v8/src/x64/codegen-x64.cc

2724 lines
88 KiB
C++
Raw Normal View History

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
// #include "macro-assembler.h"
#include "codegen-inl.h"
#include "register-allocator-inl.h"
// TEST
#include "compiler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int action = registers_[i];
if (action == kPush) {
__ push(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
__ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
}
}
}
void DeferredCode::RestoreRegisters() {
// Restore registers in reverse order due to the stack.
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
int action = registers_[i];
if (action == kPush) {
__ pop(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore) {
action &= ~kSyncedFlag;
__ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
}
}
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
typeof_state_(NOT_INSIDE_TYPEOF),
destination_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
TypeofState typeof_state,
ControlDestination* destination)
: owner_(owner),
typeof_state_(typeof_state),
destination_(destination),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -----------------------------------------------------------------------------
// CodeGenerator implementation.
CodeGenerator::CodeGenerator(int buffer_size,
Handle<Script> script,
bool is_eval)
: is_eval_(is_eval),
script_(script),
deferred_(8),
masm_(new MacroAssembler(NULL, buffer_size)),
scope_(NULL),
frame_(NULL),
allocator_(NULL),
state_(NULL),
loop_nesting_(0),
function_return_is_shadowed_(false),
in_spilled_code_(false) {
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> a) {
UNIMPLEMENTED();
}
void CodeGenerator::TestCodeGenerator() {
// Compile a function from a string, and run it.
// Set flags appropriately for this stage of implementation.
// TODO(X64): Make ic work, and stop disabling them.
// These settings stick - remove them when we don't want them anymore.
#ifdef DEBUG
FLAG_print_builtin_source = true;
FLAG_print_builtin_ast = true;
#endif
FLAG_use_ic = false;
Handle<JSFunction> test_function = Compiler::Compile(
Factory::NewStringFromAscii(CStrVector(
"// Put all code in anonymous function to avoid global scope.\n"
"(function(){"
" function test_if_then_else(x, y, z){"
" if (x) {"
" x = y;"
" } else {"
" x = z;"
" }"
" return x;"
" }"
"\n"
" function test_recursion_with_base(x, y, z, w) {"
" if (x) {"
" x = x;"
" } else {"
" x = test_recursion_with_base(y, z, w, 0);"
" }"
" return x;"
" }"
"\n"
" function test_local_variables(x, y){"
" var w; y = x; x = w; w = y; y = x; return w;"
" };"
" test_local_variables(2,3);"
" function test_nesting_calls(x, y, zee){return zee;};"
" test_local_variables("
" test_nesting_calls(test_local_variables(1,3), 42, 47),"
" test_local_variables(-25.3, 2));"
" // return test_recursion_with_base(0, 0, 0, 47);\n"
" var o = { x: 42 };"
" return test_if_then_else(0, 46, 47);"
"})()")),
Factory::NewStringFromAscii(CStrVector("CodeGeneratorTestScript")),
0,
0,
NULL,
NULL);
Code* code_object = test_function->code(); // Local for debugging ease.
USE(code_object);
// Create a dummy function and context.
Handle<JSFunction> bridge =
Factory::NewFunction(Factory::empty_symbol(), Factory::undefined_value());
Handle<Context> context =
Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, bridge);
test_function = Factory::NewFunctionFromBoilerplate(
test_function,
context);
bool pending_exceptions;
Handle<Object> result =
Execution::Call(test_function,
Handle<Object>::cast(test_function),
0,
NULL,
&pending_exceptions);
// Function compiles and runs, but returns a JSFunction object.
CHECK(result->IsSmi());
CHECK_EQ(47, Smi::cast(*result)->value());
}
void CodeGenerator::GenCode(FunctionLiteral* function) {
// Record the position for debugging purposes.
CodeForFunctionPosition(function);
ZoneList<Statement*>* body = function->body();
// Initialize state.
ASSERT(scope_ == NULL);
scope_ = function->scope();
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = &register_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
set_in_spilled_code(false);
// Adjust for function-level loop nesting.
loop_nesting_ += function->loop_nesting();
JumpTarget::set_compiling_deferred_code(false);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
// fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
false) {
frame_->SpillAll();
__ int3();
}
#endif
// New scope to get automatic timing calculation.
{ // NOLINT
HistogramTimerScope codegen_timer(&Counters::code_generation);
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments, return address.
// ebp: caller's frame pointer
// esp: stack pointer
// edi: called JS function
// esi: callee's context
allocator_->Initialize();
frame_->Enter();
// Allocate space for locals and initialize them.
frame_->AllocateStackSlots();
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
function_return_is_shadowed_ = false;
// TODO(X64): Add code to handle arguments object and context object.
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope_->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope_->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope_->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
// CheckStack();
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope_->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
}
VisitStatements(body);
}
// Adjust for function-level loop nesting.
loop_nesting_ -= function->loop_nesting();
// Code generation state must be reset.
ASSERT(state_ == NULL);
ASSERT(loop_nesting() == 0);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
JumpTarget::set_compiling_deferred_code(true);
ProcessDeferred();
JumpTarget::set_compiling_deferred_code(false);
}
// There is no need to delete the register allocator, it is a
// stack-allocated local.
allocator_ = NULL;
scope_ = NULL;
}
void CodeGenerator::GenerateReturnSequence(Result* return_value) {
// The return value is a live (but not currently reference counted)
// reference to rax. This is safe because the current frame does not
// contain a reference to rax (it is prepared for the return by spilling
// all registers).
if (FLAG_trace) {
frame_->Push(return_value);
// *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
}
return_value->ToRegister(rax);
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
// Leave the frame and return popping the arguments and the
// receiver.
frame_->Exit();
masm_->ret((scope_->num_parameters() + 1) * kPointerSize);
DeleteFrame();
// Check that the size of the code used for returning matches what is
// expected by the debugger.
