v8/src/compiler.h

755 lines
23 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_H_
#define V8_COMPILER_H_
#include "src/allocation.h"
#include "src/ast.h"
#include "src/bailout-reason.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
class AstValueFactory;
class HydrogenCodeStub;
// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation. Restriction violations cause a syntax error.
enum ParseRestriction {
NO_PARSE_RESTRICTION, // All expressions are allowed.
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
};
struct OffsetRange {
OffsetRange(int from, int to) : from(from), to(to) {}
int from;
int to;
};
class ScriptData {
public:
ScriptData(const byte* data, int length);
~ScriptData() {
if (owns_data_) DeleteArray(data_);
}
const byte* data() const { return data_; }
int length() const { return length_; }
void AcquireDataOwnership() {
DCHECK(!owns_data_);
owns_data_ = true;
}
void ReleaseDataOwnership() {
DCHECK(owns_data_);
owns_data_ = false;
}
private:
bool owns_data_;
const byte* data_;
int length_;
DISALLOW_COPY_AND_ASSIGN(ScriptData);
};
// CompilationInfo encapsulates some information known at compile time. It
// is constructed based on the resources available at compile-time.
class CompilationInfo {
public:
// Various configuration flags for a compilation, as well as some properties
// of the compiled code produced by a compilation.
enum Flag {
kLazy = 1 << 0,
kEval = 1 << 1,
kGlobal = 1 << 2,
kStrictMode = 1 << 3,
kThisHasUses = 1 << 4,
kNative = 1 << 5,
kDeferredCalling = 1 << 6,
kNonDeferredCalling = 1 << 7,
kSavesCallerDoubles = 1 << 8,
kRequiresFrame = 1 << 9,
kMustNotHaveEagerFrame = 1 << 10,
kDeoptimizationSupport = 1 << 11,
kDebug = 1 << 12,
kCompilingForDebugging = 1 << 13,
kParseRestriction = 1 << 14,
kSerializing = 1 << 15,
kContextSpecializing = 1 << 16,
kInliningEnabled = 1 << 17,
kTypingEnabled = 1 << 18,
kDisableFutureOptimization = 1 << 19,
kAbortedDueToDependency = 1 << 20,
kToplevel = 1 << 21
};
CompilationInfo(Handle<JSFunction> closure, Zone* zone);
CompilationInfo(Isolate* isolate, Zone* zone);
virtual ~CompilationInfo();
Isolate* isolate() const {
return isolate_;
}
Zone* zone() { return zone_; }
bool is_osr() const { return !osr_ast_id_.IsNone(); }
bool is_lazy() const { return GetFlag(kLazy); }
bool is_eval() const { return GetFlag(kEval); }
bool is_global() const { return GetFlag(kGlobal); }
StrictMode strict_mode() const {
return GetFlag(kStrictMode) ? STRICT : SLOPPY;
}
FunctionLiteral* function() const { return function_; }
Scope* scope() const { return scope_; }
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
Scope* global_scope() const { return global_scope_; }
Handle<Code> code() const { return code_; }
Handle<JSFunction> closure() const { return closure_; }
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
Handle<Script> script() const { return script_; }
void set_script(Handle<Script> script) { script_ = script; }
HydrogenCodeStub* code_stub() const {return code_stub_; }
v8::Extension* extension() const { return extension_; }
ScriptData** cached_data() const { return cached_data_; }
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
ScriptCompiler::CompileOptions compile_options() const {
return compile_options_;
}
ScriptCompiler::ExternalSourceStream* source_stream() const {
return source_stream_;
}
ScriptCompiler::StreamedSource::Encoding source_stream_encoding() const {
return source_stream_encoding_;
}
Handle<Context> context() const { return context_; }
BailoutId osr_ast_id() const { return osr_ast_id_; }
Handle<Code> unoptimized_code() const { return unoptimized_code_; }
int opt_count() const { return opt_count_; }
int num_parameters() const;
int num_heap_slots() const;
Code::Flags flags() const;
void MarkAsEval() {
DCHECK(!is_lazy());
SetFlag(kEval);
}
void MarkAsGlobal() {
DCHECK(!is_lazy());
SetFlag(kGlobal);
}
void set_parameter_count(int parameter_count) {
