<HLoadNamedField>(
context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
context = context_instruction;
}
HInstruction* instr = Add<HStoreFrameContext>(context);
if (instr->HasObservableSideEffects()) {
AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
}
environment()->BindContext(context);
}
Goto(break_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
FunctionState* state = function_state();
AstContext* context = call_context();
if (context == NULL) {
// Not an inlined return, so an actual one.
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* result = environment()->Pop();
Add<HReturn>(result);
} else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Return from an inlined construct call. In a test context the return value
// will always evaluate to true, in a value context the return value needs
// to be a JSObject.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
CHECK_ALIVE(VisitForEffect(stmt->expression()));
Goto(test->if_true(), state);
} else if (context->IsEffect()) {
CHECK_ALIVE(VisitForEffect(stmt->expression()));
Goto(function_return(), state);
} else {
DCHECK(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* return_value = Pop();
HValue* receiver = environment()->arguments_environment()->Lookup(0);
HHasInstanceTypeAndBranch* typecheck =
New<HHasInstanceTypeAndBranch>(return_value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_spec_object);
typecheck->SetSuccessorAt(1, not_spec_object);
FinishCurrentBlock(typecheck);
AddLeaveInlined(if_spec_object, return_value, state);
AddLeaveInlined(not_spec_object, receiver, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Return from an inlined setter call. The returned value is never used, the
// value of an assignment is always the value of the RHS of the assignment.
CHECK_ALIVE(VisitForEffect(stmt->expression()));
if (context->IsTest()) {
HValue* rhs = environment()->arguments_environment()->Lookup(1);
context->ReturnValue(rhs);
} else if (context->IsEffect()) {
Goto(function_return(), state);
} else {
DCHECK(context->IsValue());
HValue* rhs = environment()->arguments_environment()->Lookup(1);
AddLeaveInlined(rhs, state);
}
} else {
// Return from a normal inlined function. Visit the subexpression in the
// expression context of the call.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
VisitForControl(stmt->expression(), test->if_true(), test->if_false());
} else if (context->IsEffect()) {
// Visit in value context and ignore the result. This is needed to keep
// environment in sync with full-codegen since some visitors (e.g.
// VisitCountOperation) use the operand stack differently depending on
// context.
CHECK_ALIVE(VisitForValue(stmt->expression()));
Pop();
Goto(function_return(), state);
} else {
DCHECK(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
AddLeaveInlined(Pop(), state);
}
}
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kWithStatement);
}
void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
// We only optimize switch statements with a bounded number of clauses.
const int kCaseClauseLimit = 128;
ZoneList<CaseClause*>* clauses = stmt->cases();
int clause_count = clauses->length();
ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
if (clause_count > kCaseClauseLimit) {
return Bailout(kSwitchStatementTooManyClauses);
}
CHECK_ALIVE(VisitForValue(stmt->tag()));
Add<HSimulate>(stmt->EntryId());
HValue* tag_value = Top();
Type* tag_type = stmt->tag()->bounds().lower;
// 1. Build all the tests, with dangling true branches
BailoutId default_id = BailoutId::None();
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) {
body_blocks.Add(NULL, zone());
if (default_id.IsNone()) default_id = clause->EntryId();
continue;
}
// Generate a compare and branch.
CHECK_ALIVE(VisitForValue(clause->label()));
HValue* label_value = Pop();
Type* label_type = clause->label()->bounds().lower;
Type* combined_type = clause->compare_type();
HControlInstruction* compare = BuildCompareInstruction(
Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
combined_type,
ScriptPositionToSourcePosition(stmt->tag()->position()),
ScriptPositionToSourcePosition(clause->label()->position()),
PUSH_BEFORE_SIMULATE, clause->id());
HBasicBlock* next_test_block = graph()->CreateBasicBlock();
HBasicBlock* body_block = graph()->CreateBasicBlock();
body_blocks.Add(body_block, zone());
compare->SetSuccessorAt(0, body_block);
compare->SetSuccessorAt(1, next_test_block);
FinishCurrentBlock(compare);
set_current_block(body_block);
Drop(1); // tag_value
set_current_block(next_test_block);
}
// Save the current block to use for the default or to join with the
// exit.
HBasicBlock* last_block = current_block();
Drop(1); // tag_value
// 2. Loop over the clauses and the linked list of tests in lockstep,
// translating the clause bodies.
HBasicBlock* fall_through_block = NULL;
BreakAndContinueInfo break_info(stmt, scope());
{ BreakAndContinueScope push(&break_info, this);
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
// Identify the block where normal (non-fall-through) control flow
// goes to.
HBasicBlock* normal_block = NULL;
if (clause->is_default()) {
if (last_block == NULL) continue;
normal_block = last_block;
last_block = NULL; // Cleared to indicate we've handled it.
} else {
normal_block = body_blocks[i];
}
if (fall_through_block == NULL) {
set_current_block(normal_block);
} else {
HBasicBlock* join = CreateJoin(fall_through_block,
normal_block,
clause->EntryId());
set_current_block(join);
}
CHECK_BAILOUT(VisitStatements(clause->statements()));
fall_through_block = current_block();
}
}
// Create an up-to-3-way join. Use the break block if it exists since
// it's already a join block.
HBasicBlock* break_block = break_info.break_block();
if (break_block == NULL) {
set_current_block(CreateJoin(fall_through_block,
last_block,
stmt->ExitId()));
} else {
if (fall_through_block != NULL) Goto(fall_through_block, break_block);
if (last_block != NULL) Goto(last_block, break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
HBasicBlock* loop_entry) {
Add<HSimulate>(stmt->StackCheckId());
HStackCheck* stack_check =
HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
DCHECK(loop_entry->IsLoopHeader());
loop_entry->loop_information()->set_stack_check(stack_check);
CHECK_BAILOUT(Visit(stmt->body()));
}
void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
DCHECK(current_block() != NULL);
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
BreakAndContinueInfo break_info(stmt, scope());
{
BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_successor = NULL;
if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
set_current_block(body_exit);
loop_successor = graph()->CreateBasicBlock();
if (stmt->cond()->ToBooleanIsFalse()) {
loop_entry->loop_information()->stack_check()->Eliminate();
Goto(loop_successor);
body_exit = NULL;
} else {
// The block for a true condition, the actual predecessor block of the
// back edge.
body_exit = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
}
if (body_exit != NULL && body_exit->HasPredecessor()) {
body_exit->SetJoinId(stmt->BackEdgeId());
} else {
body_exit = NULL;
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
DCHECK(current_block() != NULL);
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
// If the condition is constant true, do not generate a branch.
HBasicBlock* loop_successor = NULL;
if (!stmt->cond()->ToBooleanIsTrue()) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt, scope());
if (current_block() != NULL) {
BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (stmt->init() != NULL) {
CHECK_ALIVE(Visit(stmt->init()));
}
DCHECK(current_block() != NULL);
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
HBasicBlock* loop_successor = NULL;
if (stmt->cond() != NULL) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt, scope());
if (current_block() != NULL) {
BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (stmt->next() != NULL && body_exit != NULL) {
set_current_block(body_exit);
CHECK_BAILOUT(Visit(stmt->next()));
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (!FLAG_optimize_for_in) {
return Bailout(kForInStatementOptimizationIsDisabled);
}
if (stmt->for_in_type() != ForInStatement::FAST_FOR_IN) {
return Bailout(kForInStatementIsNotFastCase);
}
if (!stmt->each()->IsVariableProxy() ||
!stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
return Bailout(kForInStatementWithNonLocalEachVariable);
}
Variable* each_var = stmt->each()->AsVariableProxy()->var();
CHECK_ALIVE(VisitForValue(stmt->enumerable()));
HValue* enumerable = Top(); // Leave enumerable at the top.
HInstruction* map = Add<HForInPrepareMap>(enumerable);
Add<HSimulate>(stmt->PrepareId());
HInstruction* array = Add<HForInCacheArray>(
enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex);
HInstruction* enum_length = Add<HMapEnumLength>(map);
HInstruction* start_index = Add<HConstant>(0);
Push(map);
Push(array);
Push(enum_length);
Push(start_index);
HInstruction* index_cache = Add<HForInCacheArray>(
enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
HForInCacheArray::cast(array)->set_index_cache(
HForInCacheArray::cast(index_cache));
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
HValue* index = environment()->ExpressionStackAt(0);
HValue* limit = environment()->ExpressionStackAt(1);
// Check that we still have more keys.
HCompareNumericAndBranch* compare_index =
New<HCompareNumericAndBranch>(index, limit, Token::LT);
compare_index->set_observed_input_representation(
Representation::Smi(), Representation::Smi());
HBasicBlock* loop_body = graph()->CreateBasicBlock();
HBasicBlock* loop_successor = graph()->CreateBasicBlock();
compare_index->SetSuccessorAt(0, loop_body);
compare_index->SetSuccessorAt(1, loop_successor);
FinishCurrentBlock(compare_index);
set_current_block(loop_successor);
Drop(5);
set_current_block(loop_body);
HValue* key = Add<HLoadKeyed>(
environment()->ExpressionStackAt(2), // Enum cache.
environment()->ExpressionStackAt(0), // Iteration index.
environment()->ExpressionStackAt(0),
FAST_ELEMENTS);
// Check if the expected map still matches that of the enumerable.
// If not just deoptimize.
Add<HCheckMapValue>(environment()->ExpressionStackAt(4),
environment()->ExpressionStackAt(3));
Bind(each_var, key);
BreakAndContinueInfo break_info(stmt, scope(), 5);
{
BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (body_exit != NULL) {
set_current_block(body_exit);
HValue* current_index = Pop();
Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kForOfStatement);
}
void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kTryCatchStatement);
}
void HOptimizedGraphBuilder::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kTryFinallyStatement);
}
void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kDebuggerStatement);
}
void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Handle<SharedFunctionInfo> shared_info = expr->shared_info();
if (shared_info.is_null()) {
shared_info =
Compiler::BuildFunctionInfo(expr, current_info()->script(), top_info());
}
// We also have a stack overflow if the recursive compilation did.
if (HasStackOverflow()) return;
HFunctionLiteral* instr =
New<HFunctionLiteral>(shared_info, expr->pretenure());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
NativeFunctionLiteral* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
return Bailout(kNativeFunctionLiteral);
}
void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
// Visit the true and false subexpressions in the same AST context as the
// whole expression.
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(expr->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(expr->then_expression()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(expr->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(expr->else_expression()));
cond_false = current_block();
} else {
cond_false = NULL;
}
if (!ast_context()->IsTest()) {
HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
set_current_block(join);
if (join != NULL && !ast_context()->IsEffect()) {
return ast_context()->ReturnValue(Pop());
}
}
}
HOptimizedGraphBuilder::GlobalPropertyAccess
HOptimizedGraphBuilder::LookupGlobalProperty(Variable* var, LookupIterator* it,
PropertyAccessType access_type) {
DCHECK_EQ(*var->name(), *it->name());
if (var->is_this() || !current_info()->has_global_object()) {
return kUseGeneric;
}
if (!it->HasProperty() || it->property_kind() != LookupIterator::DATA ||
(access_type == STORE && it->IsReadOnly())) {
return kUseGeneric;
}
return kUseCell;
}
HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
DCHECK(var->IsContextSlot());
HValue* context = environment()->context();
int length = scope()->ContextChainLength(var->scope());
while (length-- > 0) {
context = Add<HLoadNamedField>(
context, static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
}
return context;
}
void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
if (expr->is_this()) {
current_info()->set_this_has_uses(true);
}
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Variable* variable = expr->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
if (IsLexicalVariableMode(variable->mode())) {
// TODO(rossberg): should this be an DCHECK?
return Bailout(kReferenceToGlobalLexicalVariable);
}
// Handle known global constants like 'undefined' specially to avoid a
// load from a global cell for them.
Handle<Object> constant_value =
isolate()->factory()->GlobalConstantFor(variable->name());
if (!constant_value.is_null()) {
HConstant* instr = New<HConstant>(constant_value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
Handle<GlobalObject> global(current_info()->global_object());
LookupIterator it(global, variable->name(), LookupIterator::OWN_PROPERTY);
GlobalPropertyAccess type = LookupGlobalProperty(variable, &it, LOAD);
if (type == kUseCell &&
current_info()->global_object()->IsAccessCheckNeeded()) {
type = kUseGeneric;
}
if (type == kUseCell) {
Handle<PropertyCell> cell = it.GetPropertyCell();
if (cell->type()->IsConstant()) {
PropertyCell::AddDependentCompilationInfo(cell, top_info());
Handle<Object> constant_object = cell->type()->AsConstant()->Value();
if (constant_object->IsConsString()) {
constant_object =
String::Flatten(Handle<String>::cast(constant_object));
}
HConstant* constant = New<HConstant>(constant_object);
return ast_context()->ReturnInstruction(constant, expr->id());
} else {
HLoadGlobalCell* instr =
New<HLoadGlobalCell>(cell, it.property_details());
return ast_context()->ReturnInstruction(instr, expr->id());
}
} else {
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
HLoadGlobalGeneric* instr =
New<HLoadGlobalGeneric>(global_object,
variable->name(),
ast_context()->is_for_typeof());
if (FLAG_vector_ics) {
Handle<SharedFunctionInfo> current_shared =
function_state()->compilation_info()->shared_info();
instr->SetVectorAndSlot(
handle(current_shared->feedback_vector(), isolate()),
expr->VariableFeedbackSlot());
}
return ast_context()->ReturnInstruction(instr, expr->id());
}
}
case Variable::PARAMETER:
case Variable::LOCAL: {
HValue* value = LookupAndMakeLive(variable);
if (value == graph()->GetConstantHole()) {
DCHECK(IsDeclaredVariableMode(variable->mode()) &&
variable->mode() != VAR);
return Bailout(kReferenceToUninitializedVariable);
}
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
HValue* context = BuildContextChainWalk(variable);
HLoadContextSlot::Mode mode;
switch (variable->mode()) {
case LET:
case CONST:
mode = HLoadContextSlot::kCheckDeoptimize;
break;
case CONST_LEGACY:
mode = HLoadContextSlot::kCheckReturnUndefined;
break;
default:
mode = HLoadContextSlot::kNoCheck;
break;
}
HLoadContextSlot* instr =
new(zone()) HLoadContextSlot(context, variable->index(), mode);
return ast_context()->ReturnInstruction(instr, expr->id());
}
case Variable::LOOKUP:
return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
}
}
void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
HConstant* instr = New<HConstant>(expr->value());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
Handle<FixedArray> literals(closure->literals());
HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
expr->pattern(),
expr->flags(),
expr->literal_index());
return ast_context()->ReturnInstruction(instr, expr->id());
}
static bool CanInlinePropertyAccess(Type* type) {
if (type->Is(Type::NumberOrString())) return true;
if (!type->IsClass()) return false;
Handle<Map> map = type->AsClass()->Map();
return map->IsJSObjectMap() &&
!map->is_dictionary_map() &&
!map->has_named_interceptor();
}
// Determines whether the given array or object literal boilerplate satisfies
// all limits to be considered for fast deep-copying and computes the total
// size of all objects that are part of the graph.
static bool IsFastLiteral(Handle<JSObject> boilerplate,
int max_depth,
int* max_properties) {
if (boilerplate->map()->is_deprecated() &&
!JSObject::TryMigrateInstance(boilerplate)) {
return false;
}
DCHECK(max_depth >= 0 && *max_properties >= 0);
if (max_depth == 0) return false;
Isolate* isolate = boilerplate->GetIsolate();
Handle<FixedArrayBase> elements(boilerplate->elements());
if (elements->length() > 0 &&
elements->map() != isolate->heap()->fixed_cow_array_map()) {
if (boilerplate->HasFastObjectElements()) {
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
int length = elements->length();
for (int i = 0; i < length; i++) {
if ((*max_properties)-- == 0) return false;
Handle<Object> value(fast_elements->get(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties)) {
return false;
}
}
}
} else if (!boilerplate->HasFastDoubleElements()) {
return false;
}
}
Handle<FixedArray> properties(boilerplate->properties());
if (properties->length() > 0) {
return false;
} else {
Handle<DescriptorArray> descriptors(
boilerplate->map()->instance_descriptors());
int limit = boilerplate->map()->NumberOfOwnDescriptors();
for (int i = 0; i < limit; i++) {
PropertyDetails details = descriptors->GetDetails(i);
if (details.type() != FIELD) continue;
int index = descriptors->GetFieldIndex(i);
if ((*max_properties)-- == 0) return false;
Handle<Object> value(boilerplate->InObjectPropertyAt(index), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties)) {
return false;
}
}
}
}
return true;
}
void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
expr->BuildConstantProperties(isolate());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
HInstruction* literal;
// Check whether to use fast or slow deep-copying for boilerplate.
int max_properties = kMaxFastLiteralProperties;
Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
isolate());
Handle<AllocationSite> site;
Handle<JSObject> boilerplate;
if (!literals_cell->IsUndefined()) {
// Retrieve the boilerplate
site = Handle<AllocationSite>::cast(literals_cell);
boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
isolate());
}
if (!boilerplate.is_null() &&
IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
AllocationSiteUsageContext usage_context(isolate(), site, false);
usage_context.EnterNewScope();
literal = BuildFastLiteral(boilerplate, &usage_context);
usage_context.ExitScope(site, boilerplate);
} else {
NoObservableSideEffectsScope no_effects(this);
Handle<FixedArray> closure_literals(closure->literals(), isolate());
Handle<FixedArray> constant_properties = expr->constant_properties();
int literal_index = expr->literal_index();
int flags = expr->fast_elements()
? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags;
flags |= expr->has_function()
? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags;
Add<HPushArguments>(Add<HConstant>(closure_literals),
Add<HConstant>(literal_index),
Add<HConstant>(constant_properties),
Add<HConstant>(flags));
// TODO(mvstanton): Add a flag to turn off creation of any
// AllocationMementos for this call: we are in crankshaft and should have
// learned enough about transition behavior to stop emitting mementos.
Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
Runtime::FunctionForId(function_id),
4);
}
// The object is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
Push(literal);
expr->CalculateEmitStore(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
CHECK_ALIVE(VisitForValue(value));
HValue* value = Pop();
Handle<Map> map = property->GetReceiverType();
Handle<String> name = property->key()->AsPropertyName();
HInstruction* store;
if (map.is_null()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildNamedGeneric(
STORE, NULL, literal, name, value));
} else {
PropertyAccessInfo info(this, STORE, ToType(map), name);
if (info.CanAccessMonomorphic()) {
HValue* checked_literal = Add<HCheckMaps>(literal, map);
DCHECK(!info.IsAccessor());
store = BuildMonomorphicAccess(
&info, literal, checked_literal, value,
BailoutId::None(), BailoutId::None());
} else {
CHECK_ALIVE(store = BuildNamedGeneric(
STORE, NULL, literal, name, value));
}
}
AddInstruction(store);
if (store->HasObservableSideEffects()) {
Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
}
} else {
CHECK_ALIVE(VisitForEffect(value));
}
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
return Bailout(kObjectLiteralWithComplexProperty);
default: UNREACHABLE();
}
}
if (expr->has_function()) {
// Return the result of the transformation to fast properties
// instead of the original since this operation changes the map
// of the object. This makes sure that the original object won't
// be used by other optimized code before it is transformed
// (e.g. because of code motion).
HToFastProperties* result = Add<HToFastProperties>(Pop());
return ast_context()->ReturnValue(result);
} else {
return ast_context()->ReturnValue(Pop());
}
}
void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
expr->BuildConstantElements(isolate());
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
HInstruction* literal;
Handle<AllocationSite> site;
Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
bool uninitialized = false;
Handle<Object> literals_cell(literals->get(expr->literal_index()),
isolate());
Handle<JSObject> boilerplate_object;
if (literals_cell->IsUndefined()) {
uninitialized = true;
Handle<Object> raw_boilerplate;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate(), raw_boilerplate,
Runtime::CreateArrayLiteralBoilerplate(
isolate(), literals, expr->constant_elements()),
Bailout(kArrayBoilerplateCreationFailed));
boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
AllocationSiteCreationContext creation_context(isolate());
site = creation_context.EnterNewScope();
if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
return Bailout(kArrayBoilerplateCreationFailed);
}
creation_context.ExitScope(site, boilerplate_object);
literals->set(expr->literal_index(), *site);
if (boilerplate_object->elements()->map() ==
isolate()->heap()->fixed_cow_array_map()) {
isolate()->counters()->cow_arrays_created_runtime()->Increment();
}
} else {
DCHECK(literals_cell->IsAllocationSite());
site = Handle<AllocationSite>::cast(literals_cell);
boilerplate_object = Handle<JSObject>(
JSObject::cast(site->transition_info()), isolate());
}
DCHECK(!boilerplate_object.is_null());
DCHECK(site->SitePointsToLiteral());
ElementsKind boilerplate_elements_kind =
boilerplate_object->GetElementsKind();
// Check whether to use fast or slow deep-copying for boilerplate.
int max_properties = kMaxFastLiteralProperties;
if (IsFastLiteral(boilerplate_object,
kMaxFastLiteralDepth,
&max_properties)) {
AllocationSiteUsageContext usage_context(isolate(), site, false);
usage_context.EnterNewScope();
literal = BuildFastLiteral(boilerplate_object, &usage_context);
usage_context.ExitScope(site, boilerplate_object);
} else {
NoObservableSideEffectsScope no_effects(this);
// Boilerplate already exists and constant elements are never accessed,
// pass an empty fixed array to the runtime function instead.
Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
int literal_index = expr->literal_index();
int flags = expr->depth() == 1
? ArrayLiteral::kShallowElements
: ArrayLiteral::kNoFlags;
flags |= ArrayLiteral::kDisableMementos;
Add<HPushArguments>(Add<HConstant>(literals),
Add<HConstant>(literal_index),
Add<HConstant>(constants),
Add<HConstant>(flags));
// TODO(mvstanton): Consider a flag to turn off creation of any
// AllocationMementos for this call: we are in crankshaft and should have
// learned enough about transition behavior to stop emitting mementos.
Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
Runtime::FunctionForId(function_id),
4);
// De-opt if elements kind changed from boilerplate_elements_kind.
Handle<Map> map = Handle<Map>(boilerplate_object->map(), isolate());
literal = Add<HCheckMaps>(literal, map);
}
// The array is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
Push(literal);
// The literal index is on the stack, too.
Push(Add<HConstant>(expr->literal_index()));
HInstruction* elements = NULL;
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
CHECK_ALIVE(VisitForValue(subexpr));
HValue* value = Pop();
if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
elements = AddLoadElements(literal);
HValue* key = Add<HConstant>(i);
switch (boilerplate_elements_kind) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
boilerplate_elements_kind);
instr->SetUninitialized(uninitialized);
break;
}
default:
UNREACHABLE();
break;
}
Add<HSimulate>(expr->GetIdForElement(i));
}
Drop(1); // array literal index
return ast_context()->ReturnValue(Pop());
}
HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
Handle<Map> map) {
BuildCheckHeapObject(object);
return Add<HCheckMaps>(object, map);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
PropertyAccessInfo* info,
HValue* checked_object) {
// See if this is a load for an immutable property
if (checked_object->ActualValue()->IsConstant() && info->IsReadOnly() &&
!info->IsConfigurable()) {
Handle<Object> object(
HConstant::cast(checked_object->ActualValue())->handle(isolate()));
if (object->IsJSObject()) {
LookupIterator it(object, info->name(), LookupIterator::OWN_PROPERTY);
Handle<Object> value = JSObject::GetDataProperty(&it);
CHECK(it.IsFound());
return New<HConstant>(value);
}
}
HObjectAccess access = info->access();
if (access.representation().IsDouble()) {
// Load the heap number.
checked_object = Add<HLoadNamedField>(
checked_object, static_cast<HValue*>(NULL),
access.WithRepresentation(Representation::Tagged()));
// Load the double value from it.
access = HObjectAccess::ForHeapNumberValue();
}
SmallMapList* map_list = info->field_maps();
if (map_list->length() == 0) {
return New<HLoadNamedField>(checked_object, checked_object, access);
}
UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
for (int i = 0; i < map_list->length(); ++i) {
maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
}
return New<HLoadNamedField>(
checked_object, checked_object, access, maps, info->field_type());
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
PropertyAccessInfo* info,
HValue* checked_object,
HValue* value) {
bool transition_to_field = info->IsTransition();
// TODO(verwaest): Move this logic into PropertyAccessInfo.