// ASSERT_EQ(Debug::kIa32JSReturnSequenceLength,
// masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
}
void CodeGenerator::GenerateFastCaseSwitchJumpTable(SwitchStatement* a,
int b,
int c,
Label* d,
Vector<Label*> e,
Vector<Label> f) {
UNIMPLEMENTED();
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() {
return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
&& (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
&& (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
&& (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
&& (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
&& (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
&& (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
&& (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
&& (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
&& (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0))
&& (allocator()->count(r13) == (frame()->is_used(r13) ? 1 : 0))
&& (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
#endif
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
ASSERT(!in_spilled_code());
for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
Visit(statements->at(i));
}
}
void CodeGenerator::VisitBlock(Block* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
VisitStatements(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
CodeForStatementPosition(node);
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call. Sync the virtual frame eagerly
// so we can simply push the arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
// Declaration nodes are always introduced in one of two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
frame_->EmitPush(Immediate(Smi::FromInt(attr)));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
__ movq(kScratchRegister, Factory::the_hole_value(),
RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value!
}
Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
{
// Set the initial value.
Reference target(this, node->proxy());
Load(val);
target.SetValue(NOT_CONST_INIT);
// The reference is removed from the stack (preserving TOS) when
// it goes out of scope.
}
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
// Remove the lingering expression result from the top of stack.
frame_->Drop();
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
JumpTarget then;
JumpTarget else_;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Visit(node->else_statement());
// We may have dangling jumps to the then part.
if (then.is_linked()) {
if (has_valid_frame()) exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then target was bound, so we compile the then part first.
Visit(node->then_statement());
if (else_.is_linked()) {
if (has_valid_frame()) exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
}
} else if (has_then_stm) {
ASSERT(!has_else_stm);
JumpTarget then;
ControlDestination dest(&then, &exit, true);
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
if (dest.false_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// then part.
if (then.is_linked()) {
exit.Unuse();
exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then label was bound.
Visit(node->then_statement());
}
} else if (has_else_stm) {
ASSERT(!has_then_stm);
JumpTarget else_;
ControlDestination dest(&exit, &else_, false);
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
if (dest.true_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// else part.
if (else_.is_linked()) {
exit.Unuse();
exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
} else {
// The else label was bound.
Visit(node->else_statement());
}
} else {
ASSERT(!has_then_stm && !has_else_stm);
// We only care about the condition's side effects (not its value
// or control flow effect). LoadCondition is called without
// forcing control flow.
ControlDestination dest(&exit, &exit, true);
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, false);
if (!dest.is_used()) {
// We got a value on the frame rather than (or in addition to)
// control flow.
frame_->Drop();
}
}
if (exit.is_linked()) {
exit.Bind();
}
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result return_value = frame_->Pop();
/* if (function_return_is_shadowed_) {
function_return_.Jump(&return_value);
} else {
frame_->PrepareForReturn();
if (function_return_.is_bound()) {
// If the function return label is already bound we reuse the
// code by jumping to the return site.
function_return_.Jump(&return_value);
} else {
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
*/
GenerateReturnSequence(&return_value);
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitLoopStatement(LoopStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitForInStatement(ForInStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitTryCatch(TryCatch* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitTryFinally(TryFinally* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* a) {
UNIMPLEMENTED();
}
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
// Call the runtime to instantiate the function boilerplate object.
// The inevitable call will sync frame elements to memory anyway, so
// we do it eagerly to allow us to push the arguments directly into
// place.
ASSERT(boilerplate->IsBoilerplate());
frame_->SyncRange(0, frame_->element_count() - 1);
// Push the boilerplate on the stack.
__ movq(kScratchRegister, boilerplate, RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
// Create a new closure.
frame_->EmitPush(rsi);
Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->Push(&result);
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate = BuildBoilerplate(node);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
InstantiateBoilerplate(boilerplate);
}
void CodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
InstantiateBoilerplate(node->boilerplate());
}
void CodeGenerator::VisitConditional(Conditional* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlot(node, typeof_state());
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
// ref.GetValue(typeof_state());
}
}
void CodeGenerator::VisitLiteral(Literal* node) {
Comment cmnt(masm_, "[ Literal");
frame_->Push(node->handle());
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* a) {
UNIMPLEMENTED();
}
// Materialize the object literal 'node' in the literals array
// 'literals' of the function. Leave the object boilerplate in
// 'boilerplate'.
class DeferredObjectLiteral: public DeferredCode {
public:
DeferredObjectLiteral(Register boilerplate,
Register literals,
ObjectLiteral* node)
: boilerplate_(boilerplate), literals_(literals), node_(node) {
set_comment("[ DeferredObjectLiteral");
}
void Generate();
private:
Register boilerplate_;
Register literals_;
ObjectLiteral* node_;
};
void DeferredObjectLiteral::Generate() {
// Since the entry is undefined we call the runtime system to
// compute the literal.
// Literal array (0).
__ push(literals_);
// Literal index (1).
__ push(Immediate(Smi::FromInt(node_->literal_index())));
// Constant properties (2).
__ movq(kScratchRegister,
node_->constant_properties(),
RelocInfo::EMBEDDED_OBJECT);
__ push(kScratchRegister);
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
Comment cmnt(masm_, "[ ObjectLiteral");
// Retrieve the literals array and check the allocated entry. Begin
// with a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
Result boilerplate = allocator_->Allocate();
ASSERT(boilerplate.is_valid());
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
// Check whether we need to materialize the object literal boilerplate.
// If so, jump to the deferred code passing the literals array.
DeferredObjectLiteral* deferred =
new DeferredObjectLiteral(boilerplate.reg(), literals.reg(), node);
__ movq(kScratchRegister,
Factory::undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(boilerplate.reg(), kScratchRegister);
deferred->Branch(equal);
deferred->BindExit();
literals.Unuse();
// Push the boilerplate object.
frame_->Push(&boilerplate);
// Clone the boilerplate object.
Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
if (node->depth() == 1) {
clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
}
Result clone = frame_->CallRuntime(clone_function_id, 1);
// Push the newly cloned literal object as the result.
frame_->Push(&clone);
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through.
case ObjectLiteral::Property::COMPUTED: {
// TODO(X64): Implement setting of computed values in object literals.
