v8/src/ia32/stub-cache-ia32.cc

4115 lines
142 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register receiver,
// Number of the cache entry pointer-size scaled.
Register offset,
Register extra) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
ExternalReference map_offset(isolate->stub_cache()->map_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ lea(offset, Operand(offset, offset, times_2, 0));
if (extra.is_valid()) {
// Get the code entry from the cache.
__ mov(extra, Operand::StaticArray(offset, times_1, value_offset));
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ add(extra, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(extra);
__ bind(&miss);
} else {
// Save the offset on the stack.
__ push(offset);
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Restore offset register.
__ mov(offset, Operand(esp, 0));
// Get the code entry from the cache.
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Restore offset and re-load code entry from cache.
__ pop(offset);
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Jump to the first instruction in the code stub.
__ add(offset, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(offset);
// Pop at miss.
__ bind(&miss);
__ pop(offset);
}
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<String> name,
Register r0,
Register r1) {
ASSERT(name->IsSymbol());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ mov(r0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ test_b(FieldOperand(r0, Map::kBitFieldOffset),
kInterceptorOrAccessCheckNeededMask);
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(r0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = r0;
__ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ cmp(FieldOperand(properties, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->hash_table_map()));
__ j(not_equal, miss_label);
Label done;
StringDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
r1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Label miss;
// Assert that code is valid. The multiplying code relies on the entry size
// being 12.
ASSERT(sizeof(Entry) == 12);
// Assert the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Assert that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
// Assert scratch and extra registers are valid, and extra2/3 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
ASSERT(extra3.is(no_reg));
Register offset = scratch;
scratch = no_reg;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ mov(offset, FieldOperand(name, String::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
// ProbeTable expects the offset to be pointer scaled, which it is, because
// the heap object tag size is 2 and the pointer size log 2 is also 2.
ASSERT(kHeapObjectTagSize == kPointerSizeLog2);
// Probe the primary table.
ProbeTable(isolate(), masm, flags, kPrimary, name, receiver, offset, extra);
// Primary miss: Compute hash for secondary probe.
__ mov(offset, FieldOperand(name, String::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
__ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
__ sub(offset, name);
__ add(offset, Immediate(flags));
__ and_(offset, (kSecondaryTableSize - 1) << kHeapObjectTagSize);
// Probe the secondary table.
ProbeTable(
isolate(), masm, flags, kSecondary, name, receiver, offset, extra);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
__ LoadGlobalFunction(index, prototype);
__ LoadGlobalFunctionInitialMap(prototype, prototype);
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
// Check we're still in the same context.
__ cmp(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)),
masm->isolate()->global());
__ j(not_equal, miss);
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(masm->isolate()->global_context()->get(index)));
// Load its initial map. The global functions all have initial maps.
__ Set(prototype, Immediate(Handle<Map>(function->initial_map())));
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ test(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss,
support_wrappers ? &check_wrapper : miss);
// Load length from the string and convert to a smi.
__ mov(eax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch1, JS_VALUE_TYPE);
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ mov(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ mov(eax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(eax, scratch1);
__ ret(0);
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
Handle<JSObject> holder,
int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ mov(dst, FieldOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset));
__ mov(dst, FieldOperand(dst, offset));
}
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
Register scratch = name;
__ mov(scratch, Immediate(interceptor));
__ push(scratch);
__ push(receiver);
__ push(holder);
__ push(FieldOperand(scratch, InterceptorInfo::kDataOffset));
__ push(Immediate(reinterpret_cast<int>(masm->isolate())));
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate()),
6);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = 4;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : last argument in the internal frame of the caller
// -----------------------------------
__ pop(scratch);
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(Immediate(Smi::FromInt(0)));
}
__ push(scratch);
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address.
// -- esp[4] : last fast api call extra argument.
// -- ...
// -- esp[kFastApiCallArguments * 4] : first fast api call extra argument.
// -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal
// frame.
// -----------------------------------
__ pop(scratch);
__ add(esp, Immediate(kPointerSize * kFastApiCallArguments));
__ push(scratch);
}
// Generates call to API function.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
// -- esp[8] : api function
// (first fast api call extra argument)
// -- esp[12] : api call data
// -- esp[16] : isolate
// -- esp[20] : last argument
// -- ...
// -- esp[(argc + 4) * 4] : first argument
// -- esp[(argc + 5) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ LoadHeapObject(edi, function);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Pass the additional arguments.
__ mov(Operand(esp, 2 * kPointerSize), edi);
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data());
if (masm->isolate()->heap()->InNewSpace(*call_data)) {
__ mov(ecx, api_call_info);
__ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset));
__ mov(Operand(esp, 3 * kPointerSize), ebx);
} else {
__ mov(Operand(esp, 3 * kPointerSize), Immediate(call_data));
}
__ mov(Operand(esp, 4 * kPointerSize),
Immediate(reinterpret_cast<int>(masm->isolate())));
// Prepare arguments.
__ lea(eax, Operand(esp, 4 * kPointerSize));
const int kApiArgc = 1; // API function gets reference to the v8::Arguments.