HObjectAccess field_access = info->access();
HStoreNamedField *instr;
if (field_access.representation().IsDouble()) {
HObjectAccess heap_number_access =
field_access.WithRepresentation(Representation::Tagged());
if (transition_to_field) {
// The store requires a mutable HeapNumber to be allocated.
NoObservableSideEffectsScope no_side_effects(this);
HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
// TODO(hpayer): Allocation site pretenuring support.
HInstruction* heap_number = Add<HAllocate>(heap_number_size,
HType::HeapObject(),
NOT_TENURED,
MUTABLE_HEAP_NUMBER_TYPE);
AddStoreMapConstant(
heap_number, isolate()->factory()->mutable_heap_number_map());
Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
value);
instr = New<HStoreNamedField>(checked_object->ActualValue(),
heap_number_access,
heap_number);
} else {
// Already holds a HeapNumber; load the box and write its value field.
HInstruction* heap_number = Add<HLoadNamedField>(
checked_object, static_cast<HValue*>(NULL), heap_number_access);
instr = New<HStoreNamedField>(heap_number,
HObjectAccess::ForHeapNumberValue(),
value, STORE_TO_INITIALIZED_ENTRY);
}
} else {
if (field_access.representation().IsHeapObject()) {
BuildCheckHeapObject(value);
}
if (!info->field_maps()->is_empty()) {
DCHECK(field_access.representation().IsHeapObject());
value = Add<HCheckMaps>(value, info->field_maps());
}
// This is a normal store.
instr = New<HStoreNamedField>(
checked_object->ActualValue(), field_access, value,
transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
}
if (transition_to_field) {
Handle<Map> transition(info->transition());
DCHECK(!transition->is_deprecated());
instr->SetTransition(Add<HConstant>(transition));
}
return instr;
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
PropertyAccessInfo* info) {
if (!CanInlinePropertyAccess(type_)) return false;
// Currently only handle Type::Number as a polymorphic case.
// TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
// instruction.
if (type_->Is(Type::Number())) return false;
// Values are only compatible for monomorphic load if they all behave the same
// regarding value wrappers.
if (type_->Is(Type::NumberOrString())) {
if (!info->type_->Is(Type::NumberOrString())) return false;
} else {
if (info->type_->Is(Type::NumberOrString())) return false;
}
if (!LookupDescriptor()) return false;
if (!IsFound()) {
return (!info->IsFound() || info->has_holder()) &&
map()->prototype() == info->map()->prototype();
}
// Mismatch if the other access info found the property in the prototype
// chain.
if (info->has_holder()) return false;
if (IsAccessor()) {
return accessor_.is_identical_to(info->accessor_) &&
api_holder_.is_identical_to(info->api_holder_);
}
if (IsConstant()) {
return constant_.is_identical_to(info->constant_);
}
DCHECK(IsField());
if (!info->IsField()) return false;
Representation r = access_.representation();
if (IsLoad()) {
if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
} else {
if (!info->access_.representation().IsCompatibleForStore(r)) return false;
}
if (info->access_.offset() != access_.offset()) return false;
if (info->access_.IsInobject() != access_.IsInobject()) return false;
if (IsLoad()) {
if (field_maps_.is_empty()) {
info->field_maps_.Clear();
} else if (!info->field_maps_.is_empty()) {
for (int i = 0; i < field_maps_.length(); ++i) {
info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
}
info->field_maps_.Sort();
}
} else {
// We can only merge stores that agree on their field maps. The comparison
// below is safe, since we keep the field maps sorted.
if (field_maps_.length() != info->field_maps_.length()) return false;
for (int i = 0; i < field_maps_.length(); ++i) {
if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
return false;
}
}
}
info->GeneralizeRepresentation(r);
info->field_type_ = info->field_type_.Combine(field_type_);
return true;
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
if (!type_->IsClass()) return true;
map()->LookupDescriptor(NULL, *name_, &lookup_);
return LoadResult(map());
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
if (!IsLoad() && IsProperty() && IsReadOnly()) {
return false;
}
if (IsField()) {
// Construct the object field access.
int index = GetLocalFieldIndexFromMap(map);
access_ = HObjectAccess::ForField(map, index, representation(), name_);
// Load field map for heap objects.
LoadFieldMaps(map);
} else if (IsAccessor()) {
Handle<Object> accessors = GetAccessorsFromMap(map);
if (!accessors->IsAccessorPair()) return false;
Object* raw_accessor =
IsLoad() ? Handle<AccessorPair>::cast(accessors)->getter()
: Handle<AccessorPair>::cast(accessors)->setter();
if (!raw_accessor->IsJSFunction()) return false;
Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
if (accessor->shared()->IsApiFunction()) {
CallOptimization call_optimization(accessor);
if (call_optimization.is_simple_api_call()) {
CallOptimization::HolderLookup holder_lookup;
Handle<Map> receiver_map = this->map();
api_holder_ = call_optimization.LookupHolderOfExpectedType(
receiver_map, &holder_lookup);
}
}
accessor_ = accessor;
} else if (IsConstant()) {
constant_ = GetConstantFromMap(map);
}
return true;
}
void HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
Handle<Map> map) {
// Clear any previously collected field maps/type.
field_maps_.Clear();
field_type_ = HType::Tagged();
// Figure out the field type from the accessor map.
Handle<HeapType> field_type = GetFieldTypeFromMap(map);
// Collect the (stable) maps from the field type.
int num_field_maps = field_type->NumClasses();
if (num_field_maps == 0) return;
DCHECK(access_.representation().IsHeapObject());
field_maps_.Reserve(num_field_maps, zone());
HeapType::Iterator<Map> it = field_type->Classes();
while (!it.Done()) {
Handle<Map> field_map = it.Current();
if (!field_map->is_stable()) {
field_maps_.Clear();
return;
}
field_maps_.Add(field_map, zone());
it.Advance();
}
field_maps_.Sort();
DCHECK_EQ(num_field_maps, field_maps_.length());
// Determine field HType from field HeapType.
field_type_ = HType::FromType<HeapType>(field_type);
DCHECK(field_type_.IsHeapObject());
// Add dependency on the map that introduced the field.
Map::AddDependentCompilationInfo(GetFieldOwnerFromMap(map),
DependentCode::kFieldTypeGroup, top_info());
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
Handle<Map> map = this->map();
while (map->prototype()->IsJSObject()) {
holder_ = handle(JSObject::cast(map->prototype()));
if (holder_->map()->is_deprecated()) {
JSObject::TryMigrateInstance(holder_);
}
map = Handle<Map>(holder_->map());
if (!CanInlinePropertyAccess(ToType(map))) {
lookup_.NotFound();
return false;
}
map->LookupDescriptor(*holder_, *name_, &lookup_);
if (IsFound()) return LoadResult(map);
}
lookup_.NotFound();
return true;
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
if (!CanInlinePropertyAccess(type_)) return false;
if (IsJSObjectFieldAccessor()) return IsLoad();
if (this->map()->function_with_prototype() &&
!this->map()->has_non_instance_prototype() &&
name_.is_identical_to(isolate()->factory()->prototype_string())) {
return IsLoad();
}
if (!LookupDescriptor()) return false;
if (IsFound()) return IsLoad() || !IsReadOnly();
if (!LookupInPrototypes()) return false;
if (IsLoad()) return true;
if (IsAccessor()) return true;
Handle<Map> map = this->map();
map->LookupTransition(NULL, *name_, &lookup_);
if (lookup_.IsTransitionToField() && map->unused_property_fields() > 0) {
// Construct the object field access.
int descriptor = transition()->LastAdded();
int index =
transition()->instance_descriptors()->GetFieldIndex(descriptor) -
map->inobject_properties();
PropertyDetails details =
transition()->instance_descriptors()->GetDetails(descriptor);
Representation representation = details.representation();
access_ = HObjectAccess::ForField(map, index, representation, name_);
// Load field map for heap objects.
LoadFieldMaps(transition());
return true;
}
return false;
}
bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
SmallMapList* types) {
DCHECK(type_->Is(ToType(types->first())));
if (!CanAccessMonomorphic()) return false;
STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
if (types->length() > kMaxLoadPolymorphism) return false;
HObjectAccess access = HObjectAccess::ForMap(); // bogus default
if (GetJSObjectFieldAccess(&access)) {
for (int i = 1; i < types->length(); ++i) {
PropertyAccessInfo test_info(
builder_, access_type_, ToType(types->at(i)), name_);
HObjectAccess test_access = HObjectAccess::ForMap(); // bogus default
if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
if (!access.Equals(test_access)) return false;
}
return true;
}
// Currently only handle Type::Number as a polymorphic case.
// TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
// instruction.
if (type_->Is(Type::Number())) return false;
// Multiple maps cannot transition to the same target map.
DCHECK(!IsLoad() || !IsTransition());
if (IsTransition() && types->length() > 1) return false;
for (int i = 1; i < types->length(); ++i) {
PropertyAccessInfo test_info(
builder_, access_type_, ToType(types->at(i)), name_);
if (!test_info.IsCompatible(this)) return false;
}
return true;
}
Handle<Map> HOptimizedGraphBuilder::PropertyAccessInfo::map() {
JSFunction* ctor = IC::GetRootConstructor(
type_, current_info()->closure()->context()->native_context());
if (ctor != NULL) return handle(ctor->initial_map());
return type_->AsClass()->Map();
}
static bool NeedsWrappingFor(Type* type, Handle<JSFunction> target) {
return type->Is(Type::NumberOrString()) &&
target->shared()->strict_mode() == SLOPPY &&
!target->shared()->native();
}
HInstruction* HOptimizedGraphBuilder::BuildMonomorphicAccess(
PropertyAccessInfo* info,
HValue* object,
HValue* checked_object,
HValue* value,
BailoutId ast_id,
BailoutId return_id,
bool can_inline_accessor) {
HObjectAccess access = HObjectAccess::ForMap(); // bogus default
if (info->GetJSObjectFieldAccess(&access)) {
DCHECK(info->IsLoad());
return New<HLoadNamedField>(object, checked_object, access);
}
if (info->name().is_identical_to(isolate()->factory()->prototype_string()) &&
info->map()->function_with_prototype()) {
DCHECK(!info->map()->has_non_instance_prototype());
return New<HLoadFunctionPrototype>(checked_object);
}
HValue* checked_holder = checked_object;
if (info->has_holder()) {
Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
}
if (!info->IsFound()) {
DCHECK(info->IsLoad());
return graph()->GetConstantUndefined();
}
if (info->IsField()) {
if (info->IsLoad()) {
return BuildLoadNamedField(info, checked_holder);
} else {
return BuildStoreNamedField(info, checked_object, value);
}
}
if (info->IsTransition()) {
DCHECK(!info->IsLoad());
return BuildStoreNamedField(info, checked_object, value);
}
if (info->IsAccessor()) {
Push(checked_object);
int argument_count = 1;
if (!info->IsLoad()) {
argument_count = 2;
Push(value);
}
if (NeedsWrappingFor(info->type(), info->accessor())) {
HValue* function = Add<HConstant>(info->accessor());
PushArgumentsFromEnvironment(argument_count);
return New<HCallFunction>(function, argument_count, WRAP_AND_CALL);
} else if (FLAG_inline_accessors && can_inline_accessor) {
bool success = info->IsLoad()
? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
: TryInlineSetter(
info->accessor(), info->map(), ast_id, return_id, value);
if (success || HasStackOverflow()) return NULL;
}
PushArgumentsFromEnvironment(argument_count);
return BuildCallConstantFunction(info->accessor(), argument_count);
}
DCHECK(info->IsConstant());
if (info->IsLoad()) {
return New<HConstant>(info->constant());
} else {
return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
}
}
void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
PropertyAccessType access_type,
Expression* expr,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* value,
SmallMapList* types,
Handle<String> name) {
// Something did not match; must use a polymorphic load.
int count = 0;
HBasicBlock* join = NULL;
HBasicBlock* number_block = NULL;
bool handled_string = false;
bool handle_smi = false;
STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
PropertyAccessInfo info(this, access_type, ToType(types->at(i)), name);
if (info.type()->Is(Type::String())) {
if (handled_string) continue;
handled_string = true;
}
if (info.CanAccessMonomorphic()) {
count++;
if (info.type()->Is(Type::Number())) {
handle_smi = true;
break;
}
}
}
count = 0;
HControlInstruction* smi_check = NULL;
handled_string = false;
for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
PropertyAccessInfo info(this, access_type, ToType(types->at(i)), name);
if (info.type()->Is(Type::String())) {
if (handled_string) continue;
handled_string = true;
}
if (!info.CanAccessMonomorphic()) continue;
if (count == 0) {
join = graph()->CreateBasicBlock();
if (handle_smi) {
HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
number_block = graph()->CreateBasicBlock();
smi_check = New<HIsSmiAndBranch>(
object, empty_smi_block, not_smi_block);
FinishCurrentBlock(smi_check);
GotoNoSimulate(empty_smi_block, number_block);
set_current_block(not_smi_block);
} else {
BuildCheckHeapObject(object);
}
}
++count;
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HUnaryControlInstruction* compare;
HValue* dependency;
if (info.type()->Is(Type::Number())) {
Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
dependency = smi_check;
} else if (info.type()->Is(Type::String())) {
compare = New<HIsStringAndBranch>(object, if_true, if_false);
dependency = compare;
} else {
compare = New<HCompareMap>(object, info.map(), if_true, if_false);
dependency = compare;
}
FinishCurrentBlock(compare);
if (info.type()->Is(Type::Number())) {
GotoNoSimulate(if_true, number_block);
if_true = number_block;
}
set_current_block(if_true);
HInstruction* access = BuildMonomorphicAccess(
&info, object, dependency, value, ast_id,
return_id, FLAG_polymorphic_inlining);
HValue* result = NULL;
switch (access_type) {
case LOAD:
result = access;
break;
case STORE:
result = value;
break;
}
if (access == NULL) {
if (HasStackOverflow()) return;
} else {
if (!access->IsLinked()) AddInstruction(access);
if (!ast_context()->IsEffect()) Push(result);
}
if (current_block() != NULL) Goto(join);
set_current_block(if_false);
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
FinishExitWithHardDeoptimization("Uknown map in polymorphic access");
} else {
HInstruction* instr = BuildNamedGeneric(access_type, expr, object, name,
value);
AddInstruction(instr);
if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
if (join != NULL) {
Goto(join);
} else {
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
return;
}
}
DCHECK(join != NULL);
if (join->HasPredecessor()) {
join->SetJoinId(ast_id);
set_current_block(join);
if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
} else {
set_current_block(NULL);
}
}
static bool ComputeReceiverTypes(Expression* expr,
HValue* receiver,
SmallMapList** t,
Zone* zone) {
SmallMapList* types = expr->GetReceiverTypes();
*t = types;
bool monomorphic = expr->IsMonomorphic();
if (types != NULL && receiver->HasMonomorphicJSObjectType()) {
Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
types->FilterForPossibleTransitions(root_map);
monomorphic = types->length() == 1;
}
return monomorphic && CanInlinePropertyAccess(
IC::MapToType<Type>(types->first(), zone));
}
static bool AreStringTypes(SmallMapList* types) {
for (int i = 0; i < types->length(); i++) {
if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
}
return true;
}
void HOptimizedGraphBuilder::BuildStore(Expression* expr,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
bool is_uninitialized) {
if (!prop->key()->IsPropertyName()) {
// Keyed store.
HValue* value = environment()->ExpressionStackAt(0);
HValue* key = environment()->ExpressionStackAt(1);
HValue* object = environment()->ExpressionStackAt(2);
bool has_side_effects = false;
HandleKeyedElementAccess(object, key, value, expr,
STORE, &has_side_effects);
Drop(3);
Push(value);
Add<HSimulate>(return_id, REMOVABLE_SIMULATE);
return ast_context()->ReturnValue(Pop());
}
// Named store.
HValue* value = Pop();
HValue* object = Pop();
Literal* key = prop->key()->AsLiteral();
Handle<String> name = Handle<String>::cast(key->value());
DCHECK(!name.is_null());
HInstruction* instr = BuildNamedAccess(STORE, ast_id, return_id, expr,
object, name, value, is_uninitialized);
if (instr == NULL) return;
if (!ast_context()->IsEffect()) Push(value);
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
}
if (!ast_context()->IsEffect()) Drop(1);
return ast_context()->ReturnValue(value);
}
void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
DCHECK(prop != NULL);
CHECK_ALIVE(VisitForValue(prop->obj()));
if (!prop->key()->IsPropertyName()) {
CHECK_ALIVE(VisitForValue(prop->key()));
}
CHECK_ALIVE(VisitForValue(expr->value()));
BuildStore(expr, prop, expr->id(),
expr->AssignmentId(), expr->IsUninitialized());
}
// Because not every expression has a position and there is not common
// superclass of Assignment and CountOperation, we cannot just pass the
// owning expression instead of position and ast_id separately.
void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
Variable* var,
HValue* value,
BailoutId ast_id) {
Handle<GlobalObject> global(current_info()->global_object());
LookupIterator it(global, var->name(), LookupIterator::OWN_PROPERTY);
GlobalPropertyAccess type = LookupGlobalProperty(var, &it, STORE);
if (type == kUseCell) {
Handle<PropertyCell> cell = it.GetPropertyCell();
if (cell->type()->IsConstant()) {
Handle<Object> constant = cell->type()->AsConstant()->Value();
if (value->IsConstant()) {
HConstant* c_value = HConstant::cast(value);
if (!constant.is_identical_to(c_value->handle(isolate()))) {
Add<HDeoptimize>("Constant global variable assignment",
Deoptimizer::EAGER);
}
} else {
HValue* c_constant = Add<HConstant>(constant);
IfBuilder builder(this);
if (constant->IsNumber()) {
builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
} else {
builder.If<HCompareObjectEqAndBranch>(value, c_constant);
}
builder.Then();
builder.Else();
Add<HDeoptimize>("Constant global variable assignment",
Deoptimizer::EAGER);
builder.End();
}
}
HInstruction* instr =
Add<HStoreGlobalCell>(value, cell, it.property_details());
if (instr->HasObservableSideEffects()) {
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
}
} else {
HValue* global_object = Add<HLoadNamedField>(
context(), static_cast<HValue*>(NULL),
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
HStoreNamedGeneric* instr =
Add<HStoreNamedGeneric>(global_object, var->name(),
value, function_strict_mode());
USE(instr);
DCHECK(instr->HasObservableSideEffects());
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
}
}
void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
Expression* target = expr->target();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
DCHECK(proxy == NULL || prop == NULL);
// We have a second position recorded in the FullCodeGenerator to have
// type feedback for the binary operation.
BinaryOperation* operation = expr->binary_operation();
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == LET) {
return Bailout(kUnsupportedLetCompoundAssignment);
}
CHECK_ALIVE(VisitForValue(operation));
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
Top(),
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (var->mode() == CONST_LEGACY) {
return Bailout(kUnsupportedConstCompoundAssignment);
}
BindIfLive(var, Top());
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (current_info()->scope()->arguments() != NULL) {
// Parameters will be allocated to context slots. We have no
// direct way to detect that the variable is a parameter so we do
// a linear search of the parameter variables.
int count = current_info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == current_info()->scope()->parameter(i)) {
Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
}
}
}
HStoreContextSlot::Mode mode;
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
case CONST_LEGACY:
return ast_context()->ReturnValue(Pop());
default:
mode = HStoreContextSlot::kNoCheck;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr = Add<HStoreContextSlot>(
context, var->index(), mode, Top());
if (instr->HasObservableSideEffects()) {
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout(kCompoundAssignmentToLookupSlot);
}
return ast_context()->ReturnValue(Pop());
} else if (prop != NULL) {
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
HValue* key = NULL;
if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
CHECK_ALIVE(VisitForValue(prop->key()));
key = Top();
}
CHECK_ALIVE(PushLoad(prop, object, key));
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* right = Pop();
HValue* left = Pop();
Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
BuildStore(expr, prop, expr->id(),
expr->AssignmentId(), expr->IsUninitialized());
} else {
return Bailout(kInvalidLhsInCompoundAssignment);
}
}
void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
VariableProxy* proxy = expr->target()->AsVariableProxy();
Property* prop = expr->target()->AsProperty();
DCHECK(proxy == NULL || prop == NULL);
if (expr->is_compound()) {
HandleCompoundAssignment(expr);
return;
}
if (prop != NULL) {
HandlePropertyAssignment(expr);
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST) {
if (expr->op() != Token::INIT_CONST) {
return Bailout(kNonInitializerAssignmentToConst);
}
} else if (var->mode() == CONST_LEGACY) {
if (expr->op() != Token::INIT_CONST_LEGACY) {
CHECK_ALIVE(VisitForValue(expr->value()));
return ast_context()->ReturnValue(Pop());
}
if (var->IsStackAllocated()) {
// We insert a use of the old value to detect unsupported uses of const
// variables (e.g. initialization inside a loop).
HValue* old_value = environment()->Lookup(var);
Add<HUseConst>(old_value);
}
}
if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
// Handle the assignment.
switch (var->location()) {
case Variable::UNALLOCATED:
CHECK_ALIVE(VisitForValue(expr->value()));
HandleGlobalVariableAssignment(var,
Top(),
expr->AssignmentId());
return ast_context()->ReturnValue(Pop());
case Variable::PARAMETER:
case Variable::LOCAL: {
// Perform an initialization check for let declared variables
// or parameters.
if (var->mode() == LET && expr->op() == Token::ASSIGN) {
HValue* env_value = environment()->Lookup(var);
if (env_value == graph()->GetConstantHole()) {
return Bailout(kAssignmentToLetVariableBeforeInitialization);
}
}
// We do not allow the arguments object to occur in a context where it
// may escape, but assignments to stack-allocated locals are
// permitted.
CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
HValue* value = Pop();
BindIfLive(var, value);
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function using
// the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (current_info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct way
// to detect that the variable is a parameter.
int count = current_info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == current_info()->scope()->parameter(i)) {
return Bailout(kAssignmentToParameterInArgumentsObject);
}
}
}
CHECK_ALIVE(VisitForValue(expr->value()));
HStoreContextSlot::Mode mode;
if (expr->op() == Token::ASSIGN) {
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
case CONST_LEGACY:
return ast_context()->ReturnValue(Pop());
default:
mode = HStoreContextSlot::kNoCheck;
}
} else if (expr->op() == Token::INIT_VAR ||
expr->op() == Token::INIT_LET ||
expr->op() == Token::INIT_CONST) {
mode = HStoreContextSlot::kNoCheck;
} else {
DCHECK(expr->op() == Token::INIT_CONST_LEGACY);
mode = HStoreContextSlot::kCheckIgnoreAssignment;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr = Add<HStoreContextSlot>(
context, var->index(), mode, Top());
if (instr->HasObservableSideEffects()) {
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
}
case Variable::LOOKUP:
return Bailout(kAssignmentToLOOKUPVariable);
}
} else {
return Bailout(kInvalidLeftHandSideInAssignment);
}
}
void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
// Generators are not optimized, so we should never get here.
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
// We don't optimize functions with invalid left-hand sides in
// assignments, count operations, or for-in. Consequently throw can
// currently only occur in an effect context.
