v8/test/cctest/heap/test-spaces.cc

739 lines
25 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/base/platform/platform.h"
#include "src/heap/factory.h"
#include "src/heap/spaces-inl.h"
#include "src/objects-inl.h"
#include "src/snapshot/snapshot.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace heap {
// Temporarily sets a given allocator in an isolate.
class TestMemoryAllocatorScope {
public:
TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
: isolate_(isolate), old_allocator_(isolate->heap()->memory_allocator()) {
isolate->heap()->memory_allocator_ = allocator;
}
~TestMemoryAllocatorScope() {
isolate_->heap()->memory_allocator_ = old_allocator_;
}
private:
Isolate* isolate_;
MemoryAllocator* old_allocator_;
DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
};
// Temporarily sets a given code range in an isolate.
class TestCodeRangeScope {
public:
TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
: isolate_(isolate),
old_code_range_(isolate->heap()->memory_allocator()->code_range()) {
isolate->heap()->memory_allocator()->code_range_ = code_range;
}
~TestCodeRangeScope() {
isolate_->heap()->memory_allocator()->code_range_ = old_code_range_;
}
private:
Isolate* isolate_;
CodeRange* old_code_range_;
DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
};
static void VerifyMemoryChunk(Isolate* isolate, Heap* heap,
CodeRange* code_range, size_t reserve_area_size,
size_t commit_area_size, Executability executable,
Space* space) {
MemoryAllocator* memory_allocator =
new MemoryAllocator(isolate, heap->MaxReserved(), 0);
{
TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
TestCodeRangeScope test_code_range_scope(isolate, code_range);
size_t header_size = (executable == EXECUTABLE)
? MemoryAllocator::CodePageGuardStartOffset()
: MemoryChunk::kObjectStartOffset;
size_t guard_size =
(executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0;
MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(
reserve_area_size, commit_area_size, executable, space);
size_t alignment = code_range != nullptr && code_range->valid()
? MemoryChunk::kAlignment
: CommitPageSize();
size_t reserved_size =
((executable == EXECUTABLE))
? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
alignment)
: RoundUp(header_size + reserve_area_size, CommitPageSize());
CHECK(memory_chunk->size() == reserved_size);
CHECK(memory_chunk->area_start() <
memory_chunk->address() + memory_chunk->size());
CHECK(memory_chunk->area_end() <=
memory_chunk->address() + memory_chunk->size());
CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
memory_allocator->Free<MemoryAllocator::kFull>(memory_chunk);
}
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(Regress3540) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator =
new MemoryAllocator(isolate, heap->MaxReserved(), 0);
TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
size_t code_range_size =
kMinimumCodeRangeSize > 0 ? kMinimumCodeRangeSize : 3 * Page::kPageSize;
CodeRange* code_range = new CodeRange(isolate, code_range_size);
Address address;
size_t size;
size_t request_size = code_range_size - Page::kPageSize;
address = code_range->AllocateRawMemory(
request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
&size);
CHECK_NE(address, kNullAddress);
Address null_address;
size_t null_size;
request_size = code_range_size - Page::kPageSize;
null_address = code_range->AllocateRawMemory(
request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
&null_size);
CHECK_EQ(null_address, kNullAddress);
code_range->FreeRawMemory(address, size);
delete code_range;
memory_allocator->TearDown();
delete memory_allocator;
}
static unsigned int PseudorandomAreaSize() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
return lo & 0xFFFFF;
}
TEST(MemoryChunk) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t reserve_area_size = 1 * MB;
size_t initial_commit_area_size;
for (int i = 0; i < 100; i++) {
initial_commit_area_size = PseudorandomAreaSize();
// With CodeRange.
const size_t code_range_size = 32 * MB;
CodeRange* code_range = new CodeRange(isolate, code_range_size);
VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size,
initial_commit_area_size, EXECUTABLE, heap->code_space());
VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size,
initial_commit_area_size, NOT_EXECUTABLE,
heap->old_space());
delete code_range;
}
}
TEST(MemoryAllocator) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator =
new MemoryAllocator(isolate, heap->MaxReserved(), 0);
CHECK_NOT_NULL(memory_allocator);
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
{
int total_pages = 0;
OldSpace faked_space(heap);
CHECK(!faked_space.first_page());
CHECK(!faked_space.last_page());
Page* first_page = memory_allocator->AllocatePage(
faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
NOT_EXECUTABLE);
faked_space.memory_chunk_list().PushBack(first_page);
CHECK(first_page->next_page() == nullptr);
total_pages++;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
}
// Again, we should get n or n - 1 pages.