UNIMPLEMENTED();
}
case ObjectLiteral::Property::PROTOTYPE: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
// Ignore the result.
break;
}
case ObjectLiteral::Property::SETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(1));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
case ObjectLiteral::Property::GETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(0));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
default: UNREACHABLE();
}
}
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitAssignment(Assignment* node) {
Comment cmnt(masm_, "[ Assignment");
CodeForStatementPosition(node);
{ Reference target(this, node->target());
if (target.is_illegal()) {
// Fool the virtual frame into thinking that we left the assignment's
// value on the frame.
frame_->Push(Smi::FromInt(0));
return;
}
Variable* var = node->target()->AsVariableProxy()->AsVariable();
if (node->starts_initialization_block()) {
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
// Change to slow case in the beginning of an initialization
// block to avoid the quadratic behavior of repeatedly adding
// fast properties.
// The receiver is the argument to the runtime call. It is the
// first value pushed when the reference was loaded to the
// frame.
frame_->PushElementAt(target.size() - 1);
// Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
if (node->op() == Token::ASSIGN ||
node->op() == Token::INIT_VAR ||
node->op() == Token::INIT_CONST) {
Load(node->value());
} else {
// TODO(X64): Make compound assignments work.
/*
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
// There are two cases where the target is not read in the right hand
// side, that are easy to test for: the right hand side is a literal,
// or the right hand side is a different variable. TakeValue invalidates
// the target, with an implicit promise that it will be written to again
// before it is read.
if (literal != NULL || (right_var != NULL && right_var != var)) {
target.TakeValue(NOT_INSIDE_TYPEOF);
} else {
target.GetValue(NOT_INSIDE_TYPEOF);
}
*/
Load(node->value());
/*
GenericBinaryOperation(node->binary_op(),
node->type(),
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
*/
}
if (var != NULL &&
var->mode() == Variable::CONST &&
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
// Assignment ignored - leave the value on the stack.
} else {
CodeForSourcePosition(node->position());
if (node->op() == Token::INIT_CONST) {
// Dynamic constant initializations must use the function context
// and initialize the actual constant declared. Dynamic variable
// initializations are simply assignments and use SetValue.
target.SetValue(CONST_INIT);
} else {
target.SetValue(NOT_CONST_INIT);
}
if (node->ends_initialization_block()) {
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
// End of initialization block. Revert to fast case. The
// argument to the runtime call is the receiver, which is the
// first value pushed as part of the reference, which is below
// the lhs value.
frame_->PushElementAt(target.size());
// Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
}
}
}
void CodeGenerator::VisitThrow(Throw* a) {
// UNIMPLEMENTED();
}
void CodeGenerator::VisitProperty(Property* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCall(Call* node) {
Comment cmnt(masm_, "[ Call");
ZoneList<Expression*>* args = node->arguments();
CodeForStatementPosition(node);
// Check if the function is a variable or a property.
Expression* function = node->expression();
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Push the name of the function and the receiver onto the stack.
frame_->Push(var->name());
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
// Replace the function on the stack with the result.
frame_->SetElementAt(0, &result);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// TODO(X64): Enable calls of non-global functions.
UNIMPLEMENTED();
/*
// ----------------------------------
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
// ----------------------------------
// Load the function from the context. Sync the frame so we can
// push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(esi);
frame_->EmitPush(Immediate(var->name()));
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// The runtime call returns a pair of values in eax and edx. The
// looked-up function is in eax and the receiver is in edx. These
// register references are not ref counted here. We spill them
// eagerly since they are arguments to an inevitable call (and are
// not sharable by the arguments).
ASSERT(!allocator()->is_used(eax));
frame_->EmitPush(eax);
// Load the receiver.
ASSERT(!allocator()->is_used(edx));
frame_->EmitPush(edx);
// Call the function.
CallWithArguments(args, node->position());
*/
} else if (property != NULL) {
UNIMPLEMENTED();
/*
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
// Push the name of the function and the receiver onto the stack.
frame_->Push(literal->handle());
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result =
frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting());
frame_->RestoreContextRegister();
// Replace the function on the stack with the result.
frame_->SetElementAt(0, &result);
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
Reference ref(this, property);
ref.GetValue(NOT_INSIDE_TYPEOF);
// Pass receiver to called function.
if (property->is_synthetic()) {
// Use global object as receiver.
LoadGlobalReceiver();
} else {
// The reference's size is non-negative.
frame_->PushElementAt(ref.size());
}
// Call the function.
CallWithArguments(args, node->position());
}
*/
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
// Pass the global proxy as the receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, node->position());
}
}
void CodeGenerator::VisitCallEval(CallEval* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCallNew(CallNew* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCallRuntime(CallRuntime* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCountOperation(CountOperation* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitCompareOperation(CompareOperation* a) {
UNIMPLEMENTED();
}
void CodeGenerator::VisitThisFunction(ThisFunction* a) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
UNIMPLEMENTED();}
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* a) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* a) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* a) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
UNIMPLEMENTED();
}
// -----------------------------------------------------------------------------
// CodeGenerator implementation of Expressions
void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(!in_spilled_code());
JumpTarget true_target;
JumpTarget false_target;
ControlDestination dest(&true_target, &false_target, true);
LoadCondition(x, typeof_state, &dest, false);
if (dest.false_was_fall_through()) {
// The false target was just bound.
JumpTarget loaded;
frame_->Push(Factory::false_value());
// There may be dangling jumps to the true target.
if (true_target.is_linked()) {
loaded.Jump();
true_target.Bind();
frame_->Push(Factory::true_value());
loaded.Bind();
}
} else if (dest.is_used()) {
// There is true, and possibly false, control flow (with true as
// the fall through).
JumpTarget loaded;
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
false_target.Bind();
frame_->Push(Factory::false_value());
loaded.Bind();
}
} else {
// We have a valid value on top of the frame, but we still may
// have dangling jumps to the true and false targets from nested
// subexpressions (eg, the left subexpressions of the
// short-circuited boolean operators).
ASSERT(has_valid_frame());
if (true_target.is_linked() || false_target.is_linked()) {
JumpTarget loaded;
loaded.Jump(); // Don't lose the current TOS.
if (true_target.is_linked()) {
true_target.Bind();
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
}
}
if (false_target.is_linked()) {
false_target.Bind();
frame_->Push(Factory::false_value());
}
loaded.Bind();
}
}
ASSERT(has_valid_frame());
ASSERT(frame_->height() == original_height + 1);
}
// Emit code to load the value of an expression to the top of the
// frame. If the expression is boolean-valued it may be compiled (or
// partially compiled) into control flow to the control destination.