DCHECK(IsStub());
parameter_count_ = parameter_count;
}
void set_this_has_uses(bool has_no_uses) {
SetFlag(kThisHasUses, has_no_uses);
}
bool this_has_uses() { return GetFlag(kThisHasUses); }
void SetStrictMode(StrictMode strict_mode) {
SetFlag(kStrictMode, strict_mode == STRICT);
}
void MarkAsNative() { SetFlag(kNative); }
bool is_native() const { return GetFlag(kNative); }
bool is_calling() const {
return GetFlag(kDeferredCalling) || GetFlag(kNonDeferredCalling);
}
void MarkAsDeferredCalling() { SetFlag(kDeferredCalling); }
bool is_deferred_calling() const { return GetFlag(kDeferredCalling); }
void MarkAsNonDeferredCalling() { SetFlag(kNonDeferredCalling); }
bool is_non_deferred_calling() const { return GetFlag(kNonDeferredCalling); }
void MarkAsSavesCallerDoubles() { SetFlag(kSavesCallerDoubles); }
bool saves_caller_doubles() const { return GetFlag(kSavesCallerDoubles); }
void MarkAsRequiresFrame() { SetFlag(kRequiresFrame); }
bool requires_frame() const { return GetFlag(kRequiresFrame); }
void MarkMustNotHaveEagerFrame() { SetFlag(kMustNotHaveEagerFrame); }
bool GetMustNotHaveEagerFrame() const {
return GetFlag(kMustNotHaveEagerFrame);
}
void MarkAsDebug() { SetFlag(kDebug); }
bool is_debug() const { return GetFlag(kDebug); }
void PrepareForSerializing() { SetFlag(kSerializing); }
bool will_serialize() const { return GetFlag(kSerializing); }
void MarkAsContextSpecializing() { SetFlag(kContextSpecializing); }
bool is_context_specializing() const { return GetFlag(kContextSpecializing); }
void MarkAsInliningEnabled() { SetFlag(kInliningEnabled); }
void MarkAsInliningDisabled() { SetFlag(kInliningEnabled, false); }
bool is_inlining_enabled() const { return GetFlag(kInliningEnabled); }
void MarkAsTypingEnabled() { SetFlag(kTypingEnabled); }
bool is_typing_enabled() const { return GetFlag(kTypingEnabled); }
void MarkAsToplevel() { SetFlag(kToplevel); }
bool is_toplevel() const { return GetFlag(kToplevel); }
bool IsCodePreAgingActive() const {
return FLAG_optimize_for_size && FLAG_age_code && !will_serialize() &&
!is_debug();
}
void SetParseRestriction(ParseRestriction restriction) {
SetFlag(kParseRestriction, restriction != NO_PARSE_RESTRICTION);
}
ParseRestriction parse_restriction() const {
return GetFlag(kParseRestriction) ? ONLY_SINGLE_FUNCTION_LITERAL
: NO_PARSE_RESTRICTION;
}
void SetFunction(FunctionLiteral* literal) {
DCHECK(function_ == NULL);
function_ = literal;
}
void PrepareForCompilation(Scope* scope);
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
void SetGlobalScope(Scope* global_scope) {
DCHECK(global_scope_ == NULL);
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
global_scope_ = global_scope;
}
Handle<TypeFeedbackVector> feedback_vector() const {
return feedback_vector_;
}
void SetCode(Handle<Code> code) { code_ = code; }
void SetExtension(v8::Extension* extension) {
DCHECK(!is_lazy());
extension_ = extension;
}
void SetCachedData(ScriptData** cached_data,
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
ScriptCompiler::CompileOptions compile_options) {
compile_options_ = compile_options;
if (compile_options == ScriptCompiler::kNoCompileOptions) {
cached_data_ = NULL;
} else {
DCHECK(!is_lazy());
cached_data_ = cached_data;
}
}
void SetContext(Handle<Context> context) {
context_ = context;
}
void MarkCompilingForDebugging() { SetFlag(kCompilingForDebugging); }
bool IsCompilingForDebugging() { return GetFlag(kCompilingForDebugging); }
void MarkNonOptimizable() {
SetMode(CompilationInfo::NONOPT);
}
bool ShouldTrapOnDeopt() const {
return (FLAG_trap_on_deopt && IsOptimizing()) ||
(FLAG_trap_on_stub_deopt && IsStub());
}
bool has_global_object() const {
return !closure().is_null() &&
(closure()->context()->global_object() != NULL);
}
GlobalObject* global_object() const {
return has_global_object() ? closure()->context()->global_object() : NULL;
}
// Accessors for the different compilation modes.