Page* other = memory_allocator->AllocatePage(
faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
NOT_EXECUTABLE);
total_pages++;
faked_space.memory_chunk_list().PushBack(other);
int page_count = 0;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
page_count++;
}
CHECK(total_pages == page_count);
Page* second_page = first_page->next_page();
CHECK_NOT_NULL(second_page);
// OldSpace's destructor will tear down the space and free up all pages.
}
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(NewSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator =
new MemoryAllocator(isolate, heap->MaxReserved(), 0);
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
NewSpace new_space(heap, CcTest::heap()->InitialSemiSpaceSize(),
CcTest::heap()->InitialSemiSpaceSize());
CHECK(new_space.MaximumCapacity());
while (new_space.Available() >= kMaxRegularHeapObjectSize) {
CHECK(new_space.Contains(
new_space.AllocateRawUnaligned(kMaxRegularHeapObjectSize)
.ToObjectChecked()));
}
new_space.TearDown();
memory_allocator->unmapper()->EnsureUnmappingCompleted();
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(OldSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator =
new MemoryAllocator(isolate, heap->MaxReserved(), 0);
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
OldSpace* s = new OldSpace(heap);
CHECK_NOT_NULL(s);
while (s->Available() > 0) {
s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked();
}
delete s;
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(LargeObjectSpace) {
// This test does not initialize allocated objects, which confuses the
// incremental marker.
FLAG_incremental_marking = false;
v8::V8::Initialize();
LargeObjectSpace* lo = CcTest::heap()->lo_space();
CHECK_NOT_NULL(lo);
int lo_size = Page::kPageSize;
Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked();
CHECK(obj->IsHeapObject());
HeapObject* ho = HeapObject::cast(obj);
CHECK(lo->Contains(HeapObject::cast(obj)));
CHECK(lo->FindObject(ho->address()) == obj);
CHECK(lo->Contains(ho));
while (true) {
size_t available = lo->Available();
{ AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
if (allocation.IsRetry()) break;
}
// The available value is conservative such that it may report
// zero prior to heap exhaustion.
CHECK(lo->Available() < available || available == 0);
}
CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry());
}
#ifndef DEBUG
// The test verifies that committed size of a space is less then some threshold.
// Debug builds pull in all sorts of additional instrumentation that increases
// heap sizes. E.g. CSA_ASSERT creates on-heap strings for error messages. These
// messages are also not stable if files are moved and modified during the build
// process (jumbo builds).
TEST(SizeOfInitialHeap) {
if (i::FLAG_always_opt) return;
// Bootstrapping without a snapshot causes more allocations.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
HandleScope scope(isolate);
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
// Skip this test on the custom snapshot builder.
if (!CcTest::global()
->Get(context, v8_str("assertEquals"))
.ToLocalChecked()
->IsUndefined()) {
return;
}
// Initial size of LO_SPACE
size_t initial_lo_space = isolate->heap()->lo_space()->Size();
// The limit for each space for an empty isolate containing just the
// snapshot.
// In PPC the page size is 64K, causing more internal fragmentation
// hence requiring a larger limit.
#if V8_OS_LINUX && V8_HOST_ARCH_PPC
const size_t kMaxInitialSizePerSpace = 3 * MB;
#else
const size_t kMaxInitialSizePerSpace = 2 * MB;
#endif
// Freshly initialized VM gets by with the snapshot size (which is below
// kMaxInitialSizePerSpace per space).