// If force_control is true, control flow is forced.
void CodeGenerator::LoadCondition(Expression* x,
TypeofState typeof_state,
ControlDestination* dest,
bool force_control) {
ASSERT(!in_spilled_code());
int original_height = frame_->height();
{ CodeGenState new_state(this, typeof_state, dest);
Visit(x);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
!dest->is_used() &&
frame_->height() == original_height) {
dest->Goto(true);
}
}
if (force_control && !dest->is_used()) {
// Convert the TOS value into flow to the control destination.
// TODO(X64): Make control flow to control destinations work.
ToBoolean(dest);
}
ASSERT(!(force_control && !dest->is_used()));
ASSERT(dest->is_used() || frame_->height() == original_height + 1);
}
class ToBooleanStub: public CodeStub {
public:
ToBooleanStub() { }
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return ToBoolean; }
int MinorKey() { return 0; }
};
// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
// convert it to a boolean in the condition code register or jump to
// 'false_target'/'true_target' as appropriate.
void CodeGenerator::ToBoolean(ControlDestination* dest) {
Comment cmnt(masm_, "[ ToBoolean");
// The value to convert should be popped from the frame.
Result value = frame_->Pop();
value.ToRegister();
// Fast case checks.
// 'false' => false.
__ movq(kScratchRegister, Factory::false_value(), RelocInfo::EMBEDDED_OBJECT);
__ cmpq(value.reg(), kScratchRegister);
dest->false_target()->Branch(equal);
// 'true' => true.
__ movq(kScratchRegister, Factory::true_value(), RelocInfo::EMBEDDED_OBJECT);
__ cmpq(value.reg(), kScratchRegister);
dest->true_target()->Branch(equal);
// 'undefined' => false.
__ movq(kScratchRegister,
Factory::undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(value.reg(), kScratchRegister);
dest->false_target()->Branch(equal);
// Smi => false iff zero.
ASSERT(kSmiTag == 0);
__ testq(value.reg(), value.reg());
dest->false_target()->Branch(zero);
__ testq(value.reg(), Immediate(kSmiTagMask));
dest->true_target()->Branch(zero);
// Call the stub for all other cases.
frame_->Push(&value); // Undo the Pop() from above.
ToBooleanStub stub;
Result temp = frame_->CallStub(&stub, 1);
// Convert the result to a condition code.
__ testq(temp.reg(), temp.reg());
temp.Unuse();
dest->Split(not_equal);
}
void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
UNIMPLEMENTED();
// TODO(X64): Implement security policy for loads of smis.
}
bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
return false;
}
//------------------------------------------------------------------------------
// CodeGenerator implementation of variables, lookups, and stores.
Reference::Reference(CodeGenerator* cgen, Expression* expression)
: cgen_(cgen), expression_(expression), type_(ILLEGAL) {
cgen->LoadReference(this);
}
Reference::~Reference() {
cgen_->UnloadReference(this);
}
void CodeGenerator::LoadReference(Reference* ref) {
// References are loaded from both spilled and unspilled code. Set the
// state to unspilled to allow that (and explicitly spill after
// construction at the construction sites).
bool was_in_spilled_code = in_spilled_code_;
in_spilled_code_ = false;
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
// We use a named reference if the key is a literal symbol, unless it is
// a string that can be legally parsed as an integer. This is because
// otherwise we will not get into the slow case code that handles [] on
// String objects.
Literal* literal = property->key()->AsLiteral();
uint32_t dummy;
if (literal != NULL &&
literal->handle()->IsSymbol() &&
!String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
// frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
in_spilled_code_ = was_in_spilled_code;
}
void CodeGenerator::UnloadReference(Reference* ref) {
// Pop a reference from the stack while preserving TOS.
Comment cmnt(masm_, "[ UnloadReference");
frame_->Nip(ref->size());
}
void Reference::SetValue(InitState init_state) {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->StoreToSlot(slot, init_state);
break;
}
// TODO(X64): Make cases other than SLOT work.
/*
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
cgen_->frame()->Push(GetName());
Result answer = cgen_->frame()->CallStoreIC();
cgen_->frame()->Push(&answer);
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
// Generate inlined version of the keyed store if the code is in
// a loop and the key is likely to be a smi.
Property* property = expression()->AsProperty();
ASSERT(property != NULL);
SmiAnalysis* key_smi_analysis = property->key()->type();
if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
Comment cmnt(masm, "[ Inlined store to keyed Property");
// Get the receiver, key and value into registers.
Result value = cgen_->frame()->Pop();
Result key = cgen_->frame()->Pop();
Result receiver = cgen_->frame()->Pop();
Result tmp = cgen_->allocator_->Allocate();
ASSERT(tmp.is_valid());
// Determine whether the value is a constant before putting it
// in a register.
bool value_is_constant = value.is_constant();
// Make sure that value, key and receiver are in registers.
value.ToRegister();
key.ToRegister();
receiver.ToRegister();
DeferredReferenceSetKeyedValue* deferred =
new DeferredReferenceSetKeyedValue(value.reg(),
key.reg(),
receiver.reg());
// Check that the value is a smi if it is not a constant. We
// can skip the write barrier for smis and constants.
if (!value_is_constant) {
__ test(value.reg(), Immediate(kSmiTagMask));
deferred->Branch(not_zero);
}
// Check that the key is a non-negative smi.
__ test(key.reg(), Immediate(kSmiTagMask | 0x80000000));
deferred->Branch(not_zero);
// Check that the receiver is not a smi.
__ test(receiver.reg(), Immediate(kSmiTagMask));
deferred->Branch(zero);
// Check that the receiver is a JSArray.
__ mov(tmp.reg(),
FieldOperand(receiver.reg(), HeapObject::kMapOffset));
__ movzx_b(tmp.reg(),
FieldOperand(tmp.reg(), Map::kInstanceTypeOffset));
__ cmp(tmp.reg(), JS_ARRAY_TYPE);
deferred->Branch(not_equal);
// Check that the key is within bounds. Both the key and the
// length of the JSArray are smis.