bool IsOptimizing() const { return mode_ == OPTIMIZE; }
bool IsOptimizable() const { return mode_ == BASE; }
bool IsStub() const { return mode_ == STUB; }
void SetOptimizing(BailoutId osr_ast_id, Handle<Code> unoptimized) {
DCHECK(!shared_info_.is_null());
SetMode(OPTIMIZE);
osr_ast_id_ = osr_ast_id;
unoptimized_code_ = unoptimized;
optimization_id_ = isolate()->NextOptimizationId();
}
// Deoptimization support.
bool HasDeoptimizationSupport() const {
return GetFlag(kDeoptimizationSupport);
}
void EnableDeoptimizationSupport() {
DCHECK(IsOptimizable());
SetFlag(kDeoptimizationSupport);
}
// Determines whether or not to insert a self-optimization header.
bool ShouldSelfOptimize();
void set_deferred_handles(DeferredHandles* deferred_handles) {
DCHECK(deferred_handles_ == NULL);
deferred_handles_ = deferred_handles;
}
ZoneList<Handle<HeapObject> >* dependencies(
DependentCode::DependencyGroup group) {
if (dependencies_[group] == NULL) {
dependencies_[group] = new(zone_) ZoneList<Handle<HeapObject> >(2, zone_);
}
return dependencies_[group];
}
void CommitDependencies(Handle<Code> code);
void RollbackDependencies();
void SaveHandles() {
SaveHandle(&closure_);
SaveHandle(&shared_info_);
SaveHandle(&context_);
SaveHandle(&script_);
SaveHandle(&unoptimized_code_);
}
void AbortOptimization(BailoutReason reason) {
if (bailout_reason_ != kNoReason) bailout_reason_ = reason;
SetFlag(kDisableFutureOptimization);
}
void RetryOptimization(BailoutReason reason) {
if (bailout_reason_ != kNoReason) bailout_reason_ = reason;
}
BailoutReason bailout_reason() const { return bailout_reason_; }
int prologue_offset() const {
DCHECK_NE(Code::kPrologueOffsetNotSet, prologue_offset_);
return prologue_offset_;
}
void set_prologue_offset(int prologue_offset) {
DCHECK_EQ(Code::kPrologueOffsetNotSet, prologue_offset_);
prologue_offset_ = prologue_offset;
}
// Adds offset range [from, to) where fp register does not point
// to the current frame base. Used in CPU profiler to detect stack
// samples where top frame is not set up.