Heap* heap = isolate->heap();
int page_count[LAST_GROWABLE_PAGED_SPACE + 1] = {0, 0, 0, 0};
for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
i++) {
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
page_count[i] = heap->paged_space(i)->CountTotalPages();
// Check that the initial heap is also below the limit.
CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace);
}
// Executing the empty script gets by with the same number of pages, i.e.,
// requires no extra space.
CompileRun("/*empty*/");
for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
i++) {
// Skip CODE_SPACE, since we had to generate code even for an empty script.
if (i == CODE_SPACE) continue;
CHECK_EQ(page_count[i], isolate->heap()->paged_space(i)->CountTotalPages());
}
// No large objects required to perform the above steps.
CHECK_EQ(initial_lo_space,
static_cast<size_t>(isolate->heap()->lo_space()->Size()));
}
#endif // DEBUG
static HeapObject* AllocateUnaligned(NewSpace* space, int size) {
AllocationResult allocation = space->AllocateRawUnaligned(size);
CHECK(!allocation.IsRetry());
HeapObject* filler = nullptr;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler->address(), size,
ClearRecordedSlots::kNo);
return filler;
}
static HeapObject* AllocateUnaligned(PagedSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, kDoubleUnaligned);
CHECK(!allocation.IsRetry());
HeapObject* filler = nullptr;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler->address(), size,
ClearRecordedSlots::kNo);
return filler;
}
static HeapObject* AllocateUnaligned(LargeObjectSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, EXECUTABLE);
CHECK(!allocation.IsRetry());
HeapObject* filler = nullptr;
CHECK(allocation.To(&filler));
return filler;
}
class Observer : public AllocationObserver {
public:
explicit Observer(intptr_t step_size)
: AllocationObserver(step_size), count_(0) {}
void Step(int bytes_allocated, Address addr, size_t) override { count_++; }
int count() const { return count_; }
private:
int count_;
};
template <typename T>
void testAllocationObserver(Isolate* i_isolate, T* space) {
Observer observer1(128);
space->AddAllocationObserver(&observer1);
// The observer should not get notified if we have only allocated less than
// 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 0);
// The observer should get called when we have allocated exactly 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 1);
// Another >128 bytes should get another notification.
AllocateUnaligned(space, 136);
CHECK_EQ(observer1.count(), 2);
// Allocating a large object should get only one notification.
AllocateUnaligned(space, 1024);
CHECK_EQ(observer1.count(), 3);
// Allocating another 2048 bytes in small objects should get 16
// notifications.
for (int i = 0; i < 64; ++i) {
AllocateUnaligned(space, 32);
}
CHECK_EQ(observer1.count(), 19);
// Multiple observers should work.
Observer observer2(96);
space->AddAllocationObserver(&observer2);
AllocateUnaligned(space, 2048);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 1);
AllocateUnaligned(space, 104);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 2);
// Callback should stop getting called after an observer is removed.
space->RemoveAllocationObserver(&observer1);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20); // no more notifications.
CHECK_EQ(observer2.count(), 3); // this one is still active.
// Ensure that PauseInlineAllocationObserversScope work correctly.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 3);
{
PauseAllocationObserversScope pause_observers(i_isolate->heap());
CHECK_EQ(observer2.count(), 3);
AllocateUnaligned(space, 384);
CHECK_EQ(observer2.count(), 3);
}
CHECK_EQ(observer2.count(), 3);
// Coupled with the 48 bytes allocated before the pause, another 48 bytes
// allocated here should trigger a notification.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 4);
space->RemoveAllocationObserver(&observer2);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 4);
}
UNINITIALIZED_TEST(AllocationObserver) {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space());
// Old space is used but the code path is shared for all
// classes inheriting from PagedSpace.
testAllocationObserver<PagedSpace>(i_isolate,
i_isolate->heap()->old_space());
testAllocationObserver<LargeObjectSpace>(i_isolate,
i_isolate->heap()->lo_space());
}
isolate->Dispose();
}
UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
// Clear out any pre-existing garbage to make the test consistent
// across snapshot/no-snapshot builds.