DCHECK(ast_context()->IsEffect());
CHECK_ALIVE(VisitForValue(expr->exception()));
HValue* value = environment()->Pop();
if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
Add<HPushArguments>(value);
Add<HCallRuntime>(isolate()->factory()->empty_string(),
Runtime::FunctionForId(Runtime::kThrow), 1);
Add<HSimulate>(expr->id());
// If the throw definitely exits the function, we can finish with a dummy
// control flow at this point. This is not the case if the throw is inside
// an inlined function which may be replaced.
if (call_context() == NULL) {
FinishExitCurrentBlock(New<HAbnormalExit>());
}
}
HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
if (string->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
if (c_string->HasStringValue()) {
return Add<HConstant>(c_string->StringValue()->map()->instance_type());
}
}
return Add<HLoadNamedField>(
Add<HLoadNamedField>(string, static_cast<HValue*>(NULL),
HObjectAccess::ForMap()),
static_cast<HValue*>(NULL), HObjectAccess::ForMapInstanceType());
}
HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
if (string->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
if (c_string->HasStringValue()) {
return Add<HConstant>(c_string->StringValue()->length());
}
}
return Add<HLoadNamedField>(string, static_cast<HValue*>(NULL),
HObjectAccess::ForStringLength());
}
HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
PropertyAccessType access_type,
Expression* expr,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized) {
if (is_uninitialized) {
Add<HDeoptimize>("Insufficient type feedback for generic named access",
Deoptimizer::SOFT);
}
if (access_type == LOAD) {
HLoadNamedGeneric* result = New<HLoadNamedGeneric>(object, name);
if (FLAG_vector_ics) {
Handle<SharedFunctionInfo> current_shared =
function_state()->compilation_info()->shared_info();
result->SetVectorAndSlot(
handle(current_shared->feedback_vector(), isolate()),
expr->AsProperty()->PropertyFeedbackSlot());
}
return result;
} else {
return New<HStoreNamedGeneric>(object, name, value, function_strict_mode());
}
}
HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
PropertyAccessType access_type,
Expression* expr,
HValue* object,
HValue* key,
HValue* value) {
if (access_type == LOAD) {
HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(object, key);
if (FLAG_vector_ics) {
Handle<SharedFunctionInfo> current_shared =
function_state()->compilation_info()->shared_info();
result->SetVectorAndSlot(
handle(current_shared->feedback_vector(), isolate()),
expr->AsProperty()->PropertyFeedbackSlot());
}
return result;
} else {
return New<HStoreKeyedGeneric>(object, key, value, function_strict_mode());
}
}
LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
// Loads from a "stock" fast holey double arrays can elide the hole check.
LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
if (*map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS) &&
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
BuildCheckPrototypeMaps(prototype, object_prototype);
load_mode = ALLOW_RETURN_HOLE;
graph()->MarkDependsOnEmptyArrayProtoElements();
}
return load_mode;
}
HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
HValue* dependency,
Handle<Map> map,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode) {
HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
if (dependency) {
checked_object->ClearDependsOnFlag(kElementsKind);
}
if (access_type == STORE && map->prototype()->IsJSObject()) {
// monomorphic stores need a prototype chain check because shape
// changes could allow callbacks on elements in the chain that
// aren't compatible with monomorphic keyed stores.
PrototypeIterator iter(map);
JSObject* holder = NULL;
while (!iter.IsAtEnd()) {
holder = JSObject::cast(*PrototypeIterator::GetCurrent(iter));
iter.Advance();
}
DCHECK(holder && holder->IsJSObject());
BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
Handle<JSObject>(holder));
}
LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
return BuildUncheckedMonomorphicElementAccess(
checked_object, key, val,
map->instance_type() == JS_ARRAY_TYPE,
map->elements_kind(), access_type,
load_mode, store_mode);
}
HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps) {
// For polymorphic loads of similar elements kinds (i.e. all tagged or all
// double), always use the "worst case" code without a transition. This is
// much faster than transitioning the elements to the worst case, trading a
// HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
bool has_double_maps = false;
bool has_smi_or_object_maps = false;
bool has_js_array_access = false;
bool has_non_js_array_access = false;
bool has_seen_holey_elements = false;
Handle<Map> most_general_consolidated_map;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
if (!map->IsJSObjectMap()) return NULL;
// Don't allow mixing of JSArrays with JSObjects.
if (map->instance_type() == JS_ARRAY_TYPE) {
if (has_non_js_array_access) return NULL;
has_js_array_access = true;
} else if (has_js_array_access) {
return NULL;
} else {
has_non_js_array_access = true;
}
// Don't allow mixed, incompatible elements kinds.
if (map->has_fast_double_elements()) {
if (has_smi_or_object_maps) return NULL;
has_double_maps = true;
} else if (map->has_fast_smi_or_object_elements()) {
if (has_double_maps) return NULL;
has_smi_or_object_maps = true;
} else {
return NULL;
}
// Remember if we've ever seen holey elements.
if (IsHoleyElementsKind(map->elements_kind())) {
has_seen_holey_elements = true;
}
// Remember the most general elements kind, the code for its load will
// properly handle all of the more specific cases.
if ((i == 0) || IsMoreGeneralElementsKindTransition(
most_general_consolidated_map->elements_kind(),
map->elements_kind())) {
most_general_consolidated_map = map;
}
}
if (!has_double_maps && !has_smi_or_object_maps) return NULL;
HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
// FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
// If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
ElementsKind consolidated_elements_kind = has_seen_holey_elements
? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
: most_general_consolidated_map->elements_kind();
HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
checked_object, key, val,
most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
consolidated_elements_kind,
LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
return instr;
}
HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
Expression* expr,
HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode,
bool* has_side_effects) {
*has_side_effects = false;
BuildCheckHeapObject(object);
if (access_type == LOAD) {
HInstruction* consolidated_load =
TryBuildConsolidatedElementLoad(object, key, val, maps);
if (consolidated_load != NULL) {
*has_side_effects |= consolidated_load->HasObservableSideEffects();
return consolidated_load;
}
}
// Elements_kind transition support.
MapHandleList transition_target(maps->length());
// Collect possible transition targets.
MapHandleList possible_transitioned_maps(maps->length());
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
ElementsKind elements_kind = map->elements_kind();
if (IsFastElementsKind(elements_kind) &&
elements_kind != GetInitialFastElementsKind()) {
possible_transitioned_maps.Add(map);
}
if (elements_kind == SLOPPY_ARGUMENTS_ELEMENTS) {
HInstruction* result = BuildKeyedGeneric(access_type, expr, object, key,
val);
*has_side_effects = result->HasObservableSideEffects();
return AddInstruction(result);
}
}
// Get transition target for each map (NULL == no transition).
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
Handle<Map> transitioned_map =
map->FindTransitionedMap(&possible_transitioned_maps);
transition_target.Add(transitioned_map);
}
MapHandleList untransitionable_maps(maps->length());
HTransitionElementsKind* transition = NULL;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
DCHECK(map->IsMap());
if (!transition_target.at(i).is_null()) {
DCHECK(Map::IsValidElementsTransition(
map->elements_kind(),
transition_target.at(i)->elements_kind()));
transition = Add<HTransitionElementsKind>(object, map,
transition_target.at(i));
} else {
untransitionable_maps.Add(map);
}
}
// If only one map is left after transitioning, handle this case
// monomorphically.
DCHECK(untransitionable_maps.length() >= 1);
if (untransitionable_maps.length() == 1) {
Handle<Map> untransitionable_map = untransitionable_maps[0];
HInstruction* instr = NULL;
if (untransitionable_map->has_slow_elements_kind() ||
!untransitionable_map->IsJSObjectMap()) {
instr = AddInstruction(BuildKeyedGeneric(access_type, expr, object, key,
val));
} else {
instr = BuildMonomorphicElementAccess(
object, key, val, transition, untransitionable_map, access_type,
store_mode);
}
*has_side_effects |= instr->HasObservableSideEffects();
return access_type == STORE ? NULL : instr;
}
HBasicBlock* join = graph()->CreateBasicBlock();
for (int i = 0; i < untransitionable_maps.length(); ++i) {
Handle<Map> map = untransitionable_maps[i];
if (!map->IsJSObjectMap()) continue;
ElementsKind elements_kind = map->elements_kind();
HBasicBlock* this_map = graph()->CreateBasicBlock();
HBasicBlock* other_map = graph()->CreateBasicBlock();
HCompareMap* mapcompare =
New<HCompareMap>(object, map, this_map, other_map);
FinishCurrentBlock(mapcompare);
set_current_block(this_map);
HInstruction* access = NULL;
if (IsDictionaryElementsKind(elements_kind)) {
access = AddInstruction(BuildKeyedGeneric(access_type, expr, object, key,
val));
} else {
DCHECK(IsFastElementsKind(elements_kind) ||
IsExternalArrayElementsKind(elements_kind) ||
IsFixedTypedArrayElementsKind(elements_kind));
LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
// Happily, mapcompare is a checked object.
access = BuildUncheckedMonomorphicElementAccess(
mapcompare, key, val,
map->instance_type() == JS_ARRAY_TYPE,
elements_kind, access_type,
load_mode,
store_mode);
}
*has_side_effects |= access->HasObservableSideEffects();
// The caller will use has_side_effects and add a correct Simulate.
access->SetFlag(HValue::kHasNoObservableSideEffects);
if (access_type == LOAD) {
Push(access);
}
NoObservableSideEffectsScope scope(this);
GotoNoSimulate(join);
set_current_block(other_map);
}
// Ensure that we visited at least one map above that goes to join. This is
// necessary because FinishExitWithHardDeoptimization does an AbnormalExit
// rather than joining the join block. If this becomes an issue, insert a
// generic access in the case length() == 0.
DCHECK(join->predecessors()->length() > 0);
// Deopt if none of the cases matched.
NoObservableSideEffectsScope scope(this);
FinishExitWithHardDeoptimization("Unknown map in polymorphic element access");
set_current_block(join);
return access_type == STORE ? NULL : Pop();
}
HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
HValue* obj,
HValue* key,
HValue* val,
Expression* expr,
PropertyAccessType access_type,
bool* has_side_effects) {
DCHECK(!expr->IsPropertyName());
HInstruction* instr = NULL;
SmallMapList* types;
bool monomorphic = ComputeReceiverTypes(expr, obj, &types, zone());
bool force_generic = false;
if (access_type == STORE &&
(monomorphic || (types != NULL && !types->is_empty()))) {
// Stores can't be mono/polymorphic if their prototype chain has dictionary
// elements. However a receiver map that has dictionary elements itself
// should be left to normal mono/poly behavior (the other maps may benefit
// from highly optimized stores).
for (int i = 0; i < types->length(); i++) {
Handle<Map> current_map = types->at(i);
if (current_map->DictionaryElementsInPrototypeChainOnly()) {
force_generic = true;
monomorphic = false;
break;
}
}
}
if (monomorphic) {
Handle<Map> map = types->first();
if (map->has_slow_elements_kind() || !map->IsJSObjectMap()) {
instr = AddInstruction(BuildKeyedGeneric(access_type, expr, obj, key,
val));
} else {
BuildCheckHeapObject(obj);
instr = BuildMonomorphicElementAccess(
obj, key, val, NULL, map, access_type, expr->GetStoreMode());
}
} else if (!force_generic && (types != NULL && !types->is_empty())) {
return HandlePolymorphicElementAccess(
expr, obj, key, val, types, access_type,
expr->GetStoreMode(), has_side_effects);
} else {
if (access_type == STORE) {
if (expr->IsAssignment() &&
expr->AsAssignment()->HasNoTypeInformation()) {
Add<HDeoptimize>("Insufficient type feedback for keyed store",
Deoptimizer::SOFT);
}
} else {
if (expr->AsProperty()->HasNoTypeInformation()) {
Add<HDeoptimize>("Insufficient type feedback for keyed load",
Deoptimizer::SOFT);
}
}
instr = AddInstruction(BuildKeyedGeneric(access_type, expr, obj, key, val));
}
*has_side_effects = instr->HasObservableSideEffects();
return instr;
}
void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
// Outermost function already has arguments on the stack.
if (function_state()->outer() == NULL) return;
if (function_state()->arguments_pushed()) return;
// Push arguments when entering inlined function.
HEnterInlined* entry = function_state()->entry();
entry->set_arguments_pushed();
HArgumentsObject* arguments = entry->arguments_object();
const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
HInstruction* insert_after = entry;
for (int i = 0; i < arguments_values->length(); i++) {
HValue* argument = arguments_values->at(i);
HInstruction* push_argument = New<HPushArguments>(argument);
push_argument->InsertAfter(insert_after);
insert_after = push_argument;
}
HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
arguments_elements->ClearFlag(HValue::kUseGVN);
arguments_elements->InsertAfter(insert_after);
function_state()->set_arguments_elements(arguments_elements);
}
bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy == NULL) return false;
if (!proxy->var()->IsStackAllocated()) return false;
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
return false;
}
HInstruction* result = NULL;
if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
if (!String::Equals(name, isolate()->factory()->length_string())) {
return false;
}
if (function_state()->outer() == NULL) {
HInstruction* elements = Add<HArgumentsElements>(false);
result = New<HArgumentsLength>(elements);
} else {
// Number of arguments without receiver.
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
result = New<HConstant>(argument_count);
}
} else {
Push(graph()->GetArgumentsObject());
CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
HValue* key = Pop();
Drop(1); // Arguments object.
if (function_state()->outer() == NULL) {
HInstruction* elements = Add<HArgumentsElements>(false);
HInstruction* length = Add<HArgumentsLength>(elements);
HInstruction* checked_key = Add<HBoundsCheck>(key, length);
result = New<HAccessArgumentsAt>(elements, length, checked_key);
} else {
EnsureArgumentsArePushedForAccess();
// Number of arguments without receiver.
HInstruction* elements = function_state()->arguments_elements();
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
HInstruction* length = Add<HConstant>(argument_count);
HInstruction* checked_key = Add<HBoundsCheck>(key, length);
result = New<HAccessArgumentsAt>(elements, length, checked_key);
}
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
HInstruction* HOptimizedGraphBuilder::BuildNamedAccess(
PropertyAccessType access,
BailoutId ast_id,
BailoutId return_id,
Expression* expr,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized) {
SmallMapList* types;
ComputeReceiverTypes(expr, object, &types, zone());
DCHECK(types != NULL);
if (types->length() > 0) {
PropertyAccessInfo info(this, access, ToType(types->first()), name);
if (!info.CanAccessAsMonomorphic(types)) {
HandlePolymorphicNamedFieldAccess(
access, expr, ast_id, return_id, object, value, types, name);
return NULL;
}
HValue* checked_object;
// Type::Number() is only supported by polymorphic load/call handling.
DCHECK(!info.type()->Is(Type::Number()));
BuildCheckHeapObject(object);
if (AreStringTypes(types)) {
checked_object =
Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
} else {
checked_object = Add<HCheckMaps>(object, types);
}
return BuildMonomorphicAccess(
&info, object, checked_object, value, ast_id, return_id);
}
return BuildNamedGeneric(access, expr, object, name, value, is_uninitialized);
}
void HOptimizedGraphBuilder::PushLoad(Property* expr,
HValue* object,
HValue* key) {
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
Push(object);
if (key != NULL) Push(key);
BuildLoad(expr, expr->LoadId());
}
void HOptimizedGraphBuilder::BuildLoad(Property* expr,
BailoutId ast_id) {
HInstruction* instr = NULL;
if (expr->IsStringAccess()) {
HValue* index = Pop();
HValue* string = Pop();
HInstruction* char_code = BuildStringCharCodeAt(string, index);
AddInstruction(char_code);
instr = NewUncasted<HStringCharFromCode>(char_code);
} else if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
HValue* object = Pop();
instr = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr,
object, name, NULL, expr->IsUninitialized());
if (instr == NULL) return;
if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
} else {
HValue* key = Pop();
HValue* obj = Pop();
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, expr, LOAD, &has_side_effects);
if (has_side_effects) {
if (ast_context()->IsEffect()) {
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
} else {
Push(load);
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
Drop(1);
}
}
return ast_context()->ReturnValue(load);
}
return ast_context()->ReturnInstruction(instr, ast_id);
}
void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (TryArgumentsAccess(expr)) return;
CHECK_ALIVE(VisitForValue(expr->obj()));
if (!expr->key()->IsPropertyName() || expr->IsStringAccess()) {
CHECK_ALIVE(VisitForValue(expr->key()));
}
BuildLoad(expr, expr->id());
}
HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
HCheckMaps* check = Add<HCheckMaps>(
Add<HConstant>(constant), handle(constant->map()));
check->ClearDependsOnFlag(kElementsKind);
return check;
}
HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
Handle<JSObject> holder) {
PrototypeIterator iter(isolate(), prototype,
PrototypeIterator::START_AT_RECEIVER);
while (holder.is_null() ||
!PrototypeIterator::GetCurrent(iter).is_identical_to(holder)) {
BuildConstantMapCheck(
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
iter.Advance();
if (iter.IsAtEnd()) {
return NULL;
}
}
return BuildConstantMapCheck(
Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
}
void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
Handle<Map> receiver_map) {
if (!holder.is_null()) {
Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
BuildCheckPrototypeMaps(prototype, holder);
}
}
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
HValue* fun, int argument_count, bool pass_argument_count) {
return New<HCallJSFunction>(
fun, argument_count, pass_argument_count);
}
HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
HValue* fun, HValue* context,
int argument_count, HValue* expected_param_count) {
CallInterfaceDescriptor* descriptor =
isolate()->call_descriptor(CallDescriptorKey::ArgumentAdaptorCall);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
HValue* arity = Add<HConstant>(argument_count - 1);
HValue* op_vals[] = { context, fun, arity, expected_param_count };
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
HConstant* adaptor_value = Add<HConstant>(adaptor);
return New<HCallWithDescriptor>(
adaptor_value, argument_count, descriptor,
Vector<HValue*>(op_vals, descriptor->GetEnvironmentLength()));
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
}
HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
Handle<JSFunction> jsfun, int argument_count) {
HValue* target = Add<HConstant>(jsfun);
// For constant functions, we try to avoid calling the
// argument adaptor and instead call the function directly
int formal_parameter_count = jsfun->shared()->formal_parameter_count();
bool dont_adapt_arguments =
(formal_parameter_count ==
SharedFunctionInfo::kDontAdaptArgumentsSentinel);
int arity = argument_count - 1;
bool can_invoke_directly =
dont_adapt_arguments || formal_parameter_count == arity;
if (can_invoke_directly) {
if (jsfun.is_identical_to(current_info()->closure())) {
graph()->MarkRecursive();
}
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
} else {
HValue* param_count_value = Add<HConstant>(formal_parameter_count);
HValue* context = Add<HLoadNamedField>(
target, static_cast<HValue*>(NULL),
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
HObjectAccess::ForFunctionContextPointer());
return NewArgumentAdaptorCall(target, context,
argument_count, param_count_value);
}
UNREACHABLE();
return NULL;
}
class FunctionSorter {
public:
explicit FunctionSorter(int index = 0, int ticks = 0, int size = 0)
: index_(index), ticks_(ticks), size_(size) {}
int index() const { return index_; }
int ticks() const { return ticks_; }
int size() const { return size_; }
private:
int index_;
int ticks_;
int size_;
};
inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
int diff = lhs.ticks() - rhs.ticks();
if (diff != 0) return diff > 0;
return lhs.size() < rhs.size();
}
void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
Call* expr,
HValue* receiver,
SmallMapList* types,
Handle<String> name) {
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
FunctionSorter order[kMaxCallPolymorphism];
bool handle_smi = false;
bool handled_string = false;
int ordered_functions = 0;
for (int i = 0;
i < types->length() && ordered_functions < kMaxCallPolymorphism;
++i) {
PropertyAccessInfo info(this, LOAD, ToType(types->at(i)), name);
if (info.CanAccessMonomorphic() && info.IsConstant() &&
info.constant()->IsJSFunction()) {
if (info.type()->Is(Type::String())) {
if (handled_string) continue;
handled_string = true;
}
Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
if (info.type()->Is(Type::Number())) {
handle_smi = true;
}
expr->set_target(target);
order[ordered_functions++] = FunctionSorter(
i, target->shared()->profiler_ticks(), InliningAstSize(target));
}
}
std::sort(order, order + ordered_functions);
HBasicBlock* number_block = NULL;
HBasicBlock* join = NULL;
handled_string = false;
int count = 0;
for (int fn = 0; fn < ordered_functions; ++fn) {
int i = order[fn].index();
PropertyAccessInfo info(this, LOAD, ToType(types->at(i)), name);
if (info.type()->Is(Type::String())) {
if (handled_string) continue;
handled_string = true;
}
// Reloads the target.
info.CanAccessMonomorphic();
Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
expr->set_target(target);
if (count == 0) {
// Only needed once.
join = graph()->CreateBasicBlock();
if (handle_smi) {
HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
number_block = graph()->CreateBasicBlock();
FinishCurrentBlock(New<HIsSmiAndBranch>(
receiver, empty_smi_block, not_smi_block));
GotoNoSimulate(empty_smi_block, number_block);
set_current_block(not_smi_block);
} else {
BuildCheckHeapObject(receiver);
}
}
++count;
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HUnaryControlInstruction* compare;
Handle<Map> map = info.map();
if (info.type()->Is(Type::Number())) {
Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
} else if (info.type()->Is(Type::String())) {
compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
} else {
compare = New<HCompareMap>(receiver, map, if_true, if_false);
}
FinishCurrentBlock(compare);
if (info.type()->Is(Type::Number())) {
GotoNoSimulate(if_true, number_block);
if_true = number_block;
}
set_current_block(if_true);
AddCheckPrototypeMaps(info.holder(), map);
HValue* function = Add<HConstant>(expr->target());
environment()->SetExpressionStackAt(0, function);
Push(receiver);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
bool needs_wrapping = NeedsWrappingFor(info.type(), target);
bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
if (FLAG_trace_inlining && try_inline) {
Handle<JSFunction> caller = current_info()->closure();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
PrintF("Trying to inline the polymorphic call to %s from %s\n",
name->ToCString().get(),
caller_name.get());
}
if (try_inline && TryInlineCall(expr)) {
// Trying to inline will signal that we should bailout from the
// entire compilation by setting stack overflow on the visitor.
if (HasStackOverflow()) return;
} else {
// Since HWrapReceiver currently cannot actually wrap numbers and strings,
// use the regular CallFunctionStub for method calls to wrap the receiver.
// TODO(verwaest): Support creation of value wrappers directly in
// HWrapReceiver.
HInstruction* call = needs_wrapping
? NewUncasted<HCallFunction>(
function, argument_count, WRAP_AND_CALL)
: BuildCallConstantFunction(target, argument_count);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
PushArgumentsFromEnvironment(argument_count);
AddInstruction(call);
Drop(1); // Drop the function.
if (!ast_context()->IsEffect()) Push(call);
}
if (current_block() != NULL) Goto(join);
set_current_block(if_false);
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
FinishExitWithHardDeoptimization("Unknown map in polymorphic call");
} else {
Property* prop = expr->expression()->AsProperty();
HInstruction* function = BuildNamedGeneric(
LOAD, prop, receiver, name, NULL, prop->IsUninitialized());
AddInstruction(function);
Push(function);
AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
environment()->SetExpressionStackAt(1, function);
environment()->SetExpressionStackAt(0, receiver);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
CallFunctionFlags flags = receiver->type().IsJSObject()
? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
HInstruction* call = New<HCallFunction>(
function, argument_count, flags);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
PushArgumentsFromEnvironment(argument_count);
Drop(1); // Function.
if (join != NULL) {
AddInstruction(call);
if (!ast_context()->IsEffect()) Push(call);
Goto(join);
} else {
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// We assume that control flow is always live after an expression. So
// even without predecessors to the join block, we set it as the exit
// block and continue by adding instructions there.
DCHECK(join != NULL);
if (join->HasPredecessor()) {
set_current_block(join);
join->SetJoinId(expr->id());
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
} else {
set_current_block(NULL);
}
}
void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
Handle<JSFunction> caller,
const char* reason) {
if (FLAG_trace_inlining) {
SmartArrayPointer<char> target_name =
target->shared()->DebugName()->ToCString();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
if (reason == NULL) {
PrintF("Inlined %s called from %s.\n", target_name.get(),
caller_name.get());
} else {
PrintF("Did not inline %s called from %s (%s).\n",
target_name.get(), caller_name.get(), reason);
}
}
}
static const int kNotInlinable = 1000000000;
int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
if (!FLAG_use_inlining) return kNotInlinable;
// Precondition: call is monomorphic and we have found a target with the
// appropriate arity.
Handle<JSFunction> caller = current_info()->closure();
Handle<SharedFunctionInfo> target_shared(target->shared());
// Always inline builtins marked for inlining.
if (target->IsBuiltin()) {
return target_shared->inline_builtin() ? 0 : kNotInlinable;
}
if (target_shared->IsApiFunction()) {
TraceInline(target, caller, "target is api function");
return kNotInlinable;
}
// Do a quick check on source code length to avoid parsing large
// inlining candidates.
if (target_shared->SourceSize() >
Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
TraceInline(target, caller, "target text too big");
return kNotInlinable;
}
// Target must be inlineable.
if (!target_shared->IsInlineable()) {
TraceInline(target, caller, "target not inlineable");
return kNotInlinable;
}
if (target_shared->DisableOptimizationReason() != kNoReason) {
TraceInline(target, caller, "target contains unsupported syntax [early]");
return kNotInlinable;
}
int nodes_added = target_shared->ast_node_count();
return nodes_added;
}
bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
int arguments_count,
HValue* implicit_return_value,
BailoutId ast_id,
BailoutId return_id,
InliningKind inlining_kind,
HSourcePosition position) {
int nodes_added = InliningAstSize(target);
if (nodes_added == kNotInlinable) return false;
Handle<JSFunction> caller = current_info()->closure();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [early]");
return false;
}
// Don't inline deeper than the maximum number of inlining levels.