__ cmp(key.reg(),
FieldOperand(receiver.reg(), JSArray::kLengthOffset));
deferred->Branch(greater_equal);
// Get the elements array from the receiver and check that it
// is not a dictionary.
__ mov(tmp.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
// Bind the deferred code patch site to be able to locate the
// fixed array map comparison. When debugging, we patch this
// comparison to always fail so that we will hit the IC call
// in the deferred code which will allow the debugger to
// break for fast case stores.
__ bind(deferred->patch_site());
__ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
Immediate(Factory::fixed_array_map()));
deferred->Branch(not_equal);
// Store the value.
__ mov(Operand(tmp.reg(),
key.reg(),
times_2,
Array::kHeaderSize - kHeapObjectTag),
value.reg());
__ IncrementCounter(&Counters::keyed_store_inline, 1);
deferred->BindExit();
cgen_->frame()->Push(&receiver);
cgen_->frame()->Push(&key);
cgen_->frame()->Push(&value);
} else {
Result answer = cgen_->frame()->CallKeyedStoreIC();
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed store.
__ nop();
cgen_->frame()->Push(&answer);
}
break;
}
*/
default:
UNREACHABLE();
}
}
Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(rsi)); // do not overwrite context register
Register context = rsi;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return Operand(rsp, 0);
}
}
Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
Result tmp,
JumpTarget* slow) {
UNIMPLEMENTED();
return Operand(rsp, 0);
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
JumpTarget slow;
JumpTarget done;
Result value;
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
// If there was no control flow to slow, we can exit early.
if (!slow.is_linked()) {
frame_->Push(&value);
return;
}
done.Jump(&value);
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
// Only generate the fast case for locals that rewrite to slots.
// This rules out argument loads.
if (potential_slot != NULL) {
// Allocate a fresh register to use as a temp in
// ContextSlotOperandCheckExtensions and to hold the result
// value.
value = allocator_->Allocate();
ASSERT(value.is_valid());
__ movq(value.reg(),
ContextSlotOperandCheckExtensions(potential_slot,
value,
&slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ movq(kScratchRegister, Factory::the_hole_value(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(value.reg(), kScratchRegister);
done.Branch(not_equal, &value);
__ movq(value.reg(), Factory::undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
}
// There is always control flow to slow from
// ContextSlotOperandCheckExtensions so we have to jump around
// it.
done.Jump(&value);
}
}
slow.Bind();
// A runtime call is inevitable. We eagerly sync frame elements
// to memory so that we can push the arguments directly into place
// on top of the frame.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
if (typeof_state == INSIDE_TYPEOF) {
// value =
// frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
// value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind(&value);
frame_->Push(&value);
} else if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
//
// We currently spill the virtual frame because constants use the
// potentially unsafe direct-frame access of SlotOperand.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Load const");
JumpTarget exit;
__ movq(rcx, SlotOperand(slot, rcx));
__ movq(kScratchRegister, Factory::the_hole_value(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(rcx, kScratchRegister);
exit.Branch(not_equal);
__ movq(rcx, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT);
exit.Bind();
frame_->EmitPush(rcx);
} else if (slot->type() == Slot::PARAMETER) {
frame_->PushParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
// The other remaining slot types (LOOKUP and GLOBAL) cannot reach
// here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because it will always be a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), SlotOperand(slot, temp.reg()));
frame_->Push(&temp);
}
}
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
// TODO(X64): Enable more types of slot.
if (slot->type() == Slot::LOOKUP) {
UNIMPLEMENTED();
/*
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call. Since the call is inevitable,
// we eagerly sync the virtual frame so we can directly push the
// arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(esi);
frame_->EmitPush(Immediate(slot->var()->name()));
Result value;
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize const
// properties (introduced via eval("const foo = (some expr);")). Also,
// uses the current function context instead of the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the same
// time, because the const declaration may be at the end of the eval
// code (sigh...) and the const variable may have been used before
// (where its value is 'undefined'). Thus, we can only do the
// initialization when we actually encounter the expression and when
// the expression operands are defined and valid, and thus we need the
// split into 2 operations: declaration of the context slot followed
// by initialization.
value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling chained assignment
// expressions.
frame_->Push(&value);
*/
} else {
ASSERT(!slot->var()->is_dynamic());
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is executed,
// the code is identical to a normal store (see below).
//
// We spill the frame in the code below because the direct-frame
// access of SlotOperand is potentially unsafe with an unspilled
// frame.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Init const");
__ movq(rcx, SlotOperand(slot, rcx));
__ movq(kScratchRegister, Factory::the_hole_value(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(rcx, kScratchRegister);
exit.Branch(not_equal);
}
// We must execute the store. Storing a variable must keep the (new)
// value on the stack. This is necessary for compiling assignment
// expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will initialize
// consts to 'the hole' value and by doing so, end up calling this code.
if (slot->type() == Slot::PARAMETER) {
frame_->StoreToParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->StoreToLocalAt(slot->index());
} else {
UNIMPLEMENTED();
// The other slot types (LOOKUP and GLOBAL) cannot reach here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because the slot is a context slot.
/*
ASSERT(slot->type() == Slot::CONTEXT);
frame_->Dup();
Result value = frame_->Pop();
value.ToRegister();
Result start = allocator_->Allocate();
ASSERT(start.is_valid());
__ mov(SlotOperand(slot, start.reg()), value.reg());
// RecordWrite may destroy the value registers.
//
// TODO(204): Avoid actually spilling when the value is not
// needed (probably the common case).
frame_->Spill(value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
// The results start, value, and temp are unused by going out of
// scope.
*/
}
exit.Bind();
}
}
Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
Slot* slot,
TypeofState typeof_state,
JumpTarget* slow) {
UNIMPLEMENTED();
return Result(rax);
}
void CodeGenerator::LoadGlobal() {
if (in_spilled_code()) {
frame_->EmitPush(GlobalObject());
} else {
Result temp = allocator_->Allocate();
__ movq(temp.reg(), GlobalObject());
frame_->Push(&temp);
}
}
void CodeGenerator::LoadGlobalReceiver() {
Result temp = allocator_->Allocate();
Register reg = temp.reg();
__ movq(reg, GlobalObject());
__ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
frame_->Push(&temp);
}
#undef __
// End of CodeGenerator implementation.
