v8/src/ia32/builtins-ia32.cc

1608 lines
56 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "codegen.h"
#include "deoptimizer.h"
#include "full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- eax : number of arguments excluding receiver
// -- edi : called function (only guaranteed when
// extra_args requires it)
// -- esi : context
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[4 * argc] : first argument (argc == eax)
// -- esp[4 * (argc +1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
Register scratch = ebx;
__ pop(scratch); // Save return address.
__ push(edi);
__ push(scratch); // Restore return address.
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects eax to contain the number of arguments
// including the receiver and the extra arguments.
__ add(Operand(eax), Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -----------------------------------
Label non_function_call;
// Check that function is not a smi.
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_function_call);
// Jump to the function-specific construct stub.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
__ jmp(Operand(ebx));
// edi: called object
// eax: number of arguments
__ bind(&non_function_call);
// Set expected number of arguments to zero (not changing eax).
__ Set(ebx, Immediate(0));
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
Handle<Code> arguments_adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
// Enter a construct frame.
__ EnterConstructFrame();
// Store a smi-tagged arguments count on the stack.
__ SmiTag(eax);
__ push(eax);
// Push the function to invoke on the stack.
__ push(edi);
// Try to allocate the object without transitioning into C code. If any of the
// preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// edi: constructor
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &rt_call);
// edi: constructor
// eax: initial map (if proven valid below)
__ CmpObjectType(eax, MAP_TYPE, ebx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// edi: constructor
// eax: initial map
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ dec_b(FieldOperand(ecx, SharedFunctionInfo::kConstructionCountOffset));
__ j(not_zero, &allocate);
__ push(eax);
__ push(edi);
__ push(edi); // constructor
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(edi);
__ pop(eax);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// edi: constructor
// eax: initial map
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
__ shl(edi, kPointerSizeLog2);
__ AllocateInNewSpace(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
Factory* factory = masm->isolate()->factory();
__ mov(ecx, factory->empty_fixed_array());
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
// Set extra fields in the newly allocated object.
// eax: initial map
// ebx: JSObject
// edi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ mov(edx, factory->one_pointer_filler_map());
} else {
__ mov(edx, factory->undefined_value());
}
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(ecx, 0), edx);
__ add(Operand(ecx), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(ecx, Operand(edi));
__ j(less, &loop);
}
// Add the object tag to make the JSObject real, so that we can continue and
// jump into the continuation code at any time from now on. Any failures
// need to undo the allocation, so that the heap is in a consistent state
// and verifiable.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ or_(Operand(ebx), Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed.
// Allocate and initialize a FixedArray if it is.
// eax: initial map
// ebx: JSObject
// edi: start of next object
// Calculate the total number of properties described by the map.
__ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
__ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
__ add(edx, Operand(ecx));
// Calculate unused properties past the end of the in-object properties.
__ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
__ sub(edx, Operand(ecx));
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// ebx: JSObject
// edi: start of next object (will be start of FixedArray)
// edx: number of elements in properties array
__ AllocateInNewSpace(FixedArray::kHeaderSize,
times_pointer_size,
edx,
edi,
ecx,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// ebx: JSObject
// edi: FixedArray
// edx: number of elements
// ecx: start of next object
__ mov(eax, factory->fixed_array_map());
__ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map
__ SmiTag(edx);
__ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length
// Initialize the fields to undefined.
// ebx: JSObject
// edi: FixedArray
// ecx: start of next object
{ Label loop, entry;
__ mov(edx, factory->undefined_value());
__ lea(eax, Operand(edi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(eax, 0), edx);
__ add(Operand(eax), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(eax, Operand(ecx));
__ j(below, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// ebx: JSObject
// edi: FixedArray
__ or_(Operand(edi), Immediate(kHeapObjectTag)); // add the heap tag
__ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
// Continue with JSObject being successfully allocated
// ebx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// ebx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(ebx);
}
// Allocate the new receiver object using the runtime call.
__ bind(&rt_call);
// Must restore edi (constructor) before calling runtime.
__ mov(edi, Operand(esp, 0));
// edi: function (constructor)
__ push(edi);
__ CallRuntime(Runtime::kNewObject, 1);
__ mov(ebx, Operand(eax)); // store result in ebx
// New object allocated.
// ebx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(edi);
// Retrieve smi-tagged arguments count from the stack.
__ mov(eax, Operand(esp, 0));
__ SmiUntag(eax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(ebx);
__ push(ebx);
// Setup pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, Operand(eax));
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION);
}
// Restore context from the frame.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ mov(ebx, Operand(esp, kPointerSize)); // get arguments count
__ LeaveConstructFrame();
// Remove caller arguments from the stack and return.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Clear the context before we push it when entering the JS frame.