HEnvironment* env = environment();
int current_level = 1;
while (env->outer() != NULL) {
if (current_level == FLAG_max_inlining_levels) {
TraceInline(target, caller, "inline depth limit reached");
return false;
}
if (env->outer()->frame_type() == JS_FUNCTION) {
current_level++;
}
env = env->outer();
}
// Don't inline recursive functions.
for (FunctionState* state = function_state();
state != NULL;
state = state->outer()) {
if (*state->compilation_info()->closure() == *target) {
TraceInline(target, caller, "target is recursive");
return false;
}
}
// We don't want to add more than a certain number of nodes from inlining.
if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
kUnlimitedMaxInlinedNodesCumulative)) {
TraceInline(target, caller, "cumulative AST node limit reached");
return false;
}
// Parse and allocate variables.
CompilationInfo target_info(target, zone());
// Use the same AstValueFactory for creating strings in the sub-compilation
// step, but don't transfer ownership to target_info.
target_info.SetAstValueFactory(top_info()->ast_value_factory(), false);
Handle<SharedFunctionInfo> target_shared(target->shared());
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
if (target_info.isolate()->has_pending_exception()) {
// Parse or scope error, never optimize this function.
SetStackOverflow();
target_shared->DisableOptimization(kParseScopeError);
}
TraceInline(target, caller, "parse failure");
return false;
}
if (target_info.scope()->num_heap_slots() > 0) {
TraceInline(target, caller, "target has context-allocated variables");
return false;
}
FunctionLiteral* function = target_info.function();
// The following conditions must be checked again after re-parsing, because
// earlier the information might not have been complete due to lazy parsing.
nodes_added = function->ast_node_count();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [late]");
return false;
}
if (function->dont_optimize()) {
TraceInline(target, caller, "target contains unsupported syntax [late]");
return false;
}
// If the function uses the arguments object check that inlining of functions
// with arguments object is enabled and the arguments-variable is
// stack allocated.
if (function->scope()->arguments() != NULL) {
if (!FLAG_inline_arguments) {
TraceInline(target, caller, "target uses arguments object");
return false;
}
if (!function->scope()->arguments()->IsStackAllocated()) {
TraceInline(target,
caller,
"target uses non-stackallocated arguments object");
return false;
}
}
// All declarations must be inlineable.
ZoneList<Declaration*>* decls = target_info.scope()->declarations();
int decl_count = decls->length();
for (int i = 0; i < decl_count; ++i) {
if (!decls->at(i)->IsInlineable()) {
TraceInline(target, caller, "target has non-trivial declaration");
return false;
}
}
// Generate the deoptimization data for the unoptimized version of
// the target function if we don't already have it.
if (!target_shared->has_deoptimization_support()) {
// Note that we compile here using the same AST that we will use for
// generating the optimized inline code.
target_info.EnableDeoptimizationSupport();
if (!FullCodeGenerator::MakeCode(&target_info)) {
TraceInline(target, caller, "could not generate deoptimization info");
return false;
}
if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
// The scope info might not have been set if a lazily compiled
// function is inlined before being called for the first time.
Handle<ScopeInfo> target_scope_info =
ScopeInfo::Create(target_info.scope(), zone());
target_shared->set_scope_info(*target_scope_info);
}
target_shared->EnableDeoptimizationSupport(*target_info.code());
target_shared->set_feedback_vector(*target_info.feedback_vector());
Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
&target_info,
target_shared);
}
// ----------------------------------------------------------------
// After this point, we've made a decision to inline this function (so
// TryInline should always return true).
// Type-check the inlined function.
DCHECK(target_shared->has_deoptimization_support());
AstTyper::Run(&target_info);
int function_id = graph()->TraceInlinedFunction(target_shared, position);
// Save the pending call context. Set up new one for the inlined function.
// The function state is new-allocated because we need to delete it
// in two different places.
FunctionState* target_state = new FunctionState(
this, &target_info, inlining_kind, function_id);
HConstant* undefined = graph()->GetConstantUndefined();
HEnvironment* inner_env =
environment()->CopyForInlining(target,
arguments_count,
function,
undefined,
function_state()->inlining_kind());
HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
inner_env->BindContext(context);
// Create a dematerialized arguments object for the function, also copy the
// current arguments values to use them for materialization.
HEnvironment* arguments_env = inner_env->arguments_environment();
int parameter_count = arguments_env->parameter_count();
HArgumentsObject* arguments_object = Add<HArgumentsObject>(parameter_count);
for (int i = 0; i < parameter_count; i++) {
arguments_object->AddArgument(arguments_env->Lookup(i), zone());
}
// If the function uses arguments object then bind bind one.
if (function->scope()->arguments() != NULL) {
DCHECK(function->scope()->arguments()->IsStackAllocated());
inner_env->Bind(function->scope()->arguments(), arguments_object);
}
// Capture the state before invoking the inlined function for deopt in the
// inlined function. This simulate has no bailout-id since it's not directly
// reachable for deopt, and is only used to capture the state. If the simulate
// becomes reachable by merging, the ast id of the simulate merged into it is
// adopted.
Add<HSimulate>(BailoutId::None());
current_block()->UpdateEnvironment(inner_env);
Scope* saved_scope = scope();
set_scope(target_info.scope());
HEnterInlined* enter_inlined =
Add<HEnterInlined>(return_id, target, arguments_count, function,
function_state()->inlining_kind(),
function->scope()->arguments(),
arguments_object);
function_state()->set_entry(enter_inlined);
VisitDeclarations(target_info.scope()->declarations());
VisitStatements(function->body());
set_scope(saved_scope);
if (HasStackOverflow()) {
// Bail out if the inline function did, as we cannot residualize a call
// instead.
TraceInline(target, caller, "inline graph construction failed");
target_shared->DisableOptimization(kInliningBailedOut);
inline_bailout_ = true;
delete target_state;
return true;
}
// Update inlined nodes count.
inlined_count_ += nodes_added;
Handle<Code> unoptimized_code(target_shared->code());
DCHECK(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
graph()->update_type_change_checksum(type_info->own_type_change_checksum());
TraceInline(target, caller, NULL);
if (current_block() != NULL) {
FunctionState* state = function_state();
if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Falling off the end of an inlined construct call. In a test context the
// return value will always evaluate to true, in a value context the
// return value is the newly allocated receiver.
if (call_context()->IsTest()) {
Goto(inlined_test_context()->if_true(), state);
} else if (call_context()->IsEffect()) {
Goto(function_return(), state);
} else {
DCHECK(call_context()->IsValue());
AddLeaveInlined(implicit_return_value, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Falling off the end of an inlined setter call. The returned value is
// never used, the value of an assignment is always the value of the RHS
// of the assignment.
if (call_context()->IsTest()) {
inlined_test_context()->ReturnValue(implicit_return_value);
} else if (call_context()->IsEffect()) {
Goto(function_return(), state);
} else {
DCHECK(call_context()->IsValue());
AddLeaveInlined(implicit_return_value, state);
}
} else {
// Falling off the end of a normal inlined function. This basically means
// returning undefined.
if (call_context()->IsTest()) {
Goto(inlined_test_context()->if_false(), state);
} else if (call_context()->IsEffect()) {
Goto(function_return(), state);
} else {
DCHECK(call_context()->IsValue());
AddLeaveInlined(undefined, state);
}
}
}
// Fix up the function exits.
if (inlined_test_context() != NULL) {
HBasicBlock* if_true = inlined_test_context()->if_true();
HBasicBlock* if_false = inlined_test_context()->if_false();
HEnterInlined* entry = function_state()->entry();
// Pop the return test context from the expression context stack.
DCHECK(ast_context() == inlined_test_context());
ClearInlinedTestContext();
delete target_state;
// Forward to the real test context.
if (if_true->HasPredecessor()) {
entry->RegisterReturnTarget(if_true, zone());
if_true->SetJoinId(ast_id);
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
Goto(if_true, true_target, function_state());
}
if (if_false->HasPredecessor()) {
entry->RegisterReturnTarget(if_false, zone());
if_false->SetJoinId(ast_id);
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
Goto(if_false, false_target, function_state());
}
set_current_block(NULL);
return true;
} else if (function_return()->HasPredecessor()) {
function_state()->entry()->RegisterReturnTarget(function_return(), zone());
function_return()->SetJoinId(ast_id);
set_current_block(function_return());
} else {
set_current_block(NULL);
}
delete target_state;
return true;
}
bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
return TryInline(expr->target(),
expr->arguments()->length(),
NULL,
expr->id(),
expr->ReturnId(),
NORMAL_RETURN,
ScriptPositionToSourcePosition(expr->position()));
}
bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
HValue* implicit_return_value) {
return TryInline(expr->target(),
expr->arguments()->length(),
implicit_return_value,
expr->id(),
expr->ReturnId(),
CONSTRUCT_CALL_RETURN,
ScriptPositionToSourcePosition(expr->position()));
}
bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
Handle<Map> receiver_map,
BailoutId ast_id,
BailoutId return_id) {
if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
return TryInline(getter,
0,
NULL,
ast_id,
return_id,
GETTER_CALL_RETURN,
source_position());
}
bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
Handle<Map> receiver_map,
BailoutId id,
BailoutId assignment_id,
HValue* implicit_return_value) {
if (TryInlineApiSetter(setter, receiver_map, id)) return true;
return TryInline(setter,
1,
implicit_return_value,
id, assignment_id,
SETTER_CALL_RETURN,
source_position());
}
bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
Call* expr,
int arguments_count) {
return TryInline(function,
arguments_count,
NULL,
expr->id(),
expr->ReturnId(),
NORMAL_RETURN,
ScriptPositionToSourcePosition(expr->position()));
}
bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
switch (id) {
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFround:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathClz32:
if (expr->arguments()->length() == 1) {
HValue* argument = Pop();
Drop(2); // Receiver and function.
HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathImul:
if (expr->arguments()->length() == 2) {
HValue* right = Pop();
HValue* left = Pop();
Drop(2); // Receiver and function.
HInstruction* op = HMul::NewImul(zone(), context(), left, right);
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
default:
// Not supported for inlining yet.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
Call* expr,
HValue* receiver,
Handle<Map> receiver_map) {
// Try to inline calls like Math.* as operations in the calling function.
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
switch (id) {
case kStringCharCodeAt:
case kStringCharAt:
if (argument_count == 2) {
HValue* index = Pop();
HValue* string = Pop();
Drop(1); // Function.
HInstruction* char_code =
BuildStringCharCodeAt(string, index);
if (id == kStringCharCodeAt) {
ast_context()->ReturnInstruction(char_code, expr->id());
return true;
}
AddInstruction(char_code);
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kStringFromCharCode:
if (argument_count == 2) {
HValue* argument = Pop();
Drop(2); // Receiver and function.
HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFround:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathClz32:
if (argument_count == 2) {
HValue* argument = Pop();
Drop(2); // Receiver and function.
HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathPow:
if (argument_count == 3) {
HValue* right = Pop();
HValue* left = Pop();
Drop(2); // Receiver and function.
HInstruction* result = NULL;
// Use sqrt() if exponent is 0.5 or -0.5.
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
double exponent = HConstant::cast(right)->DoubleValue();
if (exponent == 0.5) {
result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
} else if (exponent == -0.5) {
HValue* one = graph()->GetConstant1();
HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
left, kMathPowHalf);
// MathPowHalf doesn't have side effects so there's no need for
// an environment simulation here.
DCHECK(!sqrt->HasObservableSideEffects());
result = NewUncasted<HDiv>(one, sqrt);
} else if (exponent == 2.0) {
result = NewUncasted<HMul>(left, left);
}
}
if (result == NULL) {
result = NewUncasted<HPower>(left, right);
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathMax:
case kMathMin:
if (argument_count == 3) {
HValue* right = Pop();
HValue* left = Pop();
Drop(2); // Receiver and function.
HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
: HMathMinMax::kMathMax;
HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathImul:
if (argument_count == 3) {
HValue* right = Pop();
HValue* left = Pop();
Drop(2); // Receiver and function.
HInstruction* result = HMul::NewImul(zone(), context(), left, right);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kArrayPop: {
if (receiver_map.is_null()) return false;
if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
ElementsKind elements_kind = receiver_map->elements_kind();
if (!IsFastElementsKind(elements_kind)) return false;
if (receiver_map->is_observed()) return false;
DCHECK(receiver_map->is_extensible());
Drop(expr->arguments()->length());
HValue* result;
HValue* reduced_length;
HValue* receiver = Pop();
HValue* checked_object = AddCheckMap(receiver, receiver_map);
HValue* length = Add<HLoadNamedField>(
checked_object, static_cast<HValue*>(NULL),
HObjectAccess::ForArrayLength(elements_kind));
Drop(1); // Function.
{ NoObservableSideEffectsScope scope(this);
IfBuilder length_checker(this);
HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
length, graph()->GetConstant0(), Token::EQ);
length_checker.Then();
if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
length_checker.Else();
HValue* elements = AddLoadElements(checked_object);
// Ensure that we aren't popping from a copy-on-write array.
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
elements = BuildCopyElementsOnWrite(checked_object, elements,
elements_kind, length);
}
reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
result = AddElementAccess(elements, reduced_length, NULL,
bounds_check, elements_kind, LOAD);
Factory* factory = isolate()->factory();
double nan_double = FixedDoubleArray::hole_nan_as_double();
HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
? Add<HConstant>(factory->the_hole_value())
: Add<HConstant>(nan_double);
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
elements_kind = FAST_HOLEY_ELEMENTS;
}
AddElementAccess(
elements, reduced_length, hole, bounds_check, elements_kind, STORE);
Add<HStoreNamedField>(
checked_object, HObjectAccess::ForArrayLength(elements_kind),
reduced_length, STORE_TO_INITIALIZED_ENTRY);
if (!ast_context()->IsEffect()) Push(result);
length_checker.End();
}
result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
if (!ast_context()->IsEffect()) Drop(1);
ast_context()->ReturnValue(result);
return true;
}
case kArrayPush: {
if (receiver_map.is_null()) return false;
if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
ElementsKind elements_kind = receiver_map->elements_kind();
if (!IsFastElementsKind(elements_kind)) return false;
if (receiver_map->is_observed()) return false;
if (JSArray::IsReadOnlyLengthDescriptor(receiver_map)) return false;
DCHECK(receiver_map->is_extensible());
// If there may be elements accessors in the prototype chain, the fast
// inlined version can't be used.
if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
// If there currently can be no elements accessors on the prototype chain,
// it doesn't mean that there won't be any later. Install a full prototype
// chain check to trap element accessors being installed on the prototype
// chain, which would cause elements to go to dictionary mode and result
// in a map change.
Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
const int argc = expr->arguments()->length();
if (argc != 1) return false;
HValue* value_to_push = Pop();
HValue* array = Pop();
Drop(1); // Drop function.
HInstruction* new_size = NULL;
HValue* length = NULL;
{
NoObservableSideEffectsScope scope(this);
length = Add<HLoadNamedField>(array, static_cast<HValue*>(NULL),
HObjectAccess::ForArrayLength(elements_kind));
new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
BuildUncheckedMonomorphicElementAccess(array, length,
value_to_push, is_array,
elements_kind, STORE,
NEVER_RETURN_HOLE,
STORE_AND_GROW_NO_TRANSITION);
if (!ast_context()->IsEffect()) Push(new_size);
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
if (!ast_context()->IsEffect()) Drop(1);
}
ast_context()->ReturnValue(new_size);
return true;
}
case kArrayShift: {
if (receiver_map.is_null()) return false;
if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
ElementsKind kind = receiver_map->elements_kind();
if (!IsFastElementsKind(kind)) return false;
if (receiver_map->is_observed()) return false;
if (!receiver_map->is_extensible()) return false;
// If there may be elements accessors in the prototype chain, the fast
// inlined version can't be used.
if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
// If there currently can be no elements accessors on the prototype chain,
// it doesn't mean that there won't be any later. Install a full prototype
// chain check to trap element accessors being installed on the prototype
// chain, which would cause elements to go to dictionary mode and result
// in a map change.
BuildCheckPrototypeMaps(
handle(JSObject::cast(receiver_map->prototype()), isolate()),
Handle<JSObject>::null());
// Threshold for fast inlined Array.shift().
HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
Drop(expr->arguments()->length());
HValue* receiver = Pop();
HValue* function = Pop();
HValue* result;
{
NoObservableSideEffectsScope scope(this);
HValue* length = Add<HLoadNamedField>(
receiver, static_cast<HValue*>(NULL),
HObjectAccess::ForArrayLength(kind));
IfBuilder if_lengthiszero(this);
HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
length, graph()->GetConstant0(), Token::EQ);
if_lengthiszero.Then();
{
if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
}
if_lengthiszero.Else();
{
HValue* elements = AddLoadElements(receiver);
// Check if we can use the fast inlined Array.shift().
IfBuilder if_inline(this);
if_inline.If<HCompareNumericAndBranch>(
length, inline_threshold, Token::LTE);
if (IsFastSmiOrObjectElementsKind(kind)) {
// We cannot handle copy-on-write backing stores here.
if_inline.AndIf<HCompareMap>(
elements, isolate()->factory()->fixed_array_map());
}
if_inline.Then();
{
// Remember the result.
if (!ast_context()->IsEffect()) {
Push(AddElementAccess(elements, graph()->GetConstant0(), NULL,
lengthiszero, kind, LOAD));
}
// Compute the new length.
HValue* new_length = AddUncasted<HSub>(
length, graph()->GetConstant1());
new_length->ClearFlag(HValue::kCanOverflow);
// Copy the remaining elements.
LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
{
HValue* new_key = loop.BeginBody(
graph()->GetConstant0(), new_length, Token::LT);
HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
key->ClearFlag(HValue::kCanOverflow);
HValue* element = AddUncasted<HLoadKeyed>(
elements, key, lengthiszero, kind, ALLOW_RETURN_HOLE);
HStoreKeyed* store = Add<HStoreKeyed>(
elements, new_key, element, kind);
store->SetFlag(HValue::kAllowUndefinedAsNaN);
}
loop.EndBody();
// Put a hole at the end.
HValue* hole = IsFastSmiOrObjectElementsKind(kind)
? Add<HConstant>(isolate()->factory()->the_hole_value())
: Add<HConstant>(FixedDoubleArray::hole_nan_as_double());
if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
Add<HStoreKeyed>(
elements, new_length, hole, kind, INITIALIZING_STORE);
// Remember new length.
Add<HStoreNamedField>(
receiver, HObjectAccess::ForArrayLength(kind),
new_length, STORE_TO_INITIALIZED_ENTRY);
}
if_inline.Else();
{
Add<HPushArguments>(receiver);
result = Add<HCallJSFunction>(function, 1, true);
if (!ast_context()->IsEffect()) Push(result);
}
if_inline.End();
}
if_lengthiszero.End();
}
result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
if (!ast_context()->IsEffect()) Drop(1);
ast_context()->ReturnValue(result);
return true;
}
case kArrayIndexOf:
case kArrayLastIndexOf: {
if (receiver_map.is_null()) return false;
if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
ElementsKind kind = receiver_map->elements_kind();
if (!IsFastElementsKind(kind)) return false;
if (receiver_map->is_observed()) return false;
if (argument_count != 2) return false;
DCHECK(receiver_map->is_extensible());
// If there may be elements accessors in the prototype chain, the fast
// inlined version can't be used.
if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
// If there currently can be no elements accessors on the prototype chain,
// it doesn't mean that there won't be any later. Install a full prototype
// chain check to trap element accessors being installed on the prototype
// chain, which would cause elements to go to dictionary mode and result
// in a map change.
BuildCheckPrototypeMaps(
handle(JSObject::cast(receiver_map->prototype()), isolate()),
Handle<JSObject>::null());
HValue* search_element = Pop();
HValue* receiver = Pop();
Drop(1); // Drop function.
ArrayIndexOfMode mode = (id == kArrayIndexOf)
? kFirstIndexOf : kLastIndexOf;
HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
if (!ast_context()->IsEffect()) Push(index);
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
if (!ast_context()->IsEffect()) Drop(1);
ast_context()->ReturnValue(index);
return true;
}
default:
// Not yet supported for inlining.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
HValue* receiver) {
Handle<JSFunction> function = expr->target();
int argc = expr->arguments()->length();
SmallMapList receiver_maps;
return TryInlineApiCall(function,
receiver,
&receiver_maps,
argc,
expr->id(),
kCallApiFunction);
}
bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
Call* expr,
HValue* receiver,
SmallMapList* receiver_maps) {
Handle<JSFunction> function = expr->target();
int argc = expr->arguments()->length();
return TryInlineApiCall(function,
receiver,
receiver_maps,
argc,
expr->id(),
kCallApiMethod);
}
bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id) {
SmallMapList receiver_maps(1, zone());
receiver_maps.Add(receiver_map, zone());
return TryInlineApiCall(function,
NULL, // Receiver is on expression stack.
&receiver_maps,
0,
ast_id,
kCallApiGetter);
}
bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id) {
SmallMapList receiver_maps(1, zone());
receiver_maps.Add(receiver_map, zone());
return TryInlineApiCall(function,
NULL, // Receiver is on expression stack.
&receiver_maps,
1,
ast_id,
kCallApiSetter);
}
bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
HValue* receiver,
SmallMapList* receiver_maps,
int argc,
BailoutId ast_id,
ApiCallType call_type) {
CallOptimization optimization(function);
if (!optimization.is_simple_api_call()) return false;
Handle<Map> holder_map;
if (call_type == kCallApiFunction) {
// Cannot embed a direct reference to the global proxy map
// as it maybe dropped on deserialization.
CHECK(!isolate()->serializer_enabled());
DCHECK_EQ(0, receiver_maps->length());
receiver_maps->Add(handle(function->global_proxy()->map()), zone());
}
CallOptimization::HolderLookup holder_lookup =
CallOptimization::kHolderNotFound;
Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
receiver_maps->first(), &holder_lookup);
if (holder_lookup == CallOptimization::kHolderNotFound) return false;
if (FLAG_trace_inlining) {
PrintF("Inlining api function ");
function->ShortPrint();
PrintF("\n");
}
bool drop_extra = false;
bool is_store = false;
switch (call_type) {
case kCallApiFunction:
case kCallApiMethod:
// Need to check that none of the receiver maps could have changed.
Add<HCheckMaps>(receiver, receiver_maps);
// Need to ensure the chain between receiver and api_holder is intact.
if (holder_lookup == CallOptimization::kHolderFound) {
AddCheckPrototypeMaps(api_holder, receiver_maps->first());
} else {
DCHECK_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
}
// Includes receiver.
PushArgumentsFromEnvironment(argc + 1);
// Drop function after call.
drop_extra = true;
break;
case kCallApiGetter:
// Receiver and prototype chain cannot have changed.
DCHECK_EQ(0, argc);
DCHECK_EQ(NULL, receiver);
// Receiver is on expression stack.
receiver = Pop();
Add<HPushArguments>(receiver);
break;
case kCallApiSetter:
{
is_store = true;
// Receiver and prototype chain cannot have changed.
DCHECK_EQ(1, argc);
DCHECK_EQ(NULL, receiver);
// Receiver and value are on expression stack.