// -----------------------------------------------------------------------------
// Implementation of stubs.
// Stub classes have public member named masm, not masm_.
#define __ ACCESS_MASM(masm)
void ToBooleanStub::Generate(MacroAssembler* masm) {
Label false_result, true_result, not_string;
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// 'null' => false.
__ movq(kScratchRegister, Factory::null_value(), RelocInfo::EMBEDDED_OBJECT);
__ cmpq(rax, kScratchRegister);
__ j(equal, &false_result);
// Get the map and type of the heap object.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
// Undetectable => false.
__ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
__ and_(rbx, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &false_result);
// JavaScript object => true.
__ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(above_equal, &true_result);
// String value => false iff empty.
__ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
__ j(above_equal, &not_string);
__ and_(rcx, Immediate(kStringSizeMask));
__ cmpq(rcx, Immediate(kShortStringTag));
__ j(not_equal, &true_result); // Empty string is always short.
__ movq(rdx, FieldOperand(rax, String::kLengthOffset));
__ shr(rdx, Immediate(String::kShortLengthShift));
__ j(zero, &false_result);
__ jmp(&true_result);
__ bind(&not_string);
// HeapNumber => false iff +0, -0, or NaN.
__ movq(kScratchRegister,
Factory::heap_number_map(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(rdx, kScratchRegister);
__ j(not_equal, &true_result);
// TODO(x64): Don't use fp stack, use MMX registers?
__ fldz(); // Load zero onto fp stack
// Load heap-number double value onto fp stack
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ fucompp(); // Compare and pop both values.
__ movq(kScratchRegister, rax);
__ fnstsw_ax(); // Store fp status word in ax, no checking for exceptions.
__ testb(rax, Immediate(0x08)); // Test FP condition flag C3.
__ movq(rax, kScratchRegister);
__ j(zero, &false_result);
// Fall through to |true_result|.
// Return 1/0 for true/false in rax.
__ bind(&true_result);
__ movq(rax, Immediate(1));
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ xor_(rax, rax);
__ ret(1 * kPointerSize);
}
// Flag that indicates whether or not the code that handles smi arguments
// should be placed in the stub, inlined, or omitted entirely.
enum GenericBinaryFlags {
SMI_CODE_IN_STUB,
SMI_CODE_INLINED
};
class GenericBinaryOpStub: public CodeStub {
public:
GenericBinaryOpStub(Token::Value op,
OverwriteMode mode,
GenericBinaryFlags flags)
: op_(op), mode_(mode), flags_(flags) {
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
}
void GenerateSmiCode(MacroAssembler* masm, Label* slow);
private:
Token::Value op_;
OverwriteMode mode_;
GenericBinaryFlags flags_;
const char* GetName();
#ifdef DEBUG
void Print() {
PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
Token::String(op_),
static_cast<int>(mode_),
static_cast<int>(flags_));
}
#endif
// Minor key encoding in 16 bits FOOOOOOOOOOOOOMM.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 13> {};
class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| FlagBits::encode(flags_);
}
void Generate(MacroAssembler* masm);
};
const char* GenericBinaryOpStub::GetName() {
switch (op_) {
case Token::ADD: return "GenericBinaryOpStub_ADD";
case Token::SUB: return "GenericBinaryOpStub_SUB";
case Token::MUL: return "GenericBinaryOpStub_MUL";
case Token::DIV: return "GenericBinaryOpStub_DIV";
case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
case Token::SAR: return "GenericBinaryOpStub_SAR";
case Token::SHL: return "GenericBinaryOpStub_SHL";
case Token::SHR: return "GenericBinaryOpStub_SHR";
default: return "GenericBinaryOpStub";
}
}
void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
// Perform fast-case smi code for the operation (rax <op> rbx) and
// leave result in register rax.
// Prepare the smi check of both operands by or'ing them together
// before checking against the smi mask.
__ movq(rcx, rbx);
__ or_(rcx, rax);
switch (op_) {
case Token::ADD:
__ addl(rax, rbx); // add optimistically
__ j(overflow, slow);
__ movsxlq(rax, rax); // Sign extend eax into rax.
break;
case Token::SUB:
__ subl(rax, rbx); // subtract optimistically
__ j(overflow, slow);
__ movsxlq(rax, rax); // Sign extend eax into rax.
break;
case Token::DIV:
case Token::MOD:
// Sign extend rax into rdx:rax
// (also sign extends eax into edx if eax is Smi).
__ cqo();
// Check for 0 divisor.
__ testq(rbx, rbx);
__ j(zero, slow);
break;
default:
// Fall-through to smi check.
break;
}
// Perform the actual smi check.
ASSERT(kSmiTag == 0); // adjust zero check if not the case
__ testl(rcx, Immediate(kSmiTagMask));
__ j(not_zero, slow);
switch (op_) {
case Token::ADD:
case Token::SUB:
// Do nothing here.
break;
case Token::MUL:
// If the smi tag is 0 we can just leave the tag on one operand.
ASSERT(kSmiTag == 0); // adjust code below if not the case
// Remove tag from one of the operands (but keep sign).
__ sar(rax, Immediate(kSmiTagSize));
// Do multiplication.
__ imull(rax, rbx); // multiplication of smis; result in eax
// Go slow on overflows.
__ j(overflow, slow);
// Check for negative zero result.
__ movsxlq(rax, rax); // Sign extend eax into rax.
__ NegativeZeroTest(rax, rcx, slow); // use rcx = x | y
break;
case Token::DIV:
// Divide rdx:rax by rbx (where rdx:rax is equivalent to the smi in eax).
__ idiv(rbx);
// Check that the remainder is zero.
__ testq(rdx, rdx);
__ j(not_zero, slow);
// Check for the corner case of dividing the most negative smi
// by -1. We cannot use the overflow flag, since it is not set
// by idiv instruction.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
// TODO(X64): TODO(Smi): Smi implementation dependent constant.
// Value is Smi::fromInt(-(1<<31)) / Smi::fromInt(-1)
__ cmpq(rax, Immediate(0x40000000));
__ j(equal, slow);
// Check for negative zero result.
__ NegativeZeroTest(rax, rcx, slow); // use ecx = x | y
// Tag the result and store it in register rax.