inline void AddNoFrameRange(int from, int to) {
if (no_frame_ranges_) no_frame_ranges_->Add(OffsetRange(from, to));
}
List<OffsetRange>* ReleaseNoFrameRanges() {
List<OffsetRange>* result = no_frame_ranges_;
no_frame_ranges_ = NULL;
return result;
}
Handle<Foreign> object_wrapper() {
if (object_wrapper_.is_null()) {
object_wrapper_ =
isolate()->factory()->NewForeign(reinterpret_cast<Address>(this));
}
return object_wrapper_;
}
void AbortDueToDependencyChange() {
DCHECK(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
SetFlag(kAbortedDueToDependency);
}
bool HasAbortedDueToDependencyChange() const {
DCHECK(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
return GetFlag(kAbortedDueToDependency);
}
bool HasSameOsrEntry(Handle<JSFunction> function, BailoutId osr_ast_id) {
return osr_ast_id_ == osr_ast_id && function.is_identical_to(closure_);
}
int optimization_id() const { return optimization_id_; }
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
void SetAstValueFactory(AstValueFactory* ast_value_factory,
bool owned = true) {
ast_value_factory_ = ast_value_factory;
ast_value_factory_owned_ = owned;
}
AstNode::IdGen* ast_node_id_gen() { return &ast_node_id_gen_; }
protected:
CompilationInfo(Handle<Script> script,
Zone* zone);
CompilationInfo(Handle<SharedFunctionInfo> shared_info,
Zone* zone);
CompilationInfo(HydrogenCodeStub* stub,
Isolate* isolate,
Zone* zone);
CompilationInfo(ScriptCompiler::ExternalSourceStream* source_stream,
ScriptCompiler::StreamedSource::Encoding encoding,
Isolate* isolate, Zone* zone);
private:
Isolate* isolate_;
// Compilation mode.
// BASE is generated by the full codegen, optionally prepared for bailouts.
// OPTIMIZE is optimized code generated by the Hydrogen-based backend.
// NONOPT is generated by the full codegen and is not prepared for
// recompilation/bailouts. These functions are never recompiled.
enum Mode {
BASE,
OPTIMIZE,
NONOPT,
STUB
};
void Initialize(Isolate* isolate, Mode mode, Zone* zone);
void SetMode(Mode mode) {
mode_ = mode;
}
void SetFlag(Flag flag) { flags_ |= flag; }
void SetFlag(Flag flag, bool value) {
flags_ = value ? flags_ | flag : flags_ & ~flag;
}
bool GetFlag(Flag flag) const { return (flags_ & flag) != 0; }
unsigned flags_;
// Fields filled in by the compilation pipeline.
// AST filled in by the parser.
FunctionLiteral* function_;
// The scope of the function literal as a convenience. Set to indicate
// that scopes have been analyzed.
Scope* scope_;
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
// The global scope provided as a convenience.
Scope* global_scope_;
// For compiled stubs, the stub object
HydrogenCodeStub* code_stub_;
// The compiled code.
Handle<Code> code_;
// Possible initial inputs to the compilation process.
Handle<JSFunction> closure_;
Handle<SharedFunctionInfo> shared_info_;
Handle<Script> script_;
ScriptCompiler::ExternalSourceStream* source_stream_; // Not owned.
ScriptCompiler::StreamedSource::Encoding source_stream_encoding_;
// Fields possibly needed for eager compilation, NULL by default.
v8::Extension* extension_;
ScriptData** cached_data_;
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
ScriptCompiler::CompileOptions compile_options_;
// The context of the caller for eval code, and the global context for a
// global script. Will be a null handle otherwise.
Handle<Context> context_;
// Used by codegen, ultimately kept rooted by the SharedFunctionInfo.
Handle<TypeFeedbackVector> feedback_vector_;
// Compilation mode flag and whether deoptimization is allowed.
Mode mode_;
BailoutId osr_ast_id_;
// The unoptimized code we patched for OSR may not be the shared code
// afterwards, since we may need to compile it again to include deoptimization
// data. Keep track which code we patched.
Handle<Code> unoptimized_code_;
// The zone from which the compilation pipeline working on this
// CompilationInfo allocates.