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
__ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
__ mov(ApiParameterOperand(1), eax); // v8::Arguments::implicit_args_.
__ add(eax, Immediate(argc * kPointerSize));
__ mov(ApiParameterOperand(2), eax); // v8::Arguments::values_.
__ Set(ApiParameterOperand(3), Immediate(argc)); // v8::Arguments::length_.
// v8::Arguments::is_construct_call_.
__ Set(ApiParameterOperand(4), Immediate(0));
// v8::InvocationCallback's argument.
__ lea(eax, ApiParameterOperand(1));
__ mov(ApiParameterOperand(0), eax);
// Function address is a foreign pointer outside V8's heap.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ CallApiFunctionAndReturn(function_address,
argc + kFastApiCallArguments + 1);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_state_(extra_state) {}
void Compile(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
holder, lookup, name, optimization, miss);
} else {
CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
name, holder, miss);
}
}
private:
void CompileCacheable(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<String> name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 = optimization.GetPrototypeDepthOfExpectedType(
object, interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 = optimization.GetPrototypeDepthOfExpectedType(
interceptor_holder, Handle<JSObject>(lookup->holder()));
}
can_do_fast_api_call =
depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
}
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->call_const_interceptor(), 1);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (*interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
Handle<JSObject>(lookup->holder()),
scratch1, scratch2, scratch3,
name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
GenerateFastApiCall(masm, optimization, arguments_.immediate());
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
}
void CompileRegular(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Handle<JSObject> interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss_label);
FrameScope scope(masm, StackFrame::INTERNAL);
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
6);
// Restore the name_ register.
__ pop(name_);
// Leave the internal frame.
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Handle<JSObject> holder_obj,
Label* interceptor_succeeded) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
// Leave the internal frame.
}
__ cmp(eax, masm->isolate()->factory()->no_interceptor_result_sentinel());
__ j(not_equal, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_state_;
};
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Handle<Code> code = (kind == Code::LOAD_IC)
? masm->isolate()->builtins()->LoadIC_Miss()
: masm->isolate()->builtins()->KeyedLoadIC_Miss();
__ jmp(code, RelocInfo::CODE_TARGET);
}
void StubCompiler::GenerateKeyedLoadMissForceGeneric(MacroAssembler* masm) {
Handle<Code> code =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(code, RelocInfo::CODE_TARGET);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
int index,
Handle<Map> transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// Check that the map of the object hasn't changed.
CompareMapMode mode = transition.is_null() ? ALLOW_ELEMENT_TRANSITION_MAPS
: REQUIRE_EXACT_MAP;
__ CheckMap(receiver_reg, Handle<Map>(object->map()),
miss_label, DO_SMI_CHECK, mode);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch); // Return address.
__ push(receiver_reg);
__ push(Immediate(transition));
__ push(eax);
__ push(scratch);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
if (!transition.is_null()) {
// Update the map of the object.
__ mov(scratch, Immediate(transition));
__ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch);
// Update the write barrier for the map field and pass the now unused
// name_reg as scratch register.
__ RecordWriteField(receiver_reg,
HeapObject::kMapOffset,
scratch,
name_reg,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ mov(FieldOperand(receiver_reg, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, eax);
__ RecordWriteField(receiver_reg,
offset,
name_reg,
scratch,
kDontSaveFPRegs);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ mov(FieldOperand(scratch, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, eax);
__ RecordWriteField(scratch,
offset,
name_reg,
receiver_reg,
kDontSaveFPRegs);
}
// Return the value (register eax).
__ ret(0);
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<GlobalObject> global,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSGlobalPropertyCell> cell =
GlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
Handle<Oddball> the_hole = masm->isolate()->factory()->the_hole_value();
if (Serializer::enabled()) {
__ mov(scratch, Immediate(cell));
__ cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset),
Immediate(the_hole));
} else {
__ cmp(Operand::Cell(cell), Immediate(the_hole));
}
__ j(not_equal, miss);
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
static void GenerateCheckPropertyCells(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
if (current->IsGlobalObject()) {
GenerateCheckPropertyCell(masm,
Handle<GlobalObject>::cast(current),
name,
scratch,
miss);
}
current = Handle<JSObject>(JSObject::cast(current->GetPrototype()));
}
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<String> name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
Handle<JSObject> current = object;
int depth = 0;
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current.is_identical_to(holder)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
Handle<JSObject> prototype(JSObject::cast(current->GetPrototype()));
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
name = factory()->LookupSymbol(name);
}
ASSERT(current->property_dictionary()->FindEntry(*name) ==
StringDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
Handle<Map> current_map(current->map());
if (in_new_space) {
// Save the map in scratch1 for later.
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK,
ALLOW_ELEMENT_TRANSITION_MAPS);
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (in_new_space) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ mov(reg, prototype);
}
}
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
}
ASSERT(current.is_identical_to(holder));
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
// Check the holder map.