ASSERT(kSmiTagSize == kTimes2); // adjust code if not the case
__ lea(rax, Operand(rax, rax, kTimes1, kSmiTag));
break;
case Token::MOD:
// Divide rdx:rax by rbx.
__ idiv(rbx);
// Check for negative zero result.
__ NegativeZeroTest(rdx, rcx, slow); // use ecx = x | y
// Move remainder to register rax.
__ movq(rax, rdx);
break;
case Token::BIT_OR:
__ or_(rax, rbx);
break;
case Token::BIT_AND:
__ and_(rax, rbx);
break;
case Token::BIT_XOR:
__ xor_(rax, rbx);
break;
case Token::SHL:
case Token::SHR:
case Token::SAR:
// Move the second operand into register ecx.
__ movq(rcx, rbx);
// Remove tags from operands (but keep sign).
__ sar(rax, Immediate(kSmiTagSize));
__ sar(rcx, Immediate(kSmiTagSize));
// Perform the operation.
switch (op_) {
case Token::SAR:
__ sar(rax);
// No checks of result necessary
break;
case Token::SHR:
__ shrl(rax); // ecx is implicit shift register
// Check that the *unsigned* result fits in a smi.
// Neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging.
// - 0x40000000: this number would convert to negative when
// Smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi.
__ testq(rax, Immediate(0xc0000000));
__ j(not_zero, slow);
break;
case Token::SHL:
__ shll(rax);
// TODO(Smi): Significant change if Smi changes.
// Check that the *signed* result fits in a smi.
// It does, if the 30th and 31st bits are equal, since then
// shifting the SmiTag in at the bottom doesn't change the sign.
ASSERT(kSmiTagSize == 1);
__ cmpl(rax, Immediate(0xc0000000));
__ j(sign, slow);
__ movsxlq(rax, rax); // Extend new sign of eax into rax.
break;
default:
UNREACHABLE();
}
// Tag the result and store it in register eax.
ASSERT(kSmiTagSize == kTimes2); // adjust code if not the case
__ lea(rax, Operand(rax, rax, kTimes1, kSmiTag));
break;
default:
UNREACHABLE();
break;
}
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
}
void UnarySubStub::Generate(MacroAssembler* masm) {
}
class CompareStub: public CodeStub {
public:
CompareStub(Condition cc, bool strict) : cc_(cc), strict_(strict) { }
void Generate(MacroAssembler* masm);
private:
Condition cc_;
bool strict_;
Major MajorKey() { return Compare; }
int MinorKey() {
// Encode the three parameters in a unique 16 bit value.
ASSERT(static_cast<int>(cc_) < (1 << 15));
return (static_cast<int>(cc_) << 1) | (strict_ ? 1 : 0);
}
#ifdef DEBUG
void Print() {
PrintF("CompareStub (cc %d), (strict %s)\n",
static_cast<int>(cc_),
strict_ ? "true" : "false");
}
#endif
};
void CompareStub::Generate(MacroAssembler* masm) {
}
void StackCheckStub::Generate(MacroAssembler* masm) {
}
class CallFunctionStub: public CodeStub {
public:
CallFunctionStub(int argc, InLoopFlag in_loop)
: argc_(argc), in_loop_(in_loop) { }
void Generate(MacroAssembler* masm);
private:
int argc_;
InLoopFlag in_loop_;
#ifdef DEBUG
void Print() { PrintF("CallFunctionStub (args %d)\n", argc_); }
#endif
Major MajorKey() { return CallFunction; }
int MinorKey() { return argc_; }
InLoopFlag InLoop() { return in_loop_; }
};
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// Get the function to call from the stack.
// +2 ~ receiver, return address
__ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
// Check that the function really is a JavaScript function.
__ testq(rdi, Immediate(kSmiTagMask));
__ j(zero, &slow);
// Goto slow case if we do not have a function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
__ Set(rax, argc_);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
// Call the function just below TOS on the stack with the given
// arguments. The receiver is the TOS.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
int position) {
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop);
Result answer = frame_->CallStub(&call_function, arg_count + 1);
// Restore context and replace function on the stack with the
// result of the stub invocation.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &answer);
}
void InstanceofStub::Generate(MacroAssembler* masm) {
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// The displacement is used for skipping the return address and the
// frame pointer on the stack. It is the offset of the last
// parameter (if any) relative to the frame pointer.
static const int kDisplacement = 2 * kPointerSize;
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
__ cmpq(rcx, Immediate(ArgumentsAdaptorFrame::SENTINEL));
__ j(not_equal, &runtime);
// Value in rcx is Smi encoded.
// Patch the arguments.length and the parameters pointer.
__ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movq(Operand(rsp, 1 * kPointerSize), rcx);
__ lea(rdx, Operand(rdx, rcx, kTimes4, kDisplacement));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in rdx and the parameter count is in rax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ testl(rdx, Immediate(kSmiTagMask));
__ j(not_zero, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rbx, StandardFrameConstants::kContextOffset));
__ cmpq(rcx, Immediate(ArgumentsAdaptorFrame::SENTINEL));
__ j(equal, &adaptor);
// Check index against formal parameters count limit passed in
// through register rax. Use unsigned comparison to get negative
// check for free.
__ cmpq(rdx, rax);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
// Shifting code depends on SmiEncoding being equivalent to left shift:
// we multiply by four to get pointer alignment.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ lea(rbx, Operand(rbp, rax, kTimes4, 0));
__ neg(rdx);
__ movq(rax, Operand(rbx, rdx, kTimes4, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmpq(rdx, rcx);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
// Shifting code depends on SmiEncoding being equivalent to left shift:
// we multiply by four to get pointer alignment.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ lea(rbx, Operand(rbx, rcx, kTimes4, 0));
__ neg(rdx);
__ movq(rax, Operand(rbx, rdx, kTimes4, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(rbx); // Return address.
__ push(rdx);
__ push(rbx);
__ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
}
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
__ cmpq(rcx, Immediate(ArgumentsAdaptorFrame::SENTINEL));
__ j(equal, &adaptor);
// Nothing to do: The formal number of parameters has already been
// passed in register rax by calling function. Just return it.