Zone* zone_;
DeferredHandles* deferred_handles_;
ZoneList<Handle<HeapObject> >* dependencies_[DependentCode::kGroupCount];
template<typename T>
void SaveHandle(Handle<T> *object) {
if (!object->is_null()) {
Handle<T> handle(*(*object));
*object = handle;
}
}
BailoutReason bailout_reason_;
int prologue_offset_;
List<OffsetRange>* no_frame_ranges_;
// A copy of shared_info()->opt_count() to avoid handle deref
// during graph optimization.
int opt_count_;
// Number of parameters used for compilation of stubs that require arguments.
int parameter_count_;
Handle<Foreign> object_wrapper_;
int optimization_id_;
AstValueFactory* ast_value_factory_;
bool ast_value_factory_owned_;
AstNode::IdGen ast_node_id_gen_;
DISALLOW_COPY_AND_ASSIGN(CompilationInfo);
};
// Exactly like a CompilationInfo, except also creates and enters a
// Zone on construction and deallocates it on exit.
class CompilationInfoWithZone: public CompilationInfo {
public:
explicit CompilationInfoWithZone(Handle<Script> script)
: CompilationInfo(script, &zone_),
zone_(script->GetIsolate()) {}
explicit CompilationInfoWithZone(Handle<SharedFunctionInfo> shared_info)
: CompilationInfo(shared_info, &zone_),
zone_(shared_info->GetIsolate()) {}
explicit CompilationInfoWithZone(Handle<JSFunction> closure)
: CompilationInfo(closure, &zone_),
zone_(closure->GetIsolate()) {}
CompilationInfoWithZone(HydrogenCodeStub* stub, Isolate* isolate)
: CompilationInfo(stub, isolate, &zone_),
zone_(isolate) {}
CompilationInfoWithZone(ScriptCompiler::ExternalSourceStream* stream,
ScriptCompiler::StreamedSource::Encoding encoding,
Isolate* isolate)
: CompilationInfo(stream, encoding, isolate, &zone_), zone_(isolate) {}
// Virtual destructor because a CompilationInfoWithZone has to exit the
// zone scope and get rid of dependent maps even when the destructor is
// called when cast as a CompilationInfo.
virtual ~CompilationInfoWithZone() {
RollbackDependencies();
}
private:
Zone zone_;
};
// A wrapper around a CompilationInfo that detaches the Handles from
// the underlying DeferredHandleScope and stores them in info_ on
// destruction.
class CompilationHandleScope BASE_EMBEDDED {
public:
explicit CompilationHandleScope(CompilationInfo* info)
: deferred_(info->isolate()), info_(info) {}
~CompilationHandleScope() {
info_->set_deferred_handles(deferred_.Detach());
}
private:
DeferredHandleScope deferred_;
CompilationInfo* info_;
};
class HGraph;
class HOptimizedGraphBuilder;
class LChunk;
// A helper class that calls the three compilation phases in
// Crankshaft and keeps track of its state. The three phases
// CreateGraph, OptimizeGraph and GenerateAndInstallCode can either
// fail, bail-out to the full code generator or succeed. Apart from
// their return value, the status of the phase last run can be checked
// using last_status().
class OptimizedCompileJob: public ZoneObject {
public:
explicit OptimizedCompileJob(CompilationInfo* info)
: info_(info),
graph_builder_(NULL),
graph_(NULL),
chunk_(NULL),
last_status_(FAILED),
awaiting_install_(false) { }
enum Status {
FAILED, BAILED_OUT, SUCCEEDED
};
MUST_USE_RESULT Status CreateGraph();
MUST_USE_RESULT Status OptimizeGraph();
MUST_USE_RESULT Status GenerateCode();
Status last_status() const { return last_status_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info()->isolate(); }
Status RetryOptimization(BailoutReason reason) {
info_->RetryOptimization(reason);
return SetLastStatus(BAILED_OUT);
}
Status AbortOptimization(BailoutReason reason) {
info_->AbortOptimization(reason);
return SetLastStatus(BAILED_OUT);
}
void WaitForInstall() {
DCHECK(info_->is_osr());
awaiting_install_ = true;
}
bool IsWaitingForInstall() { return awaiting_install_; }
private:
CompilationInfo* info_;
HOptimizedGraphBuilder* graph_builder_;
HGraph* graph_;
LChunk* chunk_;
base::TimeDelta time_taken_to_create_graph_;
base::TimeDelta time_taken_to_optimize_;
base::TimeDelta time_taken_to_codegen_;
Status last_status_;
bool awaiting_install_;
MUST_USE_RESULT Status SetLastStatus(Status status) {
last_status_ = status;
return last_status_;
}
void RecordOptimizationStats();
struct Timer {
Timer(OptimizedCompileJob* job, base::TimeDelta* location)
: job_(job), location_(location) {
DCHECK(location_ != NULL);
timer_.Start();
}
~Timer() {
*location_ += timer_.Elapsed();
}
OptimizedCompileJob* job_;
base::ElapsedTimer timer_;
base::TimeDelta* location_;
};
};
// The V8 compiler
//
// General strategy: Source code is translated into an anonymous function w/o
// parameters which then can be executed. If the source code contains other
// functions, they will be compiled and allocated as part of the compilation
// of the source code.