__ Set(esi, Immediate(0));
// Enter an internal frame.
__ EnterInternalFrame();
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Get the function from the frame and setup the context.
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(ecx);
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Set(ecx, Immediate(0));
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
__ push(Operand(edx, 0)); // dereference handle
__ inc(Operand(ecx));
__ bind(&entry);
__ cmp(ecx, Operand(eax));
__ j(not_equal, &loop);
// Get the function from the stack and call it.
__ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); // +1 ~ receiver
// Invoke the code.
if (is_construct) {
__ call(masm->isolate()->builtins()->JSConstructCall(),
RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame();
__ ret(1 * kPointerSize); // remove receiver
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(edi);
__ push(edi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyCompile, 1);
__ pop(edi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(ecx, FieldOperand(eax, Code::kHeaderSize));
__ jmp(Operand(ecx));
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(edi);
__ push(edi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Restore function and tear down temporary frame.
__ pop(edi);
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(ecx, FieldOperand(eax, Code::kHeaderSize));
__ jmp(Operand(ecx));
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
__ EnterInternalFrame();
// Pass the function and deoptimization type to the runtime system.
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Get the full codegen state from the stack and untag it.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ SmiUntag(ecx);
// Switch on the state.
Label not_no_registers, not_tos_eax;
__ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ mov(eax, Operand(esp, 2 * kPointerSize));
__ cmp(ecx, FullCodeGenerator::TOS_REG);
__ j(not_equal, &not_tos_eax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, eax.
__ bind(&not_tos_eax);
__ Abort("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// TODO(kasperl): Do we need to save/restore the XMM registers too?
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
__ pushad();
__ EnterInternalFrame();
__ CallRuntime(Runtime::kNotifyOSR, 0);
__ LeaveInternalFrame();
__ popad();
__ ret(0);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
Factory* factory = masm->isolate()->factory();
// 1. Make sure we have at least one argument.
{ Label done;
__ test(eax, Operand(eax));
__ j(not_zero, &done);
__ pop(ebx);
__ push(Immediate(factory->undefined_value()));
__ push(ebx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label non_function;
// 1 ~ return address.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, &non_function);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_function);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Do not transform the receiver for natives (shared already in ebx).
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kES5NativeByteOffset),
1 << SharedFunctionInfo::kES5NativeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Compute the receiver in non-strict mode.
__ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument.
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &convert_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_receiver);
// We don't use IsObjectJSObjectType here because we jump on success.
__ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
__ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
__ j(below_equal, &shift_arguments);
__ bind(&convert_to_object);
__ EnterInternalFrame(); // In order to preserve argument count.
__ SmiTag(eax);
__ push(eax);
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, eax);
__ pop(eax);
__ SmiUntag(eax);
__ LeaveInternalFrame();
// Restore the function to edi.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalIndex));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
__ mov(ebx, FieldOperand(ebx, kGlobalIndex));
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ mov(Operand(esp, eax, times_4, 0), ebx);
__ jmp(&shift_arguments);
}
// 3b. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ bind(&non_function);
__ mov(Operand(esp, eax, times_4, 0), edi);
// Clear edi to indicate a non-function being called.
__ Set(edi, Immediate(0));
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ mov(ecx, eax);
__ bind(&loop);
__ mov(ebx, Operand(esp, ecx, times_4, 0));
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
__ dec(ecx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(ebx); // Discard copy of return address.
__ dec(eax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
{ Label function;
__ test(edi, Operand(edi));
__ j(not_zero, &function);
__ Set(ebx, Immediate(0));
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ SmiUntag(ebx);
__ cmp(eax, Operand(ebx));
__ j(not_equal,
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
ParameterCount expected(0);
__ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
__ EnterInternalFrame();
__ push(Operand(ebp, 4 * kPointerSize)); // push this
__ push(Operand(ebp, 2 * kPointerSize)); // push arguments
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying need to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(edi, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ mov(ecx, Operand(esp));
__ sub(ecx, Operand(edi));
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, Operand(eax));
__ shl(edx, kPointerSizeLog2 - kSmiTagSize);
// Check if the arguments will overflow the stack.
__ cmp(ecx, Operand(edx));
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ push(Operand(ebp, 4 * kPointerSize)); // push this
__ push(eax);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(eax); // limit
__ push(Immediate(0)); // index
// Change context eagerly to get the right global object if
// necessary.