HValue* value = Pop();
receiver = Pop();
Add<HPushArguments>(receiver, value);
break;
}
}
HValue* holder = NULL;
switch (holder_lookup) {
case CallOptimization::kHolderFound:
holder = Add<HConstant>(api_holder);
break;
case CallOptimization::kHolderIsReceiver:
holder = receiver;
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data_obj(api_call_info->data(), isolate());
bool call_data_is_undefined = call_data_obj->IsUndefined();
HValue* call_data = Add<HConstant>(call_data_obj);
ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
ExternalReference ref = ExternalReference(&fun,
ExternalReference::DIRECT_API_CALL,
isolate());
HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
HValue* op_vals[] = {
context(),
Add<HConstant>(function),
call_data,
holder,
api_function_address
};
CallInterfaceDescriptor* descriptor =
isolate()->call_descriptor(CallDescriptorKey::ApiFunctionCall);
CallApiFunctionStub stub(isolate(), is_store, call_data_is_undefined, argc);
Handle<Code> code = stub.GetCode();
HConstant* code_value = Add<HConstant>(code);
DCHECK((sizeof(op_vals) / kPointerSize) ==
descriptor->GetEnvironmentLength());
HInstruction* call = New<HCallWithDescriptor>(
code_value, argc + 1, descriptor,
Vector<HValue*>(op_vals, descriptor->GetEnvironmentLength()));
if (drop_extra) Drop(1); // Drop function.
ast_context()->ReturnInstruction(call, ast_id);
return true;
}
bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
DCHECK(expr->expression()->IsProperty());
if (!expr->IsMonomorphic()) {
return false;
}
Handle<Map> function_map = expr->GetReceiverTypes()->first();
if (function_map->instance_type() != JS_FUNCTION_TYPE ||
!expr->target()->shared()->HasBuiltinFunctionId() ||
expr->target()->shared()->builtin_function_id() != kFunctionApply) {
return false;
}
if (current_info()->scope()->arguments() == NULL) return false;
ZoneList<Expression*>* args = expr->arguments();
if (args->length() != 2) return false;
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
// Found pattern f.apply(receiver, arguments).
CHECK_ALIVE_OR_RETURN(VisitForValue(args->at(0)), true);
HValue* receiver = Pop(); // receiver
HValue* function = Pop(); // f
Drop(1); // apply
HValue* checked_function = AddCheckMap(function, function_map);
if (function_state()->outer() == NULL) {
HInstruction* elements = Add<HArgumentsElements>(false);
HInstruction* length = Add<HArgumentsLength>(elements);
HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
HInstruction* result = New<HApplyArguments>(function,
wrapped_receiver,
length,
elements);
ast_context()->ReturnInstruction(result, expr->id());
return true;
} else {
// We are inside inlined function and we know exactly what is inside
// arguments object. But we need to be able to materialize at deopt.
DCHECK_EQ(environment()->arguments_environment()->parameter_count(),
function_state()->entry()->arguments_object()->arguments_count());
HArgumentsObject* args = function_state()->entry()->arguments_object();
const ZoneList<HValue*>* arguments_values = args->arguments_values();
int arguments_count = arguments_values->length();
Push(function);
Push(BuildWrapReceiver(receiver, checked_function));
for (int i = 1; i < arguments_count; i++) {
Push(arguments_values->at(i));
}
Handle<JSFunction> known_function;
if (function->IsConstant() &&
HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
known_function = Handle<JSFunction>::cast(
HConstant::cast(function)->handle(isolate()));
int args_count = arguments_count - 1; // Excluding receiver.
if (TryInlineApply(known_function, expr, args_count)) return true;
}
PushArgumentsFromEnvironment(arguments_count);
HInvokeFunction* call = New<HInvokeFunction>(
function, known_function, arguments_count);
Drop(1); // Function.
ast_context()->ReturnInstruction(call, expr->id());
return true;
}
}
HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
Handle<JSFunction> target) {
SharedFunctionInfo* shared = target->shared();
if (shared->strict_mode() == SLOPPY && !shared->native()) {
// Cannot embed a direct reference to the global proxy
// as is it dropped on deserialization.
CHECK(!isolate()->serializer_enabled());
Handle<JSObject> global_proxy(target->context()->global_proxy());
return Add<HConstant>(global_proxy);
}
return graph()->GetConstantUndefined();
}
void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
int arguments_count,
HValue* function,
Handle<AllocationSite> site) {
Add<HCheckValue>(function, array_function());
if (IsCallArrayInlineable(arguments_count, site)) {
BuildInlinedCallArray(expression, arguments_count, site);
return;
}
HInstruction* call = PreProcessCall(New<HCallNewArray>(
function, arguments_count + 1, site->GetElementsKind()));
if (expression->IsCall()) {
Drop(1);
}
ast_context()->ReturnInstruction(call, expression->id());
}
HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
HValue* search_element,
ElementsKind kind,
ArrayIndexOfMode mode) {
DCHECK(IsFastElementsKind(kind));
NoObservableSideEffectsScope no_effects(this);
HValue* elements = AddLoadElements(receiver);
HValue* length = AddLoadArrayLength(receiver, kind);
HValue* initial;
HValue* terminating;
Token::Value token;
LoopBuilder::Direction direction;
if (mode == kFirstIndexOf) {
initial = graph()->GetConstant0();
terminating = length;
token = Token::LT;
direction = LoopBuilder::kPostIncrement;
} else {
DCHECK_EQ(kLastIndexOf, mode);
initial = length;
terminating = graph()->GetConstant0();
token = Token::GT;
direction = LoopBuilder::kPreDecrement;
}
Push(graph()->GetConstantMinus1());
if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
LoopBuilder loop(this, context(), direction);
{
HValue* index = loop.BeginBody(initial, terminating, token);
HValue* element = AddUncasted<HLoadKeyed>(
elements, index, static_cast<HValue*>(NULL),
kind, ALLOW_RETURN_HOLE);
IfBuilder if_issame(this);
if (IsFastDoubleElementsKind(kind)) {
if_issame.If<HCompareNumericAndBranch>(
element, search_element, Token::EQ_STRICT);
} else {
if_issame.If<HCompareObjectEqAndBranch>(element, search_element);
}
if_issame.Then();
{
Drop(1);
Push(index);
loop.Break();
}
if_issame.End();
}
loop.EndBody();
} else {
IfBuilder if_isstring(this);
if_isstring.If<HIsStringAndBranch>(search_element);
if_isstring.Then();
{
LoopBuilder loop(this, context(), direction);
{
HValue* index = loop.BeginBody(initial, terminating, token);
HValue* element = AddUncasted<HLoadKeyed>(
elements, index, static_cast<HValue*>(NULL),
kind, ALLOW_RETURN_HOLE);
IfBuilder if_issame(this);
if_issame.If<HIsStringAndBranch>(element);
if_issame.AndIf<HStringCompareAndBranch>(
element, search_element, Token::EQ_STRICT);
if_issame.Then();
{
Drop(1);
Push(index);
loop.Break();
}
if_issame.End();
}
loop.EndBody();
}
if_isstring.Else();
{
IfBuilder if_isnumber(this);
if_isnumber.If<HIsSmiAndBranch>(search_element);
if_isnumber.OrIf<HCompareMap>(
search_element, isolate()->factory()->heap_number_map());
if_isnumber.Then();
{
HValue* search_number =
AddUncasted<HForceRepresentation>(search_element,
Representation::Double());
LoopBuilder loop(this, context(), direction);
{
HValue* index = loop.BeginBody(initial, terminating, token);
HValue* element = AddUncasted<HLoadKeyed>(
elements, index, static_cast<HValue*>(NULL),
kind, ALLOW_RETURN_HOLE);
IfBuilder if_element_isnumber(this);
if_element_isnumber.If<HIsSmiAndBranch>(element);
if_element_isnumber.OrIf<HCompareMap>(
element, isolate()->factory()->heap_number_map());
if_element_isnumber.Then();
{
HValue* number =
AddUncasted<HForceRepresentation>(element,
Representation::Double());
IfBuilder if_issame(this);
if_issame.If<HCompareNumericAndBranch>(
number, search_number, Token::EQ_STRICT);
if_issame.Then();
{
Drop(1);
Push(index);
loop.Break();
}
if_issame.End();
}
if_element_isnumber.End();
}
loop.EndBody();
}
if_isnumber.Else();
{
LoopBuilder loop(this, context(), direction);
{
HValue* index = loop.BeginBody(initial, terminating, token);
HValue* element = AddUncasted<HLoadKeyed>(
elements, index, static_cast<HValue*>(NULL),
kind, ALLOW_RETURN_HOLE);
IfBuilder if_issame(this);
if_issame.If<HCompareObjectEqAndBranch>(
element, search_element);
if_issame.Then();
{
Drop(1);
Push(index);
loop.Break();
}
if_issame.End();
}
loop.EndBody();
}
if_isnumber.End();
}
if_isstring.End();
}
return Pop();
}
bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
if (!array_function().is_identical_to(expr->target())) {
return false;
}
Handle<AllocationSite> site = expr->allocation_site();
if (site.is_null()) return false;
BuildArrayCall(expr,
expr->arguments()->length(),
function,
site);
return true;
}
bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
HValue* function) {
if (!array_function().is_identical_to(expr->target())) {
return false;
}
BuildArrayCall(expr,
expr->arguments()->length(),
function,
expr->allocation_site());
return true;
}
void HOptimizedGraphBuilder::VisitCall(Call* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
Expression* callee = expr->expression();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
HInstruction* call = NULL;
Property* prop = callee->AsProperty();
if (prop != NULL) {
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* receiver = Top();
SmallMapList* types;
ComputeReceiverTypes(expr, receiver, &types, zone());
if (prop->key()->IsPropertyName() && types->length() > 0) {
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
PropertyAccessInfo info(this, LOAD, ToType(types->first()), name);
if (!info.CanAccessAsMonomorphic(types)) {
HandlePolymorphicCallNamed(expr, receiver, types, name);
return;
}
}
HValue* key = NULL;
if (!prop->key()->IsPropertyName()) {
CHECK_ALIVE(VisitForValue(prop->key()));
key = Pop();
}
CHECK_ALIVE(PushLoad(prop, receiver, key));
HValue* function = Pop();
if (FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
// Push the function under the receiver.
environment()->SetExpressionStackAt(0, function);
Push(receiver);
if (function->IsConstant() &&
HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
Handle<JSFunction> known_function = Handle<JSFunction>::cast(
HConstant::cast(function)->handle(isolate()));
expr->set_target(known_function);
if (TryCallApply(expr)) return;
CHECK_ALIVE(VisitExpressions(expr->arguments()));
Handle<Map> map = types->length() == 1 ? types->first() : Handle<Map>();
if (TryInlineBuiltinMethodCall(expr, receiver, map)) {
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
known_function->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineApiMethodCall(expr, receiver, types)) return;
// Wrap the receiver if necessary.
if (NeedsWrappingFor(ToType(types->first()), known_function)) {
// Since HWrapReceiver currently cannot actually wrap numbers and
// strings, use the regular CallFunctionStub for method calls to wrap
// the receiver.
// TODO(verwaest): Support creation of value wrappers directly in
// HWrapReceiver.
call = New<HCallFunction>(
function, argument_count, WRAP_AND_CALL);
} else if (TryInlineCall(expr)) {
return;
} else {
call = BuildCallConstantFunction(known_function, argument_count);
}
} else {
CHECK_ALIVE(VisitExpressions(expr->arguments()));
CallFunctionFlags flags = receiver->type().IsJSObject()
? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
call = New<HCallFunction>(function, argument_count, flags);
}
PushArgumentsFromEnvironment(argument_count);
} else {
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
return Bailout(kPossibleDirectCallToEval);
}
// The function is on the stack in the unoptimized code during
// evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
if (expr->global_call()) {
Variable* var = proxy->var();
bool known_global_function = false;
// If there is a global property cell for the name at compile time and
// access check is not enabled we assume that the function will not change
// and generate optimized code for calling the function.
Handle<GlobalObject> global(current_info()->global_object());
LookupIterator it(global, var->name(), LookupIterator::OWN_PROPERTY);
GlobalPropertyAccess type = LookupGlobalProperty(var, &it, LOAD);
if (type == kUseCell &&
!current_info()->global_object()->IsAccessCheckNeeded()) {
Handle<GlobalObject> global(current_info()->global_object());
known_global_function = expr->ComputeGlobalTarget(global, &it);
}
if (known_global_function) {
Add<HCheckValue>(function, expr->target());
// Placeholder for the receiver.
Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitExpressions(expr->arguments()));
// Patch the global object on the stack by the expected receiver.
HValue* receiver = ImplicitReceiverFor(function, expr->target());
const int receiver_index = argument_count - 1;
environment()->SetExpressionStackAt(receiver_index, receiver);
if (TryInlineBuiltinFunctionCall(expr)) {
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineApiFunctionCall(expr, receiver)) return;
if (TryHandleArrayCall(expr, function)) return;
if (TryInlineCall(expr)) return;
PushArgumentsFromEnvironment(argument_count);
call = BuildCallConstantFunction(expr->target(), argument_count);
} else {
Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitExpressions(expr->arguments()));
PushArgumentsFromEnvironment(argument_count);
call = New<HCallFunction>(function, argument_count);
}
} else if (expr->IsMonomorphic()) {
Add<HCheckValue>(function, expr->target());
Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitExpressions(expr->arguments()));
HValue* receiver = ImplicitReceiverFor(function, expr->target());
const int receiver_index = argument_count - 1;
environment()->SetExpressionStackAt(receiver_index, receiver);
if (TryInlineBuiltinFunctionCall(expr)) {
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineApiFunctionCall(expr, receiver)) return;
if (TryInlineCall(expr)) return;
call = PreProcessCall(New<HInvokeFunction>(
function, expr->target(), argument_count));
} else {
Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitExpressions(expr->arguments()));
PushArgumentsFromEnvironment(argument_count);
call = New<HCallFunction>(function, argument_count);
}
}
Drop(1); // Drop the function.
return ast_context()->ReturnInstruction(call, expr->id());
}
void HOptimizedGraphBuilder::BuildInlinedCallArray(
Expression* expression,
int argument_count,
Handle<AllocationSite> site) {
DCHECK(!site.is_null());
DCHECK(argument_count >= 0 && argument_count <= 1);
NoObservableSideEffectsScope no_effects(this);
// We should at least have the constructor on the expression stack.
HValue* constructor = environment()->ExpressionStackAt(argument_count);
// Register on the site for deoptimization if the transition feedback changes.
AllocationSite::AddDependentCompilationInfo(
site, AllocationSite::TRANSITIONS, top_info());
ElementsKind kind = site->GetElementsKind();
HInstruction* site_instruction = Add<HConstant>(site);
// In the single constant argument case, we may have to adjust elements kind
// to avoid creating a packed non-empty array.
if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
HValue* argument = environment()->Top();
if (argument->IsConstant()) {
HConstant* constant_argument = HConstant::cast(argument);
DCHECK(constant_argument->HasSmiValue());
int constant_array_size = constant_argument->Integer32Value();
if (constant_array_size != 0) {
kind = GetHoleyElementsKind(kind);
}
}
}
// Build the array.
JSArrayBuilder array_builder(this,
kind,
site_instruction,
constructor,
DISABLE_ALLOCATION_SITES);
HValue* new_object = argument_count == 0
? array_builder.AllocateEmptyArray()
: BuildAllocateArrayFromLength(&array_builder, Top());
int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
Drop(args_to_drop);
ast_context()->ReturnValue(new_object);
}
// Checks whether allocation using the given constructor can be inlined.
static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
return constructor->has_initial_map() &&
constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
constructor->initial_map()->instance_size() < HAllocate::kMaxInlineSize &&
constructor->initial_map()->InitialPropertiesLength() == 0;
}
bool HOptimizedGraphBuilder::IsCallArrayInlineable(
int argument_count,
Handle<AllocationSite> site) {
Handle<JSFunction> caller = current_info()->closure();
Handle<JSFunction> target = array_function();
// We should have the function plus array arguments on the environment stack.
DCHECK(environment()->length() >= (argument_count + 1));
DCHECK(!site.is_null());
bool inline_ok = false;
if (site->CanInlineCall()) {
// We also want to avoid inlining in certain 1 argument scenarios.
if (argument_count == 1) {
HValue* argument = Top();
if (argument->IsConstant()) {
// Do not inline if the constant length argument is not a smi or
// outside the valid range for unrolled loop initialization.
HConstant* constant_argument = HConstant::cast(argument);
if (constant_argument->HasSmiValue()) {
int value = constant_argument->Integer32Value();
inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
if (!inline_ok) {
TraceInline(target, caller,
"Constant length outside of valid inlining range.");
}
}
} else {
TraceInline(target, caller,
"Dont inline [new] Array(n) where n isn't constant.");
}
} else if (argument_count == 0) {
inline_ok = true;
} else {
TraceInline(target, caller, "Too many arguments to inline.");
}
} else {
TraceInline(target, caller, "AllocationSite requested no inlining.");
}
if (inline_ok) {
TraceInline(target, caller, NULL);
}
return inline_ok;
}
void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
Factory* factory = isolate()->factory();
// The constructor function is on the stack in the unoptimized code
// during evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
CHECK_ALIVE(VisitExpressions(expr->arguments()));
if (FLAG_inline_construct &&
expr->IsMonomorphic() &&
IsAllocationInlineable(expr->target())) {
Handle<JSFunction> constructor = expr->target();
HValue* check = Add<HCheckValue>(function, constructor);
// Force completion of inobject slack tracking before generating
// allocation code to finalize instance size.
if (constructor->IsInobjectSlackTrackingInProgress()) {
constructor->CompleteInobjectSlackTracking();
}
// Calculate instance size from initial map of constructor.
DCHECK(constructor->has_initial_map());
Handle<Map> initial_map(constructor->initial_map());
int instance_size = initial_map->instance_size();
DCHECK(initial_map->InitialPropertiesLength() == 0);
// Allocate an instance of the implicit receiver object.
HValue* size_in_bytes = Add<HConstant>(instance_size);
HAllocationMode allocation_mode;
if (FLAG_pretenuring_call_new) {
if (FLAG_allocation_site_pretenuring) {
// Try to use pretenuring feedback.
Handle<AllocationSite> allocation_site = expr->allocation_site();
allocation_mode = HAllocationMode(allocation_site);
// Take a dependency on allocation site.
AllocationSite::AddDependentCompilationInfo(allocation_site,
AllocationSite::TENURING,
top_info());
}
}
HAllocate* receiver = BuildAllocate(
size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
receiver->set_known_initial_map(initial_map);
// Initialize map and fields of the newly allocated object.
{ NoObservableSideEffectsScope no_effects(this);
DCHECK(initial_map->instance_type() == JS_OBJECT_TYPE);
Add<HStoreNamedField>(receiver,
HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
Add<HConstant>(initial_map));
HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
Add<HStoreNamedField>(receiver,
HObjectAccess::ForMapAndOffset(initial_map,
JSObject::kPropertiesOffset),
empty_fixed_array);
Add<HStoreNamedField>(receiver,
HObjectAccess::ForMapAndOffset(initial_map,
JSObject::kElementsOffset),
empty_fixed_array);
if (initial_map->inobject_properties() != 0) {
HConstant* undefined = graph()->GetConstantUndefined();
for (int i = 0; i < initial_map->inobject_properties(); i++) {
int property_offset = initial_map->GetInObjectPropertyOffset(i);
Add<HStoreNamedField>(receiver,
HObjectAccess::ForMapAndOffset(initial_map, property_offset),
undefined);
}
}
}
// Replace the constructor function with a newly allocated receiver using
// the index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
DCHECK(environment()->ExpressionStackAt(receiver_index) == function);
environment()->SetExpressionStackAt(receiver_index, receiver);
if (TryInlineConstruct(expr, receiver)) {
// Inlining worked, add a dependency on the initial map to make sure that
// this code is deoptimized whenever the initial map of the constructor
// changes.
Map::AddDependentCompilationInfo(
initial_map, DependentCode::kInitialMapChangedGroup, top_info());
return;
}
// TODO(mstarzinger): For now we remove the previous HAllocate and all
// corresponding instructions and instead add HPushArguments for the
// arguments in case inlining failed. What we actually should do is for
// inlining to try to build a subgraph without mutating the parent graph.
HInstruction* instr = current_block()->last();
do {
HInstruction* prev_instr = instr->previous();
instr->DeleteAndReplaceWith(NULL);
instr = prev_instr;
} while (instr != check);
environment()->SetExpressionStackAt(receiver_index, function);
HInstruction* call =
PreProcessCall(New<HCallNew>(function, argument_count));
return ast_context()->ReturnInstruction(call, expr->id());
} else {
// The constructor function is both an operand to the instruction and an
// argument to the construct call.
if (TryHandleArrayCallNew(expr, function)) return;
HInstruction* call =
PreProcessCall(New<HCallNew>(function, argument_count));
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// Support for generating inlined runtime functions.
// Lookup table for generators for runtime calls that are generated inline.
// Elements of the table are member pointers to functions of
// HOptimizedGraphBuilder.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&HOptimizedGraphBuilder::Generate##Name,
const HOptimizedGraphBuilder::InlineFunctionGenerator
HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
template <class ViewClass>
void HGraphBuilder::BuildArrayBufferViewInitialization(
HValue* obj,
HValue* buffer,
HValue* byte_offset,
HValue* byte_length) {
for (int offset = ViewClass::kSize;
offset < ViewClass::kSizeWithInternalFields;
offset += kPointerSize) {
Add<HStoreNamedField>(obj,
HObjectAccess::ForObservableJSObjectOffset(offset),
graph()->GetConstant0());
}
Add<HStoreNamedField>(
obj,
HObjectAccess::ForJSArrayBufferViewByteOffset(),
byte_offset);
Add<HStoreNamedField>(
obj,
HObjectAccess::ForJSArrayBufferViewByteLength(),
byte_length);
if (buffer != NULL) {
Add<HStoreNamedField>(
obj,
HObjectAccess::ForJSArrayBufferViewBuffer(), buffer);
HObjectAccess weak_first_view_access =
HObjectAccess::ForJSArrayBufferWeakFirstView();
Add<HStoreNamedField>(obj,
HObjectAccess::ForJSArrayBufferViewWeakNext(),
Add<HLoadNamedField>(buffer,
static_cast<HValue*>(NULL),
weak_first_view_access));
Add<HStoreNamedField>(buffer, weak_first_view_access, obj);
} else {
Add<HStoreNamedField>(
obj,
HObjectAccess::ForJSArrayBufferViewBuffer(),
Add<HConstant>(static_cast<int32_t>(0)));
Add<HStoreNamedField>(obj,
HObjectAccess::ForJSArrayBufferViewWeakNext(),
graph()->GetConstantUndefined());
}
}
void HOptimizedGraphBuilder::GenerateDataViewInitialize(
CallRuntime* expr) {
ZoneList<Expression*>* arguments = expr->arguments();
DCHECK(arguments->length()== 4);
CHECK_ALIVE(VisitForValue(arguments->at(0)));
HValue* obj = Pop();
CHECK_ALIVE(VisitForValue(arguments->at(1)));
HValue* buffer = Pop();
CHECK_ALIVE(VisitForValue(arguments->at(2)));
HValue* byte_offset = Pop();
CHECK_ALIVE(VisitForValue(arguments->at(3)));
HValue* byte_length = Pop();
{
NoObservableSideEffectsScope scope(this);
BuildArrayBufferViewInitialization<JSDataView>(
obj, buffer, byte_offset, byte_length);
}
}
static Handle<Map> TypedArrayMap(Isolate* isolate,
ExternalArrayType array_type,
ElementsKind target_kind) {
Handle<Context> native_context = isolate->native_context();
Handle<JSFunction> fun;
switch (array_type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
fun = Handle<JSFunction>(native_context->type##_array_fun()); \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
}
Handle<Map> map(fun->initial_map());
return Map::AsElementsKind(map, target_kind);
}
HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
ExternalArrayType array_type,
bool is_zero_byte_offset,
HValue* buffer, HValue* byte_offset, HValue* length) {
Handle<Map> external_array_map(
isolate()->heap()->MapForExternalArrayType(array_type));
// The HForceRepresentation is to prevent possible deopt on int-smi
// conversion after allocation but before the new object fields are set.
length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
HValue* elements =
Add<HAllocate>(
Add<HConstant>(ExternalArray::kAlignedSize),
HType::HeapObject(),
NOT_TENURED,
external_array_map->instance_type());
AddStoreMapConstant(elements, external_array_map);
Add<HStoreNamedField>(elements,
HObjectAccess::ForFixedArrayLength(), length);
HValue* backing_store = Add<HLoadNamedField>(
buffer, static_cast<HValue*>(NULL),
HObjectAccess::ForJSArrayBufferBackingStore());
HValue* typed_array_start;
if (is_zero_byte_offset) {
typed_array_start = backing_store;
} else {
HInstruction* external_pointer =
AddUncasted<HAdd>(backing_store, byte_offset);
// Arguments are checked prior to call to TypedArrayInitialize,
// including byte_offset.
external_pointer->ClearFlag(HValue::kCanOverflow);
typed_array_start = external_pointer;
}
Add<HStoreNamedField>(elements,
HObjectAccess::ForExternalArrayExternalPointer(),
typed_array_start);
return elements;
}
HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
ExternalArrayType array_type, size_t element_size,
ElementsKind fixed_elements_kind,
HValue* byte_length, HValue* length) {
STATIC_ASSERT(
(FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
HValue* total_size;
// if fixed array's elements are not aligned to object's alignment,
// we need to align the whole array to object alignment.
if (element_size % kObjectAlignment != 0) {
total_size = BuildObjectSizeAlignment(
byte_length, FixedTypedArrayBase::kHeaderSize);
} else {
total_size = AddUncasted<HAdd>(byte_length,
Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
total_size->ClearFlag(HValue::kCanOverflow);
}
// The HForceRepresentation is to prevent possible deopt on int-smi
// conversion after allocation but before the new object fields are set.
length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
Handle<Map> fixed_typed_array_map(
isolate()->heap()->MapForFixedTypedArray(array_type));
HValue* elements =
Add<HAllocate>(total_size, HType::HeapObject(),
NOT_TENURED, fixed_typed_array_map->instance_type());
AddStoreMapConstant(elements, fixed_typed_array_map);
Add<HStoreNamedField>(elements,
HObjectAccess::ForFixedArrayLength(),
length);
HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
{
LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
HValue* key = builder.BeginBody(
Add<HConstant>(static_cast<int32_t>(0)),
length, Token::LT);
Add<HStoreKeyed>(elements, key, filler, fixed_elements_kind);
builder.EndBody();
}
return elements;
}
void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
CallRuntime* expr) {
ZoneList<Expression*>* arguments = expr->arguments();
static const int kObjectArg = 0;
static const int kArrayIdArg = 1;
static const int kBufferArg = 2;
static const int kByteOffsetArg = 3;
static const int kByteLengthArg = 4;
static const int kArgsLength = 5;
DCHECK(arguments->length() == kArgsLength);
CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
HValue* obj = Pop();
if (arguments->at(kArrayIdArg)->IsLiteral()) {
// This should never happen in real use, but can happen when fuzzing.