// Please note this interface returns shared function infos. This means you
// need to call Factory::NewFunctionFromSharedFunctionInfo before you have a
// real function with a context.
class Compiler : public AllStatic {
public:
MUST_USE_RESULT static MaybeHandle<Code> GetUnoptimizedCode(
Handle<JSFunction> function);
MUST_USE_RESULT static MaybeHandle<Code> GetLazyCode(
Handle<JSFunction> function);
MUST_USE_RESULT static MaybeHandle<Code> GetUnoptimizedCode(
Handle<SharedFunctionInfo> shared);
MUST_USE_RESULT static MaybeHandle<Code> GetDebugCode(
Handle<JSFunction> function);
static bool EnsureCompiled(Handle<JSFunction> function,
ClearExceptionFlag flag);
static bool EnsureDeoptimizationSupport(CompilationInfo* info);
static void CompileForLiveEdit(Handle<Script> script);
// Compile a String source within a context for eval.
MUST_USE_RESULT static MaybeHandle<JSFunction> GetFunctionFromEval(
Handle<String> source,
Handle<Context> context,
StrictMode strict_mode,
ParseRestriction restriction,
int scope_position);
// Compile a String source within a context.
static Handle<SharedFunctionInfo> CompileScript(
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
Handle<String> source, Handle<Object> script_name, int line_offset,
int column_offset, bool is_shared_cross_origin, Handle<Context> context,
v8::Extension* extension, ScriptData** cached_data,
ScriptCompiler::CompileOptions compile_options,
NativesFlag is_natives_code);
static Handle<SharedFunctionInfo> CompileStreamedScript(CompilationInfo* info,
int source_length);
// Create a shared function info object (the code may be lazily compiled).
static Handle<SharedFunctionInfo> BuildFunctionInfo(FunctionLiteral* node,
Handle<Script> script,
CompilationInfo* outer);
enum ConcurrencyMode { NOT_CONCURRENT, CONCURRENT };
// Generate and return optimized code or start a concurrent optimization job.
// In the latter case, return the InOptimizationQueue builtin. On failure,
// return the empty handle.
MUST_USE_RESULT static MaybeHandle<Code> GetOptimizedCode(
Handle<JSFunction> function,
Handle<Code> current_code,
ConcurrencyMode mode,
BailoutId osr_ast_id = BailoutId::None());
// Generate and return code from previously queued optimization job.
// On failure, return the empty handle.
static Handle<Code> GetConcurrentlyOptimizedCode(OptimizedCompileJob* job);
static bool DebuggerWantsEagerCompilation(
CompilationInfo* info, bool allow_lazy_without_ctx = false);
};
class CompilationPhase BASE_EMBEDDED {
public:
CompilationPhase(const char* name, CompilationInfo* info);
~CompilationPhase();
protected:
bool ShouldProduceTraceOutput() const;
const char* name() const { return name_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info()->isolate(); }
Zone* zone() { return &zone_; }
private:
const char* name_;
CompilationInfo* info_;
Zone zone_;
unsigned info_zone_start_allocation_size_;
base::ElapsedTimer timer_;
DISALLOW_COPY_AND_ASSIGN(CompilationPhase);
};
} } // namespace v8::internal
#endif // V8_COMPILER_H_