__ mov(edi, Operand(ebp, 4 * kPointerSize));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ mov(ebx, Operand(ebp, 3 * kPointerSize));
// Do not transform the receiver for strict mode functions.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &push_receiver);
Factory* factory = masm->isolate()->factory();
// Do not transform the receiver for natives (shared already in ecx).
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kES5NativeByteOffset),
1 << SharedFunctionInfo::kES5NativeBitWithinByte);
__ j(not_equal, &push_receiver);
// Compute the receiver in non-strict mode.
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &call_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no
// reason for converting it.
// We don't use IsObjectJSObjectType here because we jump on success.
__ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
__ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
__ j(below_equal, &push_receiver);
// Convert the receiver to an object.
__ bind(&call_to_object);
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, Operand(eax));
__ jmp(&push_receiver);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalOffset));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
__ mov(ebx, FieldOperand(ebx, kGlobalOffset));
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(ebx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ mov(eax, Operand(ebp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebp, 2 * kPointerSize)); // load arguments
// Use inline caching to speed up access to arguments.
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
__ call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ push(eax);
// Update the index on the stack and in register eax.
__ mov(eax, Operand(ebp, kIndexOffset));
__ add(Operand(eax), Immediate(1 << kSmiTagSize));
__ mov(Operand(ebp, kIndexOffset), eax);
__ bind(&entry);
__ cmp(eax, Operand(ebp, kLimitOffset));
__ j(not_equal, &loop);
// Invoke the function.
ParameterCount actual(eax);
__ SmiUntag(eax);
__ mov(edi, Operand(ebp, 4 * kPointerSize));
__ InvokeFunction(edi, actual, CALL_FUNCTION);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
}
// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
// Load the initial map from the array function.
__ mov(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
Factory* factory = masm->isolate()->factory();
__ mov(FieldOperand(result, JSArray::kPropertiesOffset),
factory->empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));
// If no storage is requested for the elements array just set the empty
// fixed array.
if (initial_capacity == 0) {
__ mov(FieldOperand(result, JSArray::kElementsOffset),
factory->empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array
// scratch2: start of next object
__ mov(FieldOperand(scratch1, FixedArray::kMapOffset),
factory->fixed_array_map());
__ mov(FieldOperand(scratch1, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(initial_capacity)));
// Fill the FixedArray with the hole value. Inline the code if short.
// Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
static const int kLoopUnfoldLimit = 4;
ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
if (initial_capacity <= kLoopUnfoldLimit) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
__ mov(scratch3, factory->the_hole_value());
for (int i = 0; i < initial_capacity; i++) {
__ mov(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(scratch1, 0), factory->the_hole_value());
__ add(Operand(scratch1), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(scratch1, Operand(scratch2));
__ j(below, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi, cannot be 0.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
ASSERT(scratch.is(edi)); // rep stos destination
ASSERT(!fill_with_hole || array_size.is(ecx)); // rep stos count
ASSERT(!fill_with_hole || !result.is(eax)); // result is never eax
// Load the initial map from the array function.
__ mov(elements_array,
FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a FixedArray with the
// requested elements.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
times_half_pointer_size, // array_size is a smi.
array_size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
Factory* factory = masm->isolate()->factory();
__ mov(elements_array, factory->empty_fixed_array());
__ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ mov(FieldOperand(elements_array, FixedArray::kMapOffset),
factory->fixed_array_map());
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array: elements array
if (fill_with_hole) {
__ SmiUntag(array_size);
__ lea(edi, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ mov(eax, factory->the_hole_value());
__ cld();
// Do not use rep stos when filling less than kRepStosThreshold
// words.
const int kRepStosThreshold = 16;
Label loop, entry, done;
__ cmp(ecx, kRepStosThreshold);
__ j(below, &loop); // Note: ecx > 0.
__ rep_stos();
__ jmp(&done);
__ bind(&loop);
__ stos();
__ bind(&entry);
__ cmp(edi, Operand(elements_array_end));
__ j(below, &loop);
__ bind(&done);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// edi: constructor (built-in Array function)
// eax: argc
// esp[0]: return address
// esp[4]: last argument
// This function is used for both construct and normal calls of Array. Whether
// it is a construct call or not is indicated by the construct_call parameter.
// The only difference between handling a construct call and a normal call is
// that for a construct call the constructor function in edi needs to be
// preserved for entering the generic code. In both cases argc in eax needs to
// be preserved.
static void ArrayNativeCode(MacroAssembler* masm,
bool construct_call,
Label* call_generic_code) {
Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call,
empty_array, not_empty_array;
// Push the constructor and argc. No need to tag argc as a smi, as there will
// be no garbage collection with this on the stack.
int push_count = 0;
if (construct_call) {
push_count++;
__ push(edi);
}
push_count++;
__ push(eax);
// Check for array construction with zero arguments.