// Just bail out.
Bailout(kNeedSmiLiteral);
return;
}
Handle<Object> value =
static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
if (!value->IsSmi()) {
// This should never happen in real use, but can happen when fuzzing.
// Just bail out.
Bailout(kNeedSmiLiteral);
return;
}
int array_id = Smi::cast(*value)->value();
HValue* buffer;
if (!arguments->at(kBufferArg)->IsNullLiteral()) {
CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
buffer = Pop();
} else {
buffer = NULL;
}
HValue* byte_offset;
bool is_zero_byte_offset;
if (arguments->at(kByteOffsetArg)->IsLiteral()
&& Smi::FromInt(0) ==
*static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
byte_offset = Add<HConstant>(static_cast<int32_t>(0));
is_zero_byte_offset = true;
} else {
CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
byte_offset = Pop();
is_zero_byte_offset = false;
DCHECK(buffer != NULL);
}
CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
HValue* byte_length = Pop();
NoObservableSideEffectsScope scope(this);
IfBuilder byte_offset_smi(this);
if (!is_zero_byte_offset) {
byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
byte_offset_smi.Then();
}
ExternalArrayType array_type =
kExternalInt8Array; // Bogus initialization.
size_t element_size = 1; // Bogus initialization.
ElementsKind external_elements_kind = // Bogus initialization.
EXTERNAL_INT8_ELEMENTS;
ElementsKind fixed_elements_kind = // Bogus initialization.
INT8_ELEMENTS;
Runtime::ArrayIdToTypeAndSize(array_id,
&array_type,
&external_elements_kind,
&fixed_elements_kind,
&element_size);
{ // byte_offset is Smi.
BuildArrayBufferViewInitialization<JSTypedArray>(
obj, buffer, byte_offset, byte_length);
HInstruction* length = AddUncasted<HDiv>(byte_length,
Add<HConstant>(static_cast<int32_t>(element_size)));
Add<HStoreNamedField>(obj,
HObjectAccess::ForJSTypedArrayLength(),
length);
HValue* elements;
if (buffer != NULL) {
elements = BuildAllocateExternalElements(
array_type, is_zero_byte_offset, buffer, byte_offset, length);
Handle<Map> obj_map = TypedArrayMap(
isolate(), array_type, external_elements_kind);
AddStoreMapConstant(obj, obj_map);
} else {
DCHECK(is_zero_byte_offset);
elements = BuildAllocateFixedTypedArray(
array_type, element_size, fixed_elements_kind,
byte_length, length);
}
Add<HStoreNamedField>(
obj, HObjectAccess::ForElementsPointer(), elements);
}
if (!is_zero_byte_offset) {
byte_offset_smi.Else();
{ // byte_offset is not Smi.
Push(obj);
CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
Push(buffer);
Push(byte_offset);
Push(byte_length);
PushArgumentsFromEnvironment(kArgsLength);
Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
}
}
byte_offset_smi.End();
}
void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
return ast_context()->ReturnInstruction(max_smi, expr->id());
}
void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
HConstant* result = New<HConstant>(static_cast<int32_t>(
FLAG_typed_array_max_size_in_heap));
return ast_context()->ReturnInstruction(result, expr->id());
}
void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
HValue* buffer = Pop();
HInstruction* result = New<HLoadNamedField>(
buffer,
static_cast<HValue*>(NULL),
HObjectAccess::ForJSArrayBufferByteLength());
return ast_context()->ReturnInstruction(result, expr->id());
}
void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
HValue* buffer = Pop();
HInstruction* result = New<HLoadNamedField>(
buffer,
static_cast<HValue*>(NULL),
HObjectAccess::ForJSArrayBufferViewByteLength());
return ast_context()->ReturnInstruction(result, expr->id());
}
void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
HValue* buffer = Pop();
HInstruction* result = New<HLoadNamedField>(
buffer,
static_cast<HValue*>(NULL),
HObjectAccess::ForJSArrayBufferViewByteOffset());
return ast_context()->ReturnInstruction(result, expr->id());
}
void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
HValue* buffer = Pop();
HInstruction* result = New<HLoadNamedField>(
buffer,
static_cast<HValue*>(NULL),
HObjectAccess::ForJSTypedArrayLength());
return ast_context()->ReturnInstruction(result, expr->id());
}
void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (expr->is_jsruntime()) {
return Bailout(kCallToAJavaScriptRuntimeFunction);
}
const Runtime::Function* function = expr->function();
DCHECK(function != NULL);
if (function->intrinsic_type == Runtime::INLINE ||
function->intrinsic_type == Runtime::INLINE_OPTIMIZED) {
DCHECK(expr->name()->length() > 0);
DCHECK(expr->name()->Get(0) == '_');
// Call to an inline function.
int lookup_index = static_cast<int>(function->function_id) -
static_cast<int>(Runtime::kFirstInlineFunction);
DCHECK(lookup_index >= 0);
DCHECK(static_cast<size_t>(lookup_index) <
arraysize(kInlineFunctionGenerators));
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
// Call the inline code generator using the pointer-to-member.
(this->*generator)(expr);
} else {
DCHECK(function->intrinsic_type == Runtime::RUNTIME);
Handle<String> name = expr->name();
int argument_count = expr->arguments()->length();
CHECK_ALIVE(VisitExpressions(expr->arguments()));
PushArgumentsFromEnvironment(argument_count);
HCallRuntime* call = New<HCallRuntime>(name, function,
argument_count);
return ast_context()->ReturnInstruction(call, expr->id());
}
}
void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::DELETE: return VisitDelete(expr);
case Token::VOID: return VisitVoid(expr);
case Token::TYPEOF: return VisitTypeof(expr);
case Token::NOT: return VisitNot(expr);
default: UNREACHABLE();
}
}
void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
Property* prop = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (prop != NULL) {
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* key = Pop();
HValue* obj = Pop();
HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
Add<HPushArguments>(obj, key, Add<HConstant>(function_strict_mode()));
// TODO(olivf) InvokeFunction produces a check for the parameter count,
// even though we are certain to pass the correct number of arguments here.
HInstruction* instr = New<HInvokeFunction>(function, 3);
return ast_context()->ReturnInstruction(instr, expr->id());
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->IsUnallocated()) {
Bailout(kDeleteWithGlobalVariable);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global variables is false. 'this' is not
// really a variable, though we implement it as one. The
// subexpression does not have side effects.
HValue* value = var->is_this()
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
Bailout(kDeleteWithNonGlobalVariable);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// Evaluate the subexpression for side effects.
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantTrue());
}
}
void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
CHECK_ALIVE(VisitForTypeOf(expr->expression()));
HValue* value = Pop();
HInstruction* instr = New<HTypeof>(value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
VisitForControl(expr->expression(),
context->if_false(),
context->if_true());
return;
}
if (ast_context()->IsEffect()) {
VisitForEffect(expr->expression());
return;
}
DCHECK(ast_context()->IsValue());
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->expression(),
materialize_false,
materialize_true));
if (materialize_false->HasPredecessor()) {
materialize_false->SetJoinId(expr->MaterializeFalseId());
set_current_block(materialize_false);
Push(graph()->GetConstantFalse());
} else {
materialize_false = NULL;
}
if (materialize_true->HasPredecessor()) {
materialize_true->SetJoinId(expr->MaterializeTrueId());
set_current_block(materialize_true);
Push(graph()->GetConstantTrue());
} else {
materialize_true = NULL;
}
HBasicBlock* join =
CreateJoin(materialize_false, materialize_true, expr->id());
set_current_block(join);
if (join != NULL) return ast_context()->ReturnValue(Pop());
}
HInstruction* HOptimizedGraphBuilder::BuildIncrement(
bool returns_original_input,
CountOperation* expr) {
// The input to the count operation is on top of the expression stack.
Representation rep = Representation::FromType(expr->type());
if (rep.IsNone() || rep.IsTagged()) {
rep = Representation::Smi();
}
if (returns_original_input) {
// We need an explicit HValue representing ToNumber(input). The
// actual HChange instruction we need is (sometimes) added in a later
// phase, so it is not available now to be used as an input to HAdd and
// as the return value.
HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
if (!rep.IsDouble()) {
number_input->SetFlag(HInstruction::kFlexibleRepresentation);
number_input->SetFlag(HInstruction::kCannotBeTagged);
}
Push(number_input);
}
// The addition has no side effects, so we do not need
// to simulate the expression stack after this instruction.
// Any later failures deopt to the load of the input or earlier.
HConstant* delta = (expr->op() == Token::INC)
? graph()->GetConstant1()
: graph()->GetConstantMinus1();
HInstruction* instr = AddUncasted<HAdd>(Top(), delta);
if (instr->IsAdd()) {
HAdd* add = HAdd::cast(instr);
add->set_observed_input_representation(1, rep);
add->set_observed_input_representation(2, Representation::Smi());
}
instr->SetFlag(HInstruction::kCannotBeTagged);
instr->ClearAllSideEffects();
return instr;
}
void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* key,
HValue* value) {
EffectContext for_effect(this);
Push(object);
if (key != NULL) Push(key);
Push(value);
BuildStore(expr, prop, ast_id, return_id);
}
void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
Expression* target = expr->expression();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
if (proxy == NULL && prop == NULL) {
return Bailout(kInvalidLhsInCountOperation);
}
// Match the full code generator stack by simulating an extra stack
// element for postfix operations in a non-effect context. The return
// value is ToNumber(input).
bool returns_original_input =
expr->is_postfix() && !ast_context()->IsEffect();
HValue* input = NULL; // ToNumber(original_input).
HValue* after = NULL; // The result after incrementing or decrementing.
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST_LEGACY) {
return Bailout(kUnsupportedCountOperationWithConst);
}
// Argument of the count operation is a variable, not a property.
DCHECK(prop == NULL);
CHECK_ALIVE(VisitForValue(target));
after = BuildIncrement(returns_original_input, expr);
input = returns_original_input ? Top() : Pop();
Push(after);
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
after,
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
BindIfLive(var, after);
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (current_info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct
// way to detect that the variable is a parameter so we use a
// linear search of the parameter list.
int count = current_info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == current_info()->scope()->parameter(i)) {
return Bailout(kAssignmentToParameterInArgumentsObject);
}
}
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
mode, after);
if (instr->HasObservableSideEffects()) {
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout(kLookupVariableInCountOperation);
}
Drop(returns_original_input ? 2 : 1);
return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
}
// Argument of the count operation is a property.
DCHECK(prop != NULL);
if (returns_original_input) Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
HValue* key = NULL;
if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
CHECK_ALIVE(VisitForValue(prop->key()));
key = Top();
}
CHECK_ALIVE(PushLoad(prop, object, key));
after = BuildIncrement(returns_original_input, expr);
if (returns_original_input) {
input = Pop();
// Drop object and key to push it again in the effect context below.
Drop(key == NULL ? 1 : 2);
environment()->SetExpressionStackAt(0, input);
CHECK_ALIVE(BuildStoreForEffect(
expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
return ast_context()->ReturnValue(Pop());
}
environment()->SetExpressionStackAt(0, after);
return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
}
HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
HValue* string,
HValue* index) {
if (string->IsConstant() && index->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
HConstant* c_index = HConstant::cast(index);
if (c_string->HasStringValue() && c_index->HasNumberValue()) {
int32_t i = c_index->NumberValueAsInteger32();
Handle<String> s = c_string->StringValue();
if (i < 0 || i >= s->length()) {
return New<HConstant>(base::OS::nan_value());
}
return New<HConstant>(s->Get(i));
}
}
string = BuildCheckString(string);
index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
return New<HStringCharCodeAt>(string, index);
}
// Checks if the given shift amounts have following forms:
// (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
HValue* const32_minus_sa) {
if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
const HConstant* c1 = HConstant::cast(sa);
const HConstant* c2 = HConstant::cast(const32_minus_sa);
return c1->HasInteger32Value() && c2->HasInteger32Value() &&
(c1->Integer32Value() + c2->Integer32Value() == 32);
}
if (!const32_minus_sa->IsSub()) return false;
HSub* sub = HSub::cast(const32_minus_sa);
return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
}
// Checks if the left and the right are shift instructions with the oposite
// directions that can be replaced by one rotate right instruction or not.
// Returns the operand and the shift amount for the rotate instruction in the
// former case.
bool HGraphBuilder::MatchRotateRight(HValue* left,
HValue* right,
HValue** operand,
HValue** shift_amount) {
HShl* shl;
HShr* shr;
if (left->IsShl() && right->IsShr()) {
shl = HShl::cast(left);
shr = HShr::cast(right);
} else if (left->IsShr() && right->IsShl()) {
shl = HShl::cast(right);
shr = HShr::cast(left);
} else {
return false;
}
if (shl->left() != shr->left()) return false;
if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
!ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
return false;
}
*operand= shr->left();
*shift_amount = shr->right();
return true;
}
bool CanBeZero(HValue* right) {
if (right->IsConstant()) {
HConstant* right_const = HConstant::cast(right);
if (right_const->HasInteger32Value() &&
(right_const->Integer32Value() & 0x1f) != 0) {
return false;
}
}
return true;
}
HValue* HGraphBuilder::EnforceNumberType(HValue* number,
Type* expected) {
if (expected->Is(Type::SignedSmall())) {
return AddUncasted<HForceRepresentation>(number, Representation::Smi());
}
if (expected->Is(Type::Signed32())) {
return AddUncasted<HForceRepresentation>(number,
Representation::Integer32());
}
return number;
}
HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
if (value->IsConstant()) {
HConstant* constant = HConstant::cast(value);
Maybe<HConstant*> number = constant->CopyToTruncatedNumber(zone());
if (number.has_value) {
*expected = Type::Number(zone());
return AddInstruction(number.value);
}
}
// We put temporary values on the stack, which don't correspond to anything
// in baseline code. Since nothing is observable we avoid recording those
// pushes with a NoObservableSideEffectsScope.
NoObservableSideEffectsScope no_effects(this);
Type* expected_type = *expected;
// Separate the number type from the rest.
Type* expected_obj =
Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
Type* expected_number =
Type::Intersect(expected_type, Type::Number(zone()), zone());
// We expect to get a number.
// (We need to check first, since Type::None->Is(Type::Any()) == true.
if (expected_obj->Is(Type::None())) {
DCHECK(!expected_number->Is(Type::None(zone())));
return value;
}
if (expected_obj->Is(Type::Undefined(zone()))) {
// This is already done by HChange.
*expected = Type::Union(expected_number, Type::Number(zone()), zone());
return value;
}
return value;
}
HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
BinaryOperation* expr,
HValue* left,
HValue* right,
PushBeforeSimulateBehavior push_sim_result) {
Type* left_type = expr->left()->bounds().lower;
Type* right_type = expr->right()->bounds().lower;
Type* result_type = expr->bounds().lower;
Maybe<int> fixed_right_arg = expr->fixed_right_arg();
Handle<AllocationSite> allocation_site = expr->allocation_site();
HAllocationMode allocation_mode;
if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
allocation_mode = HAllocationMode(allocation_site);
}
HValue* result = HGraphBuilder::BuildBinaryOperation(
expr->op(), left, right, left_type, right_type, result_type,
fixed_right_arg, allocation_mode);
// Add a simulate after instructions with observable side effects, and
// after phis, which are the result of BuildBinaryOperation when we
// inlined some complex subgraph.
if (result->HasObservableSideEffects() || result->IsPhi()) {
if (push_sim_result == PUSH_BEFORE_SIMULATE) {
Push(result);
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
Drop(1);
} else {
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
}
}
return result;
}
HValue* HGraphBuilder::BuildBinaryOperation(
Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* result_type,
Maybe<int> fixed_right_arg,
HAllocationMode allocation_mode) {
Representation left_rep = Representation::FromType(left_type);
Representation right_rep = Representation::FromType(right_type);
bool maybe_string_add = op == Token::ADD &&
(left_type->Maybe(Type::String()) ||
left_type->Maybe(Type::Receiver()) ||
right_type->Maybe(Type::String()) ||
right_type->Maybe(Type::Receiver()));
if (left_type->Is(Type::None())) {
Add<HDeoptimize>("Insufficient type feedback for LHS of binary operation",
Deoptimizer::SOFT);
// TODO(rossberg): we should be able to get rid of non-continuous
// defaults.
left_type = Type::Any(zone());
} else {
if (!maybe_string_add) left = TruncateToNumber(left, &left_type);
left_rep = Representation::FromType(left_type);
}
if (right_type->Is(Type::None())) {
Add<HDeoptimize>("Insufficient type feedback for RHS of binary operation",
Deoptimizer::SOFT);
right_type = Type::Any(zone());
} else {
if (!maybe_string_add) right = TruncateToNumber(right, &right_type);
right_rep = Representation::FromType(right_type);
}
// Special case for string addition here.
if (op == Token::ADD &&
(left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
// Validate type feedback for left argument.
if (left_type->Is(Type::String())) {
left = BuildCheckString(left);
}
// Validate type feedback for right argument.
if (right_type->Is(Type::String())) {
right = BuildCheckString(right);
}
// Convert left argument as necessary.
if (left_type->Is(Type::Number())) {
DCHECK(right_type->Is(Type::String()));
left = BuildNumberToString(left, left_type);
} else if (!left_type->Is(Type::String())) {
DCHECK(right_type->Is(Type::String()));
HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
Add<HPushArguments>(left, right);
return AddUncasted<HInvokeFunction>(function, 2);
}
// Convert right argument as necessary.
if (right_type->Is(Type::Number())) {
DCHECK(left_type->Is(Type::String()));
right = BuildNumberToString(right, right_type);
} else if (!right_type->Is(Type::String())) {
DCHECK(left_type->Is(Type::String()));
HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
Add<HPushArguments>(left, right);
return AddUncasted<HInvokeFunction>(function, 2);
}
// Fast path for empty constant strings.
if (left->IsConstant() &&
HConstant::cast(left)->HasStringValue() &&
HConstant::cast(left)->StringValue()->length() == 0) {
return right;
}
if (right->IsConstant() &&
HConstant::cast(right)->HasStringValue() &&
HConstant::cast(right)->StringValue()->length() == 0) {
return left;
}
// Register the dependent code with the allocation site.
if (!allocation_mode.feedback_site().is_null()) {
DCHECK(!graph()->info()->IsStub());
Handle<AllocationSite> site(allocation_mode.feedback_site());
AllocationSite::AddDependentCompilationInfo(
site, AllocationSite::TENURING, top_info());
}
// Inline the string addition into the stub when creating allocation
// mementos to gather allocation site feedback, or if we can statically
// infer that we're going to create a cons string.
if ((graph()->info()->IsStub() &&
allocation_mode.CreateAllocationMementos()) ||
(left->IsConstant() &&
HConstant::cast(left)->HasStringValue() &&
HConstant::cast(left)->StringValue()->length() + 1 >=
ConsString::kMinLength) ||
(right->IsConstant() &&
HConstant::cast(right)->HasStringValue() &&
HConstant::cast(right)->StringValue()->length() + 1 >=
ConsString::kMinLength)) {
return BuildStringAdd(left, right, allocation_mode);
}
// Fallback to using the string add stub.
return AddUncasted<HStringAdd>(
left, right, allocation_mode.GetPretenureMode(),
STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
}
if (graph()->info()->IsStub()) {
left = EnforceNumberType(left, left_type);
right = EnforceNumberType(right, right_type);
}
Representation result_rep = Representation::FromType(result_type);
bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
(right_rep.IsTagged() && !right_rep.IsSmi());
HInstruction* instr = NULL;
// Only the stub is allowed to call into the runtime, since otherwise we would
// inline several instructions (including the two pushes) for every tagged
// operation in optimized code, which is more expensive, than a stub call.
if (graph()->info()->IsStub() && is_non_primitive) {
HValue* function = AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op));
Add<HPushArguments>(left, right);
instr = AddUncasted<HInvokeFunction>(function, 2);
} else {
switch (op) {
case Token::ADD:
instr = AddUncasted<HAdd>(left, right);
break;
case Token::SUB:
instr = AddUncasted<HSub>(left, right);
break;
case Token::MUL:
instr = AddUncasted<HMul>(left, right);
break;
case Token::MOD: {
if (fixed_right_arg.has_value &&
!right->EqualsInteger32Constant(fixed_right_arg.value)) {
HConstant* fixed_right = Add<HConstant>(
static_cast<int>(fixed_right_arg.value));
IfBuilder if_same(this);
if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
if_same.Then();
if_same.ElseDeopt("Unexpected RHS of binary operation");
right = fixed_right;
}
instr = AddUncasted<HMod>(left, right);
break;
}
case Token::DIV:
instr = AddUncasted<HDiv>(left, right);
break;
case Token::BIT_XOR:
case Token::BIT_AND:
instr = AddUncasted<HBitwise>(op, left, right);
break;
case Token::BIT_OR: {
HValue* operand, *shift_amount;
if (left_type->Is(Type::Signed32()) &&
right_type->Is(Type::Signed32()) &&
MatchRotateRight(left, right, &operand, &shift_amount)) {
instr = AddUncasted<HRor>(operand, shift_amount);
} else {
instr = AddUncasted<HBitwise>(op, left, right);
}
break;
}
case Token::SAR:
instr = AddUncasted<HSar>(left, right);
break;
case Token::SHR:
instr = AddUncasted<HShr>(left, right);
if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
CanBeZero(right)) {
graph()->RecordUint32Instruction(instr);
}
break;
case Token::SHL:
instr = AddUncasted<HShl>(left, right);
break;
default:
UNREACHABLE();
}
}
if (instr->IsBinaryOperation()) {
HBinaryOperation* binop = HBinaryOperation::cast(instr);
binop->set_observed_input_representation(1, left_rep);
binop->set_observed_input_representation(2, right_rep);
binop->initialize_output_representation(result_rep);
if (graph()->info()->IsStub()) {
// Stub should not call into stub.
instr->SetFlag(HValue::kCannotBeTagged);
// And should truncate on HForceRepresentation already.
if (left->IsForceRepresentation()) {
left->CopyFlag(HValue::kTruncatingToSmi, instr);
left->CopyFlag(HValue::kTruncatingToInt32, instr);
}
if (right->IsForceRepresentation()) {
right->CopyFlag(HValue::kTruncatingToSmi, instr);
right->CopyFlag(HValue::kTruncatingToInt32, instr);
}
}
}
return instr;
}
// Check for the form (%_ClassOf(foo) === 'BarClass').
static bool IsClassOfTest(CompareOperation* expr) {
if (expr->op() != Token::EQ_STRICT) return false;
CallRuntime* call = expr->left()->AsCallRuntime();
if (call == NULL) return false;
Literal* literal = expr->right()->AsLiteral();
if (literal == NULL) return false;
if (!literal->value()->IsString()) return false;
if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
return false;
}
DCHECK(call->arguments()->length() == 1);
return true;
}
void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::COMMA:
return VisitComma(expr);
case Token::OR:
case Token::AND:
return VisitLogicalExpression(expr);
default:
return VisitArithmeticExpression(expr);
}
}
void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->left()));
// Visit the right subexpression in the same AST context as the entire
// expression.