i_isolate->heap()->CollectAllGarbage(
i::Heap::kFinalizeIncrementalMarkingMask,
i::GarbageCollectionReason::kTesting);
NewSpace* new_space = i_isolate->heap()->new_space();
Observer observer1(512);
new_space->AddAllocationObserver(&observer1);
Observer observer2(576);
new_space->AddAllocationObserver(&observer2);
for (int i = 0; i < 512; ++i) {
AllocateUnaligned(new_space, 32);
}
new_space->RemoveAllocationObserver(&observer1);
new_space->RemoveAllocationObserver(&observer2);
CHECK_EQ(observer1.count(), 32);
CHECK_EQ(observer2.count(), 28);
}
isolate->Dispose();
}
HEAP_TEST(Regress777177) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
PagedSpace* old_space = heap->old_space();
Observer observer(128);
old_space->AddAllocationObserver(&observer);
int area_size = old_space->AreaSize();
int max_object_size = kMaxRegularHeapObjectSize;
int filler_size = area_size - max_object_size;
{
// Ensure a new linear allocation area on a fresh page.
AlwaysAllocateScope always_allocate(isolate);
heap::SimulateFullSpace(old_space);
AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
HeapObject* obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj->address(), filler_size,
ClearRecordedSlots::kNo);
}
{
// Allocate all bytes of the linear allocation area. This moves top_ and
// top_on_previous_step_ to the next page.
AllocationResult result =
old_space->AllocateRaw(max_object_size, kWordAligned);
HeapObject* obj = result.ToObjectChecked();
// Simulate allocation folding moving the top pointer back.
old_space->SetTopAndLimit(obj->address(), old_space->limit());
}
{
// This triggers assert in crbug.com/777177.
AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
HeapObject* obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj->address(), filler_size,
ClearRecordedSlots::kNo);
}
old_space->RemoveAllocationObserver(&observer);
}
HEAP_TEST(Regress791582) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
NewSpace* new_space = heap->new_space();
if (new_space->TotalCapacity() < new_space->MaximumCapacity()) {
new_space->Grow();
}
int until_page_end = static_cast<int>(new_space->limit() - new_space->top());
if (until_page_end % kPointerSize != 0) {
// The test works if the size of allocation area size is a multiple of
// pointer size. This is usually the case unless some allocation observer
// is already active (e.g. incremental marking observer).
return;
}
Observer observer(128);
new_space->AddAllocationObserver(&observer);
{
AllocationResult result =
new_space->AllocateRaw(until_page_end, kWordAligned);
HeapObject* obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj->address(), until_page_end,
ClearRecordedSlots::kNo);
// Simulate allocation folding moving the top pointer back.
*new_space->allocation_top_address() = obj->address();
}
{
// This triggers assert in crbug.com/791582
AllocationResult result = new_space->AllocateRaw(256, kWordAligned);
HeapObject* obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj->address(), 256, ClearRecordedSlots::kNo);
}
new_space->RemoveAllocationObserver(&observer);
}
TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) {
FLAG_stress_incremental_marking = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
// Prepare page that only contains a single object and a trailing FreeSpace
// filler.
Handle<FixedArray> array = isolate->factory()->NewFixedArray(128, TENURED);
Page* page = Page::FromAddress(array->address());
// Reset space so high water mark is consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject* filler =
HeapObject::FromAddress(array->address() + array->Size());
CHECK(filler->IsFreeSpace());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
size_t should_have_shrunk =
RoundDown(static_cast<size_t>(Page::kAllocatableMemory - array->Size()),
CommitPageSize());
CHECK_EQ(should_have_shrunk, shrunk);
}
TEST(ShrinkPageToHighWaterMarkNoFiller) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 0;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromAddress(array->address());
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->ResetFreeList();
old_space->FreeLinearAllocationArea();
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkOneWordFiller) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = kPointerSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromAddress(array->address());
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject* filler =
HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler->map(), CcTest::heap()->one_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkTwoWordFiller) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 2 * kPointerSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromAddress(array->address());
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject* filler =
HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler->map(), CcTest::heap()->two_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
} // namespace heap
} // namespace internal
} // namespace v8