__ test(eax, Operand(eax));
__ j(not_zero, &argc_one_or_more);
__ bind(&empty_array);
// Handle construction of an empty array.
AllocateEmptyJSArray(masm,
edi,
eax,
ebx,
ecx,
edi,
kPreallocatedArrayElements,
&prepare_generic_code_call);
__ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmp(eax, 1);
__ j(not_equal, &argc_two_or_more);
ASSERT(kSmiTag == 0);
__ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize));
__ test(ecx, Operand(ecx));
__ j(not_zero, &not_empty_array);
// The single argument passed is zero, so we jump to the code above used to
// handle the case of no arguments passed. To adapt the stack for that we move
// the return address and the pushed constructor (if pushed) one stack slot up
// thereby removing the passed argument. Argc is also on the stack - at the
// bottom - and it needs to be changed from 1 to 0 to have the call into the
// runtime system work in case a GC is required.
for (int i = push_count; i > 0; i--) {
__ mov(eax, Operand(esp, i * kPointerSize));
__ mov(Operand(esp, (i + 1) * kPointerSize), eax);
}
__ add(Operand(esp), Immediate(2 * kPointerSize)); // Drop two stack slots.
__ push(Immediate(0)); // Treat this as a call with argc of zero.
__ jmp(&empty_array);
__ bind(&not_empty_array);
__ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask));
__ j(not_zero, &prepare_generic_code_call);
// Handle construction of an empty array of a certain size. Get the size from
// the stack and bail out if size is to large to actually allocate an elements
// array.
__ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
__ j(greater_equal, &prepare_generic_code_call);
// edx: array_size (smi)
// edi: constructor
// esp[0]: argc (cannot be 0 here)
// esp[4]: constructor (only if construct_call)
// esp[8]: return address
// esp[C]: argument
AllocateJSArray(masm,
edi,
ecx,
ebx,
eax,
edx,
edi,
true,
&prepare_generic_code_call);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->array_function_native(), 1);
__ mov(eax, ebx);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
ASSERT(kSmiTag == 0);
__ SmiTag(eax); // Convet argc to a smi.
// eax: array_size (smi)
// edi: constructor
// esp[0] : argc
// esp[4]: constructor (only if construct_call)
// esp[8] : return address
// esp[C] : last argument
AllocateJSArray(masm,
edi,
eax,
ebx,
ecx,
edx,
edi,
false,
&prepare_generic_code_call);
__ IncrementCounter(counters->array_function_native(), 1);
__ mov(eax, ebx);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ push(eax);
// eax: JSArray
// ebx: argc
// edx: elements_array_end (untagged)
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
// Location of the last argument
__ lea(edi, Operand(esp, 2 * kPointerSize));
// Location of the first array element (Parameter fill_with_holes to
// AllocateJSArrayis false, so the FixedArray is returned in ecx).
__ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));
// ebx: argc
// edx: location of the first array element
// edi: location of the last argument
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
Label loop, entry;
__ mov(ecx, ebx);
__ jmp(&entry);
__ bind(&loop);
__ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
__ mov(Operand(edx, 0), eax);
__ add(Operand(edx), Immediate(kPointerSize));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return.
// ebx: argc
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
__ pop(eax);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
__ ret(0);
// Restore argc and constructor before running the generic code.
__ bind(&prepare_generic_code_call);
__ pop(eax);
if (construct_call) {
__ pop(edi);
}
__ jmp(call_generic_code);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function shoud be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as a normal function.
ArrayNativeCode(masm, false, &generic_array_code);
// Jump to the generic array code in case the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->ArrayCodeGeneric();
__ jmp(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, true, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Handle<Code> generic_construct_stub =
masm->isolate()->builtins()->JSConstructStubGeneric();
__ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1);
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
__ cmp(edi, Operand(ecx));
__ Assert(equal, "Unexpected String function");
}
// Load the first argument into eax and get rid of the rest
// (including the receiver).
Label no_arguments;
__ test(eax, Operand(eax));
__ j(zero, &no_arguments);
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
__ pop(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ push(ecx);
__ mov(eax, ebx);
// Lookup the argument in the number to string cache.
Label not_cached, argument_is_string;
NumberToStringStub::GenerateLookupNumberStringCache(
masm,
eax, // Input.
ebx, // Result.
ecx, // Scratch 1.
edx, // Scratch 2.
false, // Input is known to be smi?