Visit(expr->right());
}
void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
bool is_logical_and = expr->op() == Token::AND;
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
// Translate left subexpression.
HBasicBlock* eval_right = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(),
eval_right,
context->if_false()));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(),
context->if_true(),
eval_right));
}
// Translate right subexpression by visiting it in the same AST
// context as the entire expression.
if (eval_right->HasPredecessor()) {
eval_right->SetJoinId(expr->RightId());
set_current_block(eval_right);
Visit(expr->right());
}
} else if (ast_context()->IsValue()) {
CHECK_ALIVE(VisitForValue(expr->left()));
DCHECK(current_block() != NULL);
HValue* left_value = Top();
// Short-circuit left values that always evaluate to the same boolean value.
if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
// l (evals true) && r -> r
// l (evals true) || r -> l
// l (evals false) && r -> l
// l (evals false) || r -> r
if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
Drop(1);
CHECK_ALIVE(VisitForValue(expr->right()));
}
return ast_context()->ReturnValue(Pop());
}
// We need an extra block to maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* eval_right = graph()->CreateBasicBlock();
ToBooleanStub::Types expected(expr->left()->to_boolean_types());
HBranch* test = is_logical_and
? New<HBranch>(left_value, expected, eval_right, empty_block)
: New<HBranch>(left_value, expected, empty_block, eval_right);
FinishCurrentBlock(test);
set_current_block(eval_right);
Drop(1); // Value of the left subexpression.
CHECK_BAILOUT(VisitForValue(expr->right()));
HBasicBlock* join_block =
CreateJoin(empty_block, current_block(), expr->id());
set_current_block(join_block);
return ast_context()->ReturnValue(Pop());
} else {
DCHECK(ast_context()->IsEffect());
// In an effect context, we don't need the value of the left subexpression,
// only its control flow and side effects. We need an extra block to
// maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* right_block = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
}
// TODO(kmillikin): Find a way to fix this. It's ugly that there are
// actually two empty blocks (one here and one inserted by
// TestContext::BuildBranch, and that they both have an HSimulate though the
// second one is not a merge node, and that we really have no good AST ID to
// put on that first HSimulate.
if (empty_block->HasPredecessor()) {
empty_block->SetJoinId(expr->id());
} else {
empty_block = NULL;
}
if (right_block->HasPredecessor()) {
right_block->SetJoinId(expr->RightId());
set_current_block(right_block);
CHECK_BAILOUT(VisitForEffect(expr->right()));
right_block = current_block();
} else {
right_block = NULL;
}
HBasicBlock* join_block =
CreateJoin(empty_block, right_block, expr->id());
set_current_block(join_block);
// We did not materialize any value in the predecessor environments,
// so there is no need to handle it here.
}
}
void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
SetSourcePosition(expr->position());
HValue* right = Pop();
HValue* left = Pop();
HValue* result =
BuildBinaryOperation(expr, left, right,
ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
: PUSH_BEFORE_SIMULATE);
if (FLAG_hydrogen_track_positions && result->IsBinaryOperation()) {
HBinaryOperation::cast(result)->SetOperandPositions(
zone(),
ScriptPositionToSourcePosition(expr->left()->position()),
ScriptPositionToSourcePosition(expr->right()->position()));
}
return ast_context()->ReturnValue(result);
}
void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
Expression* sub_expr,
Handle<String> check) {
CHECK_ALIVE(VisitForTypeOf(sub_expr));
SetSourcePosition(expr->position());
HValue* value = Pop();
HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
return ast_context()->ReturnControl(instr, expr->id());
}
static bool IsLiteralCompareBool(Isolate* isolate,
HValue* left,
Token::Value op,
HValue* right) {
return op == Token::EQ_STRICT &&
((left->IsConstant() &&
HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
(right->IsConstant() &&
HConstant::cast(right)->handle(isolate)->IsBoolean()));
}
void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
// Check for a few fast cases. The AST visiting behavior must be in sync
// with the full codegen: We don't push both left and right values onto
// the expression stack when one side is a special-case literal.
Expression* sub_expr = NULL;
Handle<String> check;
if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
return HandleLiteralCompareTypeof(expr, sub_expr, check);
}
if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
}
if (expr->IsLiteralCompareNull(&sub_expr)) {
return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
}
if (IsClassOfTest(expr)) {
CallRuntime* call = expr->left()->AsCallRuntime();
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
Literal* literal = expr->right()->AsLiteral();
Handle<String> rhs = Handle<String>::cast(literal->value());
HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
return ast_context()->ReturnControl(instr, expr->id());
}
Type* left_type = expr->left()->bounds().lower;
Type* right_type = expr->right()->bounds().lower;
Type* combined_type = expr->combined_type();
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
if (FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
HValue* right = Pop();
HValue* left = Pop();
Token::Value op = expr->op();
if (IsLiteralCompareBool(isolate(), left, op, right)) {
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
return ast_context()->ReturnControl(result, expr->id());
}
if (op == Token::INSTANCEOF) {
// Check to see if the rhs of the instanceof is a global function not
// residing in new space. If it is we assume that the function will stay the
// same.
Handle<JSFunction> target = Handle<JSFunction>::null();
VariableProxy* proxy = expr->right()->AsVariableProxy();
bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
if (global_function &&
current_info()->has_global_object() &&
!current_info()->global_object()->IsAccessCheckNeeded()) {
Handle<String> name = proxy->name();
Handle<GlobalObject> global(current_info()->global_object());
LookupIterator it(global, name, LookupIterator::OWN_PROPERTY);
Handle<Object> value = JSObject::GetDataProperty(&it);
if (it.IsFound() && value->IsJSFunction()) {
Handle<JSFunction> candidate = Handle<JSFunction>::cast(value);
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!isolate()->heap()->InNewSpace(*candidate)) {
target = candidate;
}
}
}
// If the target is not null we have found a known global function that is
// assumed to stay the same for this instanceof.
if (target.is_null()) {
HInstanceOf* result = New<HInstanceOf>(left, right);
return ast_context()->ReturnInstruction(result, expr->id());
} else {
Add<HCheckValue>(right, target);
HInstanceOfKnownGlobal* result =
New<HInstanceOfKnownGlobal>(left, target);
return ast_context()->ReturnInstruction(result, expr->id());
}
// Code below assumes that we don't fall through.
UNREACHABLE();
} else if (op == Token::IN) {
HValue* function = AddLoadJSBuiltin(Builtins::IN);
Add<HPushArguments>(left, right);
// TODO(olivf) InvokeFunction produces a check for the parameter count,
// even though we are certain to pass the correct number of arguments here.
HInstruction* result = New<HInvokeFunction>(function, 2);
return ast_context()->ReturnInstruction(result, expr->id());
}
PushBeforeSimulateBehavior push_behavior =
ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
: PUSH_BEFORE_SIMULATE;
HControlInstruction* compare = BuildCompareInstruction(
op, left, right, left_type, right_type, combined_type,
ScriptPositionToSourcePosition(expr->left()->position()),
ScriptPositionToSourcePosition(expr->right()->position()),
push_behavior, expr->id());
if (compare == NULL) return; // Bailed out.
return ast_context()->ReturnControl(compare, expr->id());
}
HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* combined_type,
HSourcePosition left_position,
HSourcePosition right_position,
PushBeforeSimulateBehavior push_sim_result,
BailoutId bailout_id) {
// Cases handled below depend on collected type feedback. They should
// soft deoptimize when there is no type feedback.
if (combined_type->Is(Type::None())) {
Add<HDeoptimize>("Insufficient type feedback for combined type "
"of binary operation",
Deoptimizer::SOFT);
combined_type = left_type = right_type = Type::Any(zone());
}
Representation left_rep = Representation::FromType(left_type);
Representation right_rep = Representation::FromType(right_type);
Representation combined_rep = Representation::FromType(combined_type);
if (combined_type->Is(Type::Receiver())) {
if (Token::IsEqualityOp(op)) {
// HCompareObjectEqAndBranch can only deal with object, so
// exclude numbers.
if ((left->IsConstant() &&
HConstant::cast(left)->HasNumberValue()) ||
(right->IsConstant() &&
HConstant::cast(right)->HasNumberValue())) {
Add<HDeoptimize>("Type mismatch between feedback and constant",
Deoptimizer::SOFT);
// The caller expects a branch instruction, so make it happy.
return New<HBranch>(graph()->GetConstantTrue());
}
// Can we get away with map check and not instance type check?
HValue* operand_to_check =
left->block()->block_id() < right->block()->block_id() ? left : right;
if (combined_type->IsClass()) {
Handle<Map> map = combined_type->AsClass()->Map();
AddCheckMap(operand_to_check, map);
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
if (FLAG_hydrogen_track_positions) {
result->set_operand_position(zone(), 0, left_position);
result->set_operand_position(zone(), 1, right_position);
}
return result;
} else {
BuildCheckHeapObject(operand_to_check);
Add<HCheckInstanceType>(operand_to_check,
HCheckInstanceType::IS_SPEC_OBJECT);
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
return result;
}
} else {
Bailout(kUnsupportedNonPrimitiveCompare);
return NULL;
}
} else if (combined_type->Is(Type::InternalizedString()) &&
Token::IsEqualityOp(op)) {
// If we have a constant argument, it should be consistent with the type
// feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
if ((left->IsConstant() &&
!HConstant::cast(left)->HasInternalizedStringValue()) ||
(right->IsConstant() &&
!HConstant::cast(right)->HasInternalizedStringValue())) {
Add<HDeoptimize>("Type mismatch between feedback and constant",
Deoptimizer::SOFT);
// The caller expects a branch instruction, so make it happy.
return New<HBranch>(graph()->GetConstantTrue());
}
BuildCheckHeapObject(left);
Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
BuildCheckHeapObject(right);
Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
return result;
} else if (combined_type->Is(Type::String())) {
BuildCheckHeapObject(left);
Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
BuildCheckHeapObject(right);
Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
HStringCompareAndBranch* result =
New<HStringCompareAndBranch>(left, right, op);
return result;
} else {
if (combined_rep.IsTagged() || combined_rep.IsNone()) {
HCompareGeneric* result = Add<HCompareGeneric>(left, right, op);
result->set_observed_input_representation(1, left_rep);
result->set_observed_input_representation(2, right_rep);
if (result->HasObservableSideEffects()) {
if (push_sim_result == PUSH_BEFORE_SIMULATE) {
Push(result);
AddSimulate(bailout_id, REMOVABLE_SIMULATE);
Drop(1);
} else {
AddSimulate(bailout_id, REMOVABLE_SIMULATE);
}
}
// TODO(jkummerow): Can we make this more efficient?
HBranch* branch = New<HBranch>(result);
return branch;
} else {
HCompareNumericAndBranch* result =
New<HCompareNumericAndBranch>(left, right, op);
result->set_observed_input_representation(left_rep, right_rep);
if (FLAG_hydrogen_track_positions) {
result->SetOperandPositions(zone(), left_position, right_position);
}
return result;
}
}
}
void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
DCHECK(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
CHECK_ALIVE(VisitForValue(sub_expr));
HValue* value = Pop();
if (expr->op() == Token::EQ_STRICT) {
HConstant* nil_constant = nil == kNullValue
? graph()->GetConstantNull()
: graph()->GetConstantUndefined();
HCompareObjectEqAndBranch* instr =
New<HCompareObjectEqAndBranch>(value, nil_constant);
return ast_context()->ReturnControl(instr, expr->id());
} else {
DCHECK_EQ(Token::EQ, expr->op());
Type* type = expr->combined_type()->Is(Type::None())
? Type::Any(zone()) : expr->combined_type();
HIfContinuation continuation;
BuildCompareNil(value, type, &continuation);
return ast_context()->ReturnContinuation(&continuation, expr->id());
}
}
HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
// If we share optimized code between different closures, the
// this-function is not a constant, except inside an inlined body.
if (function_state()->outer() != NULL) {
return New<HConstant>(
function_state()->compilation_info()->closure());
} else {
return New<HThisFunction>();
}
}
HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
Handle<JSObject> boilerplate_object,
AllocationSiteUsageContext* site_context) {
NoObservableSideEffectsScope no_effects(this);
InstanceType instance_type = boilerplate_object->map()->instance_type();
DCHECK(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
HType type = instance_type == JS_ARRAY_TYPE
? HType::JSArray() : HType::JSObject();
HValue* object_size_constant = Add<HConstant>(
boilerplate_object->map()->instance_size());
PretenureFlag pretenure_flag = NOT_TENURED;
if (FLAG_allocation_site_pretenuring) {
pretenure_flag = site_context->current()->GetPretenureMode();
Handle<AllocationSite> site(site_context->current());
AllocationSite::AddDependentCompilationInfo(
site, AllocationSite::TENURING, top_info());
}
HInstruction* object = Add<HAllocate>(object_size_constant, type,
pretenure_flag, instance_type, site_context->current());
// If allocation folding reaches Page::kMaxRegularHeapObjectSize the
// elements array may not get folded into the object. Hence, we set the
// elements pointer to empty fixed array and let store elimination remove
// this store in the folding case.
HConstant* empty_fixed_array = Add<HConstant>(
isolate()->factory()->empty_fixed_array());
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
empty_fixed_array);
BuildEmitObjectHeader(boilerplate_object, object);
Handle<FixedArrayBase> elements(boilerplate_object->elements());
int elements_size = (elements->length() > 0 &&
elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
elements->Size() : 0;
if (pretenure_flag == TENURED &&
elements->map() == isolate()->heap()->fixed_cow_array_map() &&
isolate()->heap()->InNewSpace(*elements)) {
// If we would like to pretenure a fixed cow array, we must ensure that the
// array is already in old space, otherwise we'll create too many old-to-
// new-space pointers (overflowing the store buffer).
elements = Handle<FixedArrayBase>(
isolate()->factory()->CopyAndTenureFixedCOWArray(
Handle<FixedArray>::cast(elements)));
boilerplate_object->set_elements(*elements);
}
HInstruction* object_elements = NULL;
if (elements_size > 0) {
HValue* object_elements_size = Add<HConstant>(elements_size);
InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
object_elements = Add<HAllocate>(
object_elements_size, HType::HeapObject(),
pretenure_flag, instance_type, site_context->current());
}
BuildInitElementsInObjectHeader(boilerplate_object, object, object_elements);
// Copy object elements if non-COW.
if (object_elements != NULL) {
BuildEmitElements(boilerplate_object, elements, object_elements,
site_context);
}
// Copy in-object properties.
if (boilerplate_object->map()->NumberOfFields() != 0) {
BuildEmitInObjectProperties(boilerplate_object, object, site_context,
pretenure_flag);
}
return object;
}
void HOptimizedGraphBuilder::BuildEmitObjectHeader(
Handle<JSObject> boilerplate_object,
HInstruction* object) {
DCHECK(boilerplate_object->properties()->length() == 0);
Handle<Map> boilerplate_object_map(boilerplate_object->map());
AddStoreMapConstant(object, boilerplate_object_map);
Handle<Object> properties_field =
Handle<Object>(boilerplate_object->properties(), isolate());
DCHECK(*properties_field == isolate()->heap()->empty_fixed_array());
HInstruction* properties = Add<HConstant>(properties_field);
HObjectAccess access = HObjectAccess::ForPropertiesPointer();
Add<HStoreNamedField>(object, access, properties);
if (boilerplate_object->IsJSArray()) {
Handle<JSArray> boilerplate_array =
Handle<JSArray>::cast(boilerplate_object);
Handle<Object> length_field =
Handle<Object>(boilerplate_array->length(), isolate());
HInstruction* length = Add<HConstant>(length_field);
DCHECK(boilerplate_array->length()->IsSmi());
Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
boilerplate_array->GetElementsKind()), length);
}
}
void HOptimizedGraphBuilder::BuildInitElementsInObjectHeader(
Handle<JSObject> boilerplate_object,
HInstruction* object,
HInstruction* object_elements) {
DCHECK(boilerplate_object->properties()->length() == 0);
if (object_elements == NULL) {
Handle<Object> elements_field =
Handle<Object>(boilerplate_object->elements(), isolate());
object_elements = Add<HConstant>(elements_field);
}
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
object_elements);
}
void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
Handle<JSObject> boilerplate_object,
HInstruction* object,
AllocationSiteUsageContext* site_context,
PretenureFlag pretenure_flag) {
Handle<Map> boilerplate_map(boilerplate_object->map());
Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
int limit = boilerplate_map->NumberOfOwnDescriptors();
int copied_fields = 0;
for (int i = 0; i < limit; i++) {
PropertyDetails details = descriptors->GetDetails(i);
if (details.type() != FIELD) continue;
copied_fields++;
int index = descriptors->GetFieldIndex(i);
int property_offset = boilerplate_object->GetInObjectPropertyOffset(index);
Handle<Name> name(descriptors->GetKey(i));
Handle<Object> value =
Handle<Object>(boilerplate_object->InObjectPropertyAt(index),
isolate());
// The access for the store depends on the type of the boilerplate.
HObjectAccess access = boilerplate_object->IsJSArray() ?
HObjectAccess::ForJSArrayOffset(property_offset) :
HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
Handle<AllocationSite> current_site = site_context->EnterNewScope();
HInstruction* result =
BuildFastLiteral(value_object, site_context);
site_context->ExitScope(current_site, value_object);
Add<HStoreNamedField>(object, access, result);
} else {
Representation representation = details.representation();
HInstruction* value_instruction;
if (representation.IsDouble()) {
// Allocate a HeapNumber box and store the value into it.
HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
// This heap number alloc does not have a corresponding
// AllocationSite. That is okay because
// 1) it's a child object of another object with a valid allocation site
// 2) we can just use the mode of the parent object for pretenuring
HInstruction* double_box =
Add<HAllocate>(heap_number_constant, HType::HeapObject(),
pretenure_flag, MUTABLE_HEAP_NUMBER_TYPE);
AddStoreMapConstant(double_box,
isolate()->factory()->mutable_heap_number_map());
// Unwrap the mutable heap number from the boilerplate.
HValue* double_value =
Add<HConstant>(Handle<HeapNumber>::cast(value)->value());
Add<HStoreNamedField>(
double_box, HObjectAccess::ForHeapNumberValue(), double_value);
value_instruction = double_box;
} else if (representation.IsSmi()) {
value_instruction = value->IsUninitialized()
? graph()->GetConstant0()
: Add<HConstant>(value);
// Ensure that value is stored as smi.
access = access.WithRepresentation(representation);
} else {
value_instruction = Add<HConstant>(value);
}
Add<HStoreNamedField>(object, access, value_instruction);
}
}
int inobject_properties = boilerplate_object->map()->inobject_properties();
HInstruction* value_instruction =
Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
for (int i = copied_fields; i < inobject_properties; i++) {
DCHECK(boilerplate_object->IsJSObject());
int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
HObjectAccess access =
HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
Add<HStoreNamedField>(object, access, value_instruction);
}
}
void HOptimizedGraphBuilder::BuildEmitElements(
Handle<JSObject> boilerplate_object,
Handle<FixedArrayBase> elements,
HValue* object_elements,
AllocationSiteUsageContext* site_context) {
ElementsKind kind = boilerplate_object->map()->elements_kind();
int elements_length = elements->length();
HValue* object_elements_length = Add<HConstant>(elements_length);
BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
// Copy elements backing store content.
if (elements->IsFixedDoubleArray()) {
BuildEmitFixedDoubleArray(elements, kind, object_elements);
} else if (elements->IsFixedArray()) {
BuildEmitFixedArray(elements, kind, object_elements,
site_context);
} else {
UNREACHABLE();
}
}
void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements) {
HInstruction* boilerplate_elements = Add<HConstant>(elements);
int elements_length = elements->length();
for (int i = 0; i < elements_length; i++) {
HValue* key_constant = Add<HConstant>(i);
HInstruction* value_instruction =
Add<HLoadKeyed>(boilerplate_elements, key_constant,
static_cast<HValue*>(NULL), kind,
ALLOW_RETURN_HOLE);
HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
value_instruction, kind);
store->SetFlag(HValue::kAllowUndefinedAsNaN);
}
}
void HOptimizedGraphBuilder::BuildEmitFixedArray(
Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements,
AllocationSiteUsageContext* site_context) {
HInstruction* boilerplate_elements = Add<HConstant>(elements);
int elements_length = elements->length();
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
for (int i = 0; i < elements_length; i++) {
Handle<Object> value(fast_elements->get(i), isolate());
HValue* key_constant = Add<HConstant>(i);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
Handle<AllocationSite> current_site = site_context->EnterNewScope();
HInstruction* result =
BuildFastLiteral(value_object, site_context);
site_context->ExitScope(current_site, value_object);
Add<HStoreKeyed>(object_elements, key_constant, result, kind);
} else {
HInstruction* value_instruction =
Add<HLoadKeyed>(boilerplate_elements, key_constant,
static_cast<HValue*>(NULL), kind,
ALLOW_RETURN_HOLE);
Add<HStoreKeyed>(object_elements, key_constant, value_instruction, kind);
}
}
}
void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
DCHECK(!HasStackOverflow());
DCHECK(current_block() != NULL);
DCHECK(current_block()->HasPredecessor());
HInstruction* instr = BuildThisFunction();
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitSuperReference(SuperReference* expr) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
DCHECK(globals_.is_empty());
AstVisitor::VisitDeclarations(declarations);
if (!globals_.is_empty()) {
Handle<FixedArray> array =
isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
int flags = DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
DeclareGlobalsStrictMode::encode(current_info()->strict_mode());
Add<HDeclareGlobals>(array, flags);
globals_.Rewind(0);
}
}
void HOptimizedGraphBuilder::VisitVariableDeclaration(
VariableDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_.Add(variable->name(), zone());
globals_.Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(), zone());
return;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
environment()->Bind(variable, value);
}
break;
case Variable::CONTEXT:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
HValue* context = environment()->context();
HStoreContextSlot* store = Add<HStoreContextSlot>(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
if (store->HasObservableSideEffects()) {
Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
}
}
break;
case Variable::LOOKUP:
return Bailout(kUnsupportedLookupSlotInDeclaration);
}
}
void HOptimizedGraphBuilder::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_.Add(variable->name(), zone());
Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(
declaration->fun(), current_info()->script(), top_info());
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_.Add(function, zone());
return;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
BindIfLive(variable, value);
break;
}
case Variable::CONTEXT: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
HValue* context = environment()->context();
HStoreContextSlot* store = Add<HStoreContextSlot>(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
if (store->HasObservableSideEffects()) {
Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout(kUnsupportedLookupSlotInDeclaration);
}
}
void HOptimizedGraphBuilder::VisitModuleDeclaration(
ModuleDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitImportDeclaration(
ImportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitExportDeclaration(
ExportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
Get rid of static module allocation, do it in code. Modules now have their own local scope, represented by their own context. Module instance objects have an accessor for every export that forwards access to the respective slot from the module's context. (Exports that are modules themselves, however, are simple data properties.) All modules have a _hosting_ scope/context, which (currently) is the (innermost) enclosing global scope. To deal with recursion, nested modules are hosted by the same scope as global ones. For every (global or nested) module literal, the hosting context has an internal slot that points directly to the respective module context. This enables quick access to (statically resolved) module members by 2-dimensional access through the hosting context. For example, module A { let x; module B { let y; } } module C { let z; } allocates contexts as follows: [header| .A | .B | .C | A | C ] (global) | | | | | +-- [header| z ] (module) | | | +------- [header| y ] (module) | +------------ [header| x | B ] (module) Here, .A, .B, .C are the internal slots pointing to the hosted module contexts, whereas A, B, C hold the actual instance objects (note that every module context also points to the respective instance object through its extension slot in the header). To deal with arbitrary recursion and aliases between modules, they are created and initialized in several stages. Each stage applies to all modules in the hosting global scope, including nested ones. 1. Allocate: for each module _literal_, allocate the module contexts and respective instance object and wire them up. This happens in the PushModuleContext runtime function, as generated by AllocateModules (invoked by VisitDeclarations in the hosting scope). 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), assign the respective instance object to respective local variables. This happens in VisitModuleDeclaration, and uses the instance objects created in the previous stage. For each module _literal_, this phase also constructs a module descriptor for the next stage. This happens in VisitModuleLiteral. 3. Populate: invoke the DeclareModules runtime function to populate each _instance_ object with accessors for it exports. This is generated by DeclareModules (invoked by VisitDeclarations in the hosting scope again), and uses the descriptors generated in the previous stage. 4. Initialize: execute the module bodies (and other code) in sequence. This happens by the separate statements generated for module bodies. To reenter the module scopes properly, the parser inserted ModuleStatements. R=mstarzinger@chromium.org,svenpanne@chromium.org BUG= Review URL: https://codereview.chromium.org/11093074 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13033 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-11-22 10:25:22 +00:00
UNREACHABLE();
}
// Generators for inline runtime functions.