__ ret(0);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame and return it.
__ bind(&adaptor);
__ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ ret(0);
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain frame pointer, code pointer, state and
// return address in that order.
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rdx, Operand(kScratchRegister, 0));
// get next in chain
__ movq(rcx, Operand(rdx, 0));
__ movq(Operand(kScratchRegister, 0), rcx);
__ movq(rsp, rdx);
__ pop(rbp); // pop frame pointer
__ pop(rdx); // remove code pointer
__ pop(rdx); // remove state
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ xor_(rsi, rsi); // tentatively set context pointer to NULL
Label skip;
__ cmpq(rbp, Immediate(0));
__ j(equal, &skip);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
__ ret(0);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_out_of_memory_exception,
StackFrame::Type frame_type,
bool do_gc,
bool always_allocate_scope) {
// rax: result parameter for PerformGC, if any.
// rbx: pointer to C function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// rdi: number of arguments including receiver.
// r15: pointer to the first argument (C callee-saved).
// This pointer is reused in LeaveExitFrame(), so it is stored in a
// callee-saved register.
if (do_gc) {
__ movq(Operand(rsp, 0), rax); // Result.
__ movq(kScratchRegister,
FUNCTION_ADDR(Runtime::PerformGC),
RelocInfo::RUNTIME_ENTRY);
__ call(kScratchRegister);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ incl(Operand(kScratchRegister, 0));
}
// Call C function.
#ifdef __MSVC__
// MSVC passes arguments in rcx, rdx, r8, r9
__ movq(rcx, rdi); // argc.
__ movq(rdx, r15); // argv.
#else // ! defined(__MSVC__)
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
// First argument is already in rdi.
__ movq(rsi, r15); // argv.
#endif
__ call(rbx);
// Result is in rax - do not destroy this register!
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ decl(Operand(kScratchRegister, 0));
}
// Check for failure result.
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
__ lea(rcx, Operand(rax, 1));
// Lower 2 bits of rcx are 0 iff rax has failure tag.
__ testl(rcx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(frame_type);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testq(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry);
Label continue_exception;
// If the returned failure is EXCEPTION then promote Top::pending_exception().
__ movq(kScratchRegister, Failure::Exception(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(not_equal, &continue_exception);
// Retrieve the pending exception and clear the variable.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ movq(rax, Operand(kScratchRegister, 0));
__ movq(rdx, ExternalReference::the_hole_value_location());
__ movq(rdx, Operand(rdx, 0));
__ movq(Operand(kScratchRegister, 0), rdx);
__ bind(&continue_exception);
// Special handling of out of memory exception.
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(equal, throw_out_of_memory_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
// Fetch top stack handler.
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rdx, Operand(kScratchRegister, 0));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
__ cmpq(Operand(rdx, StackHandlerConstants::kStateOffset),
Immediate(StackHandler::ENTRY));
__ j(equal, &done);
// Fetch the next handler in the list.
__ movq(rdx, Operand(rdx, StackHandlerConstants::kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
__ movq(rax, Operand(rdx, StackHandlerConstants::kNextOffset));
__ store_rax(handler_address);
// Set external caught exception to false.
__ movq(rax, Immediate(false));
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ store_rax(external_caught);
// Set pending exception and rax to out of memory exception.
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
ExternalReference pending_exception(Top::k_pending_exception_address);
__ store_rax(pending_exception);
// Restore the stack to the address of the ENTRY handler
__ movq(rsp, rdx);
// Clear the context pointer;
__ xor_(rsi, rsi);
// Restore registers from handler.
__ pop(rbp); // FP
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
__ pop(rdx); // State
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
__ ret(0);
}
void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (C callee-saved)
// rdi: caller's parameter pointer pp (C callee-saved)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
StackFrame::Type frame_type = is_debug_break ?
StackFrame::EXIT_DEBUG :
StackFrame::EXIT;
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(frame_type);
// rax: result parameter for PerformGC, if any (setup below).
// Holds the result of a previous call to GenerateCore that
// returned a failure. On next call, it's used as parameter
// to Runtime::PerformGC.
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// rdi: number of arguments including receiver (destroyed by C call).
// The rdi register is not callee-save in Unix 64-bit ABI, so
// we must treat it as volatile.
// r15: argv pointer (C callee-saved).
Label throw_out_of_memory_exception;
Label throw_normal_exception;
// Call into the runtime system. Collect garbage before the call if
// running with --gc-greedy set.
if (FLAG_gc_greedy) {
Failure* failure = Failure::RetryAfterGC(0);
__ movq(rax, failure, RelocInfo::NONE);
}
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
FLAG_gc_greedy,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ movq(rax, failure, RelocInfo::NONE);
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowOutOfMemory(masm);
// control flow for generated will not return.
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
// Setup frame.
__ push(rbp);
__ movq(rbp, rsp);
// Save callee-saved registers (X64 calling conventions).
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
// Push something that is not an arguments adaptor.
__ push(Immediate(ArgumentsAdaptorFrame::NON_SENTINEL));
__ push(Immediate(Smi::FromInt(marker))); // @ function offset
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
__ push(rdi);
__ push(rsi);
__ push(rbx);
// TODO(X64): Push XMM6-XMM15 (low 64 bits) as well, or make them
// callee-save in JS code as well.
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
__ load_rax(c_entry_fp);
__ push(rax);
// Call a faked try-block that does the invoke.
__ call(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ store_rax(pending_exception);
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// Clear any pending exceptions.
__ load_rax(ExternalReference::the_hole_value_location());
__ store_rax(pending_exception);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline
// builtin and pop the faked function when we return. We load the address
// from an external reference instead of inlining the call target address
// directly in the code, because the builtin stubs may not have been
// generated yet at the time this code is generated.
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ load_rax(construct_entry);
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ load_rax(entry);
}
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
__ pop(Operand(kScratchRegister, 0));
// Pop next_sp.
__ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
// Restore the top frame descriptor from the stack.
__ bind(&exit);
__ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
__ pop(Operand(kScratchRegister, 0));
// Restore callee-saved registers (X64 conventions).
__ pop(rbx);
__ pop(rsi);
__ pop(rdi);
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(rbp);
__ ret(0);
}
#undef __
} } // namespace v8::internal