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- ebx : argument converted to string
// -- edi : constructor function
// -- esp[0] : return address
// -----------------------------------
// Allocate a JSValue and put the tagged pointer into eax.
Label gc_required;
__ AllocateInNewSpace(JSValue::kSize,
eax, // Result.
ecx, // New allocation top (we ignore it).
no_reg,
&gc_required,
TAG_OBJECT);
// Set the map.
__ LoadGlobalFunctionInitialMap(edi, ecx);
if (FLAG_debug_code) {
__ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
JSValue::kSize >> kPointerSizeLog2);
__ Assert(equal, "Unexpected string wrapper instance size");
__ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
__ Assert(equal, "Unexpected unused properties of string wrapper");
}
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
// Set properties and elements.
Factory* factory = masm->isolate()->factory();
__ Set(ecx, Immediate(factory->empty_fixed_array()));
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
// Set the value.
__ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
// We're done. Return.
__ ret(0);
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
STATIC_ASSERT(kSmiTag == 0);
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &convert_argument);
Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
__ j(NegateCondition(is_string), &convert_argument);
__ mov(ebx, eax);
__ IncrementCounter(counters->string_ctor_string_value(), 1);
__ jmp(&argument_is_string);
// Invoke the conversion builtin and put the result into ebx.
__ bind(&convert_argument);
__ IncrementCounter(counters->string_ctor_conversions(), 1);
__ EnterInternalFrame();
__ push(edi); // Preserve the function.
__ push(eax);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
__ pop(edi);
__ LeaveInternalFrame();
__ mov(ebx, eax);
__ jmp(&argument_is_string);
// Load the empty string into ebx, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ Set(ebx, Immediate(factory->empty_string()));
__ pop(ecx);
__ lea(esp, Operand(esp, kPointerSize));
__ push(ecx);
__ jmp(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
__ EnterInternalFrame();
__ push(ebx);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
__ LeaveInternalFrame();
__ ret(0);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, Operand(esp));
// Store the arguments adaptor context sentinel.
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve both
// eax and ebx because these registers are used when copying the
// arguments and the receiver.
ASSERT(kSmiTagSize == 1);
__ lea(ecx, Operand(eax, eax, times_1, kSmiTag));
__ push(ecx);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- edx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
Label enough, too_few;
__ cmp(eax, Operand(ebx));
__ j(less, &too_few);
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(eax, Operand(ebp, eax, times_4, offset));
__ mov(ecx, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(ecx);
__ push(Operand(eax, 0));
__ sub(Operand(eax), Immediate(kPointerSize));
__ cmp(ecx, Operand(ebx));
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
__ mov(ecx, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(ecx);
__ push(Operand(edi, 0));
__ sub(Operand(edi), Immediate(kPointerSize));
__ cmp(ecx, Operand(eax));
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(ecx);
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
__ cmp(ecx, Operand(ebx));
__ j(less, &fill);
// Restore function pointer.
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(Operand(edx));
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(Operand(edx));
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
CpuFeatures::TryForceFeatureScope scope(SSE2);
if (!CpuFeatures::IsSupported(SSE2)) {
__ Abort("Unreachable code: Cannot optimize without SSE2 support.");
return;
}
// Get the loop depth of the stack guard check. This is recorded in
// a test(eax, depth) instruction right after the call.
Label stack_check;
__ mov(ebx, Operand(esp, 0)); // return address
if (FLAG_debug_code) {
__ cmpb(Operand(ebx, 0), Assembler::kTestAlByte);
__ Assert(equal, "test eax instruction not found after loop stack check");
}
__ movzx_b(ebx, Operand(ebx, 1)); // depth
// Get the loop nesting level at which we allow OSR from the
// unoptimized code and check if we want to do OSR yet. If not we
// should perform a stack guard check so we can get interrupts while
// waiting for on-stack replacement.
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
__ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset));
__ j(greater, &stack_check);
// Pass the function to optimize as the argument to the on-stack
// replacement runtime function.
__ EnterInternalFrame();
__ push(eax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
__ LeaveInternalFrame();
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
Label skip;
__ cmp(Operand(eax), Immediate(Smi::FromInt(-1)));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
// If we decide not to perform on-stack replacement we perform a
// stack guard check to enable interrupts.
__ bind(&stack_check);
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
StackCheckStub stub;
__ TailCallStub(&stub);
__ Abort("Unreachable code: returned from tail call.");
__ bind(&ok);
__ ret(0);
__ bind(&skip);
// Untag the AST id and push it on the stack.
__ SmiUntag(eax);
__ push(eax);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
#undef __
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32