// Support for types.
void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
New<HHasInstanceTypeAndBranch>(value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasCachedArrayIndexAndBranch* result =
New<HHasCachedArrayIndexAndBranch>(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionIsNonNegativeSmi);
}
void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf);
}
// Support for construct call checks.
void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
DCHECK(call->arguments()->length() == 0);
if (function_state()->outer() != NULL) {
// We are generating graph for inlined function.
HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
call->id());
}
}
// Support for arguments.length and arguments[?].
void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
DCHECK(call->arguments()->length() == 0);
HInstruction* result = NULL;
if (function_state()->outer() == NULL) {
HInstruction* elements = Add<HArgumentsElements>(false);
result = New<HArgumentsLength>(elements);
} else {
// Number of arguments without receiver.
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
result = New<HConstant>(argument_count);
}
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* index = Pop();
HInstruction* result = NULL;
if (function_state()->outer() == NULL) {
HInstruction* elements = Add<HArgumentsElements>(false);
HInstruction* length = Add<HArgumentsLength>(elements);
HInstruction* checked_index = Add<HBoundsCheck>(index, length);
result = New<HAccessArgumentsAt>(elements, length, checked_index);
} else {
EnsureArgumentsArePushedForAccess();
// Number of arguments without receiver.
HInstruction* elements = function_state()->arguments_elements();
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
HInstruction* length = Add<HConstant>(argument_count);
HInstruction* checked_key = Add<HBoundsCheck>(index, length);
result = New<HAccessArgumentsAt>(elements, length, checked_key);
}
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for accessing the class and value fields of an object.
void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
// The special form detected by IsClassOfTest is detected before we get here
// and does not cause a bailout.
return Bailout(kInlinedRuntimeFunctionClassOf);
}
void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* object = Pop();
IfBuilder if_objectisvalue(this);
HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
object, JS_VALUE_TYPE);
if_objectisvalue.Then();
{
// Return the actual value.
Push(Add<HLoadNamedField>(
object, objectisvalue,
HObjectAccess::ForObservableJSObjectOffset(
JSValue::kValueOffset)));
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_objectisvalue.Else();
{
// If the object is not a value return the object.
Push(object);
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_objectisvalue.End();
return ast_context()->ReturnValue(Pop());
}
void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
DCHECK(call->arguments()->length() == 2);
DCHECK_NE(NULL, call->arguments()->at(1)->AsLiteral());
Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* date = Pop();
HDateField* result = New<HDateField>(date, index);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
CallRuntime* call) {
DCHECK(call->arguments()->length() == 3);
// We need to follow the evaluation order of full codegen.
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* string = Pop();
HValue* value = Pop();
HValue* index = Pop();
Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
index, value);
Add<HSimulate>(call->id(), FIXED_SIMULATE);
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
CallRuntime* call) {
DCHECK(call->arguments()->length() == 3);
// We need to follow the evaluation order of full codegen.
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* string = Pop();
HValue* value = Pop();
HValue* index = Pop();
Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
index, value);
Add<HSimulate>(call->id(), FIXED_SIMULATE);
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
DCHECK(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* value = Pop();
HValue* object = Pop();
// Check if object is a JSValue.
IfBuilder if_objectisvalue(this);
if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
if_objectisvalue.Then();
{
// Create in-object property store to kValueOffset.
Add<HStoreNamedField>(object,
HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
value);
if (!ast_context()->IsEffect()) {
Push(value);
}
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_objectisvalue.Else();
{
// Nothing to do in this case.
if (!ast_context()->IsEffect()) {
Push(value);
}
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_objectisvalue.End();
if (!ast_context()->IsEffect()) {
Drop(1);
}
return ast_context()->ReturnValue(value);
}
// Fast support for charCodeAt(n).
void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
DCHECK(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HInstruction* result = BuildStringCharCodeAt(string, index);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* char_code = Pop();
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
DCHECK(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HInstruction* char_code = BuildStringCharCodeAt(string, index);
AddInstruction(char_code);
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for object equality testing.
void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
DCHECK(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
return ast_context()->ReturnControl(result, call->id());
}
// Fast support for StringAdd.
void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
DCHECK_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* result = NewUncasted<HStringAdd>(left, right);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for SubString.
void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
DCHECK_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitExpressions(call->arguments()));
PushArgumentsFromEnvironment(call->arguments()->length());
HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for StringCompare.
void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
DCHECK_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitExpressions(call->arguments()));
PushArgumentsFromEnvironment(call->arguments()->length());
HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for direct calls from JavaScript to native RegExp code.
void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
DCHECK_EQ(4, call->arguments()->length());
CHECK_ALIVE(VisitExpressions(call->arguments()));
PushArgumentsFromEnvironment(call->arguments()->length());
HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
DCHECK_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
DCHECK_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
DCHECK_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* lo = Pop();
HValue* hi = Pop();
HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
return ast_context()->ReturnInstruction(result, call->id());
}
// Construct a RegExp exec result with two in-object properties.
void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
DCHECK_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
HValue* input = Pop();
HValue* index = Pop();
HValue* length = Pop();
HValue* result = BuildRegExpConstructResult(length, index, input);
return ast_context()->ReturnValue(result);
}
// Support for fast native caches.
void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionGetFromCache);
}
// Fast support for number to string.
void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
DCHECK_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* number = Pop();
HValue* result = BuildNumberToString(number, Type::Any(zone()));
return ast_context()->ReturnValue(result);
}
// Fast call for custom callbacks.
void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
// 1 ~ The function to call is not itself an argument to the call.
int arg_count = call->arguments()->length() - 1;
DCHECK(arg_count >= 1); // There's always at least a receiver.
CHECK_ALIVE(VisitExpressions(call->arguments()));
// The function is the last argument
HValue* function = Pop();
// Push the arguments to the stack
PushArgumentsFromEnvironment(arg_count);
IfBuilder if_is_jsfunction(this);
if_is_jsfunction.If<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
if_is_jsfunction.Then();
{
HInstruction* invoke_result =
Add<HInvokeFunction>(function, arg_count);
if (!ast_context()->IsEffect()) {
Push(invoke_result);
}
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_is_jsfunction.Else();
{
HInstruction* call_result =
Add<HCallFunction>(function, arg_count);
if (!ast_context()->IsEffect()) {
Push(call_result);
}
Add<HSimulate>(call->id(), FIXED_SIMULATE);
}
if_is_jsfunction.End();
if (ast_context()->IsEffect()) {
// EffectContext::ReturnValue ignores the value, so we can just pass
// 'undefined' (as we do not have the call result anymore).
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
} else {
return ast_context()->ReturnValue(Pop());
}
}
// Fast call to math functions.
void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
DCHECK_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* result = NewUncasted<HPower>(left, right);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathSqrtRT(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
DCHECK(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionFastAsciiArrayJoin);
}
// Support for generators.
void HOptimizedGraphBuilder::GenerateGeneratorNext(CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionGeneratorNext);
}
void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
return Bailout(kInlinedRuntimeFunctionGeneratorThrow);
}
void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
CallRuntime* call) {
Add<HDebugBreak>();
return ast_context()->ReturnValue(graph()->GetConstant0());
}
void HOptimizedGraphBuilder::GenerateDebugIsActive(CallRuntime* call) {
DCHECK(call->arguments()->length() == 0);
HValue* ref =
Add<HConstant>(ExternalReference::debug_is_active_address(isolate()));
HValue* value = Add<HLoadNamedField>(
ref, static_cast<HValue*>(NULL), HObjectAccess::ForExternalUInteger8());
return ast_context()->ReturnValue(value);
}
#undef CHECK_BAILOUT
#undef CHECK_ALIVE
HEnvironment::HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure,
Zone* zone)
: closure_(closure),
values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(1),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Scope* declaration_scope = scope->DeclarationScope();
Initialize(declaration_scope->num_parameters() + 1,
declaration_scope->num_stack_slots(), 0);
}
HEnvironment::HEnvironment(Zone* zone, int parameter_count)
: values_(0, zone),
frame_type_(STUB),
parameter_count_(parameter_count),
specials_count_(1),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Initialize(parameter_count, 0, 0);
}
HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
: values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(0),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(other->ast_id()),
zone_(zone) {
Initialize(other);
}
HEnvironment::HEnvironment(HEnvironment* outer,
Handle<JSFunction> closure,
FrameType frame_type,
int arguments,
Zone* zone)
: closure_(closure),
values_(arguments, zone),
frame_type_(frame_type),
parameter_count_(arguments),
specials_count_(0),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
}
void HEnvironment::Initialize(int parameter_count,
int local_count,
int stack_height) {
parameter_count_ = parameter_count;
local_count_ = local_count;
// Avoid reallocating the temporaries' backing store on the first Push.
int total = parameter_count + specials_count_ + local_count + stack_height;
values_.Initialize(total + 4, zone());
for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
}
void HEnvironment::Initialize(const HEnvironment* other) {
closure_ = other->closure();
values_.AddAll(other->values_, zone());
assigned_variables_.Union(other->assigned_variables_, zone());
frame_type_ = other->frame_type_;
parameter_count_ = other->parameter_count_;
local_count_ = other->local_count_;
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
entry_ = other->entry_;
pop_count_ = other->pop_count_;
push_count_ = other->push_count_;
specials_count_ = other->specials_count_;
ast_id_ = other->ast_id_;
}
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
DCHECK(!block->IsLoopHeader());
DCHECK(values_.length() == other->values_.length());
int length = values_.length();
for (int i = 0; i < length; ++i) {
HValue* value = values_[i];
if (value != NULL && value->IsPhi() && value->block() == block) {
// There is already a phi for the i'th value.
HPhi* phi = HPhi::cast(value);
// Assert index is correct and that we haven't missed an incoming edge.
DCHECK(phi->merged_index() == i || !phi->HasMergedIndex());
DCHECK(phi->OperandCount() == block->predecessors()->length());
phi->AddInput(other->values_[i]);
} else if (values_[i] != other->values_[i]) {
// There is a fresh value on the incoming edge, a phi is needed.
DCHECK(values_[i] != NULL && other->values_[i] != NULL);
HPhi* phi = block->AddNewPhi(i);
HValue* old_value = values_[i];
for (int j = 0; j < block->predecessors()->length(); j++) {
phi->AddInput(old_value);
}
phi->AddInput(other->values_[i]);
this->values_[i] = phi;
}
}
}
void HEnvironment::Bind(int index, HValue* value) {
DCHECK(value != NULL);
assigned_variables_.Add(index, zone());
values_[index] = value;
}
bool HEnvironment::HasExpressionAt(int index) const {
return index >= parameter_count_ + specials_count_ + local_count_;
}
bool HEnvironment::ExpressionStackIsEmpty() const {
DCHECK(length() >= first_expression_index());
return length() == first_expression_index();
}
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
int count = index_from_top + 1;
int index = values_.length() - count;
DCHECK(HasExpressionAt(index));
// The push count must include at least the element in question or else
// the new value will not be included in this environment's history.
if (push_count_ < count) {
// This is the same effect as popping then re-pushing 'count' elements.
pop_count_ += (count - push_count_);
push_count_ = count;
}
values_[index] = value;
}
void HEnvironment::Drop(int count) {
for (int i = 0; i < count; ++i) {
Pop();
}
}
HEnvironment* HEnvironment::Copy() const {
return new(zone()) HEnvironment(this, zone());
}
HEnvironment* HEnvironment::CopyWithoutHistory() const {
HEnvironment* result = Copy();
result->ClearHistory();
return result;
}
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
HEnvironment* new_env = Copy();
for (int i = 0; i < values_.length(); ++i) {
HPhi* phi = loop_header->AddNewPhi(i);
phi->AddInput(values_[i]);
new_env->values_[i] = phi;
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
Handle<JSFunction> target,
FrameType frame_type,
int arguments) const {
HEnvironment* new_env =
new(zone()) HEnvironment(outer, target, frame_type,
arguments + 1, zone());
for (int i = 0; i <= arguments; ++i) { // Include receiver.
new_env->Push(ExpressionStackAt(arguments - i));
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CopyForInlining(
Handle<JSFunction> target,
int arguments,
FunctionLiteral* function,
HConstant* undefined,
InliningKind inlining_kind) const {
DCHECK(frame_type() == JS_FUNCTION);
// Outer environment is a copy of this one without the arguments.
int arity = function->scope()->num_parameters();
HEnvironment* outer = Copy();
outer->Drop(arguments + 1); // Including receiver.
outer->ClearHistory();
if (inlining_kind == CONSTRUCT_CALL_RETURN) {
// Create artificial constructor stub environment. The receiver should
// actually be the constructor function, but we pass the newly allocated
// object instead, DoComputeConstructStubFrame() relies on that.
outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
} else if (inlining_kind == GETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for restoring the
// correct context.
outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
} else if (inlining_kind == SETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for temporarily saving
// the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
}
if (arity != arguments) {
// Create artificial arguments adaptation environment.
outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
}
HEnvironment* inner =
new(zone()) HEnvironment(outer, function->scope(), target, zone());
// Get the argument values from the original environment.
for (int i = 0; i <= arity; ++i) { // Include receiver.
HValue* push = (i <= arguments) ?
ExpressionStackAt(arguments - i) : undefined;
inner->SetValueAt(i, push);
}
inner->SetValueAt(arity + 1, context());
for (int i = arity + 2; i < inner->length(); ++i) {
inner->SetValueAt(i, undefined);
}
inner->set_ast_id(BailoutId::FunctionEntry());
return inner;
}
OStream& operator<<(OStream& os, const HEnvironment& env) {
for (int i = 0; i < env.length(); i++) {
if (i == 0) os << "parameters\n";
if (i == env.parameter_count()) os << "specials\n";
if (i == env.parameter_count() + env.specials_count()) os << "locals\n";
if (i == env.parameter_count() + env.specials_count() + env.local_count()) {
os << "expressions\n";
}
HValue* val = env.values()->at(i);
os << i << ": ";
if (val != NULL) {
os << val;
} else {
os << "NULL";
}
os << "\n";
}
return os << "\n";
}
void HTracer::TraceCompilation(CompilationInfo* info) {
Tag tag(this, "compilation");
if (info->IsOptimizing()) {
Handle<String> name = info->function()->debug_name();
PrintStringProperty("name", name->ToCString().get());
PrintIndent();
trace_.Add("method \"%s:%d\"\n",
name->ToCString().get(),
info->optimization_id());
} else {
CodeStub::Major major_key = info->code_stub()->MajorKey();
PrintStringProperty("name", CodeStub::MajorName(major_key, false));
PrintStringProperty("method", "stub");
}
PrintLongProperty("date",
static_cast<int64_t>(base::OS::TimeCurrentMillis()));
}
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
DCHECK(!chunk->isolate()->concurrent_recompilation_enabled());
AllowHandleDereference allow_deref;
AllowDeferredHandleDereference allow_deferred_deref;
Trace(name, chunk->graph(), chunk);
}
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
DCHECK(!graph->isolate()->concurrent_recompilation_enabled());
AllowHandleDereference allow_deref;
AllowDeferredHandleDereference allow_deferred_deref;
Trace(name, graph, NULL);
}
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
Tag tag(this, "cfg");
PrintStringProperty("name", name);
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* current = blocks->at(i);
Tag block_tag(this, "block");
PrintBlockProperty("name", current->block_id());
PrintIntProperty("from_bci", -1);
PrintIntProperty("to_bci", -1);
if (!current->predecessors()->is_empty()) {
PrintIndent();
trace_.Add("predecessors");
for (int j = 0; j < current->predecessors()->length(); ++j) {
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
}
trace_.Add("\n");
} else {
PrintEmptyProperty("predecessors");
}
if (current->end()->SuccessorCount() == 0) {
PrintEmptyProperty("successors");
} else {
PrintIndent();
trace_.Add("successors");
for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
trace_.Add(" \"B%d\"", it.Current()->block_id());
}
trace_.Add("\n");
}
PrintEmptyProperty("xhandlers");
{
PrintIndent();
trace_.Add("flags");
if (current->IsLoopSuccessorDominator()) {
trace_.Add(" \"dom-loop-succ\"");
}
if (current->IsUnreachable()) {
trace_.Add(" \"dead\"");
}
if (current->is_osr_entry()) {
trace_.Add(" \"osr\"");
}
trace_.Add("\n");
}
if (current->dominator() != NULL) {
PrintBlockProperty("dominator", current->dominator()->block_id());
}
PrintIntProperty("loop_depth", current->LoopNestingDepth());
if (chunk != NULL) {
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
PrintIntProperty(
"first_lir_id",
LifetimePosition::FromInstructionIndex(first_index).Value());
PrintIntProperty(
"last_lir_id",
LifetimePosition::FromInstructionIndex(last_index).Value());
}
{
Tag states_tag(this, "states");
Tag locals_tag(this, "locals");
int total = current->phis()->length();
PrintIntProperty("size", current->phis()->length());
PrintStringProperty("method", "None");
for (int j = 0; j < total; ++j) {
HPhi* phi = current->phis()->at(j);
PrintIndent();
OStringStream os;
os << phi->merged_index() << " " << NameOf(phi) << " " << *phi << "\n";
trace_.Add(os.c_str());
}
}
{
Tag HIR_tag(this, "HIR");
for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
int uses = instruction->UseCount();
PrintIndent();
OStringStream os;
os << "0 " << uses << " " << NameOf(instruction) << " " << *instruction;
if (FLAG_hydrogen_track_positions &&
instruction->has_position() &&
instruction->position().raw() != 0) {
const HSourcePosition pos = instruction->position();
os << " pos:";
if (pos.inlining_id() != 0) os << pos.inlining_id() << "_";
os << pos.position();
}
os << " <|@\n";
trace_.Add(os.c_str());
}
}
if (chunk != NULL) {
Tag LIR_tag(this, "LIR");
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
if (first_index != -1 && last_index != -1) {
const ZoneList<LInstruction*>* instructions = chunk->instructions();
for (int i = first_index; i <= last_index; ++i) {
LInstruction* linstr = instructions->at(i);
if (linstr != NULL) {
PrintIndent();
trace_.Add("%d ",
LifetimePosition::FromInstructionIndex(i).Value());
linstr->PrintTo(&trace_);
OStringStream os;
os << " [hir:" << NameOf(linstr->hydrogen_value()) << "] <|@\n";
trace_.Add(os.c_str());
}
}
}
}
}
}
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
Tag tag(this, "intervals");
PrintStringProperty("name", name);
const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
for (int i = 0; i < fixed_d->length(); ++i) {
TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
}
const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
for (int i = 0; i < fixed->length(); ++i) {
TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
}
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
for (int i = 0; i < live_ranges->length(); ++i) {
TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
}
}
void HTracer::TraceLiveRange(LiveRange* range, const char* type,
Zone* zone) {
if (range != NULL && !range->IsEmpty()) {
PrintIndent();
trace_.Add("%d %s", range->id(), type);
if (range->HasRegisterAssigned()) {
LOperand* op = range->CreateAssignedOperand(zone);
int assigned_reg = op->index();
if (op->IsDoubleRegister()) {
trace_.Add(" \"%s\"",
DoubleRegister::AllocationIndexToString(assigned_reg));
} else {
DCHECK(op->IsRegister());
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
}
} else if (range->IsSpilled()) {
int index = -1;
if (range->TopLevel()->GetSpillRange()->id() != -1) {
index = range->TopLevel()->GetSpillRange()->id();
} else {
index = range->TopLevel()->GetSpillOperand()->index();
}
if (range->TopLevel()->Kind() == DOUBLE_REGISTERS) {
trace_.Add(" \"double_stack:%d\"", index);
} else {
DCHECK(range->TopLevel()->Kind() == GENERAL_REGISTERS);
trace_.Add(" \"stack:%d\"", index);
}
}
int parent_index = -1;
if (range->IsChild()) {
parent_index = range->parent()->id();
} else {
parent_index = range->id();
}
LOperand* op = range->FirstHint();
int hint_index = -1;
if (op != NULL && op->IsUnallocated()) {
hint_index = LUnallocated::cast(op)->virtual_register();
}
trace_.Add(" %d %d", parent_index, hint_index);
UseInterval* cur_interval = range->first_interval();
while (cur_interval != NULL && range->Covers(cur_interval->start())) {
trace_.Add(" [%d, %d[",
cur_interval->start().Value(),
cur_interval->end().Value());
cur_interval = cur_interval->next();
}
UsePosition* current_pos = range->first_pos();
while (current_pos != NULL) {
if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
trace_.Add(" %d M", current_pos->pos().Value());
}
current_pos = current_pos->next();
}
trace_.Add(" \"\"\n");
}
}
void HTracer::FlushToFile() {
AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
false);
trace_.Reset();
}
void HStatistics::Initialize(CompilationInfo* info) {
if (info->shared_info().is_null()) return;
source_size_ += info->shared_info()->SourceSize();
}
void HStatistics::Print(const char* stats_name) {
PrintF(
"\n"
"----------------------------------------"
"----------------------------------------\n"
"--- %s timing results:\n"
"----------------------------------------"
"----------------------------------------\n",
stats_name);
base::TimeDelta sum;
for (int i = 0; i < times_.length(); ++i) {
sum += times_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%33s", names_[i]);
double ms = times_[i].InMillisecondsF();
double percent = times_[i].PercentOf(sum);
PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
unsigned size = sizes_[i];
double size_percent = static_cast<double>(size) * 100 / total_size_;
PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
}
PrintF(
"----------------------------------------"
"----------------------------------------\n");
base::TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
PrintF("%33s %8.3f ms / %4.1f %% \n", "Create graph",
create_graph_.InMillisecondsF(), create_graph_.PercentOf(total));
PrintF("%33s %8.3f ms / %4.1f %% \n", "Optimize graph",
optimize_graph_.InMillisecondsF(), optimize_graph_.PercentOf(total));
PrintF("%33s %8.3f ms / %4.1f %% \n", "Generate and install code",
generate_code_.InMillisecondsF(), generate_code_.PercentOf(total));
PrintF(
"----------------------------------------"
"----------------------------------------\n");
PrintF("%33s %8.3f ms %9u bytes\n", "Total",
total.InMillisecondsF(), total_size_);
PrintF("%33s (%.1f times slower than full code gen)\n", "",
total.TimesOf(full_code_gen_));
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
double normalized_time = source_size_in_kb > 0
? total.InMillisecondsF() / source_size_in_kb
: 0;
double normalized_size_in_kb = source_size_in_kb > 0
? total_size_ / 1024 / source_size_in_kb
: 0;
PrintF("%33s %8.3f ms %7.3f kB allocated\n",
"Average per kB source", normalized_time, normalized_size_in_kb);
}
void HStatistics::SaveTiming(const char* name, base::TimeDelta time,
unsigned size) {
total_size_ += size;
for (int i = 0; i < names_.length(); ++i) {
if (strcmp(names_[i], name) == 0) {
times_[i] += time;
sizes_[i] += size;
return;
}
}
names_.Add(name);
times_.Add(time);
sizes_.Add(size);
}
HPhase::~HPhase() {
if (ShouldProduceTraceOutput()) {
isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
}
#ifdef DEBUG
graph_->Verify(false); // No full verify.
#endif
}
} } // namespace v8::internal