__ CheckMap(reg, Handle<Map>(holder->map()),
miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// If we've skipped any global objects, it's not enough to verify that
// their maps haven't changed. We also need to check that the property
// cell for the property is still empty.
GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss);
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check the prototype chain.
Register reg = CheckPrototypes(
object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
// Get the value from the properties.
GenerateFastPropertyLoad(masm(), eax, reg, holder, index);
__ ret(0);
}
void StubCompiler::GenerateLoadCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<AccessorInfo> callback,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg = CheckPrototypes(object, receiver, holder, scratch1,
scratch2, scratch3, name, miss);
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch3.is(reg));
__ pop(scratch3); // Get return address to place it below.
__ push(receiver); // receiver
__ mov(scratch2, esp);
ASSERT(!scratch2.is(reg));
__ push(reg); // holder
// Push data from AccessorInfo.
if (isolate()->heap()->InNewSpace(callback->data())) {
__ mov(scratch1, Immediate(callback));
__ push(FieldOperand(scratch1, AccessorInfo::kDataOffset));
} else {
__ push(Immediate(Handle<Object>(callback->data())));
}
__ push(Immediate(reinterpret_cast<int>(isolate())));
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const AccessorInfo& to the C++ callback.
__ push(scratch2);
__ push(name_reg); // name
__ mov(ebx, esp); // esp points to reference to name (handler).
__ push(scratch3); // Restore return address.
// 4 elements array for v8::Arguments::values_, handler for name and pointer
// to the values (it considered as smi in GC).
const int kStackSpace = 6;
const int kApiArgc = 2;
__ PrepareCallApiFunction(kApiArgc);
__ mov(ApiParameterOperand(0), ebx); // name.
__ add(ebx, Immediate(kPointerSize));
__ mov(ApiParameterOperand(1), ebx); // arguments pointer.
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
Address getter_address = v8::ToCData<Address>(callback->getter());
__ CallApiFunctionAndReturn(getter_address, kStackSpace);
}
void StubCompiler::GenerateLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSFunction> value,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
CheckPrototypes(
object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ LoadHeapObject(eax, value);
__ ret(0);
}
void StubCompiler::GenerateLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo()) {
compile_followup_inline =
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Preserve the receiver register explicitly whenever it is different from
// the holder and it is needed should the interceptor return without any
// result. The CALLBACKS case needs the receiver to be passed into C++ code,
// the FIELD case might cause a miss during the prototype check.
bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder();
bool must_preserve_receiver_reg = !receiver.is(holder_reg) &&
(lookup->type() == CALLBACKS || must_perfrom_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ push(receiver);
}
__ push(holder_reg);
__ push(name_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ cmp(eax, factory()->no_interceptor_result_sentinel());
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
// Clobber registers when generating debug-code to provoke errors.
__ bind(&interceptor_failed);
if (FLAG_debug_code) {
__ mov(receiver, Immediate(BitCast<int32_t>(kZapValue)));
__ mov(holder_reg, Immediate(BitCast<int32_t>(kZapValue)));
__ mov(name_reg, Immediate(BitCast<int32_t>(kZapValue)));
}
__ pop(name_reg);
__ pop(holder_reg);
if (must_preserve_receiver_reg) {
__ pop(receiver);
}
// Leave the internal frame.
}
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into holder_reg.
if (must_perfrom_prototype_check) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
Handle<JSObject>(lookup->holder()),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), eax, holder_reg,
Handle<JSObject>(lookup->holder()),
lookup->GetFieldIndex());
__ ret(0);
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
Handle<AccessorInfo> callback(
AccessorInfo::cast(lookup->GetCallbackObject()));
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ pop(scratch2); // return address
__ push(receiver);
__ push(holder_reg);
__ mov(holder_reg, Immediate(callback));
__ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset));
__ push(Immediate(reinterpret_cast<int>(isolate())));
__ push(holder_reg);
__ push(name_reg);
__ push(scratch2); // restore return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(ref, 6, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg =
CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name, miss);
__ pop(scratch2); // save old return address
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
__ push(scratch2); // restore old return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad),
isolate());
__ TailCallExternalReference(ref, 6, 1);
}
}
void CallStubCompiler::GenerateNameCheck(Handle<String> name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ cmp(ecx, Immediate(name));
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the maps haven't changed.
__ JumpIfSmi(edx, miss);
CheckPrototypes(object, edx, holder, ebx, eax, edi, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Label* miss) {
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(edi, Immediate(cell));
__ mov(edi, FieldOperand(edi, JSGlobalPropertyCell::kValueOffset));
} else {
__ mov(edi, Operand::Cell(cell));
}
// Check that the cell contains the same function.
if (isolate()->heap()->InNewSpace(*function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(edi, miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, miss);
// Check the shared function info. Make sure it hasn't changed.
__ cmp(FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset),
Immediate(Handle<SharedFunctionInfo>(function->shared())));
} else {
__ cmp(edi, Immediate(function));
}
__ j(not_equal, miss);
}
void CallStubCompiler::GenerateMissBranch() {
Handle<Code> code =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_state_);
__ jmp(code, RelocInfo::CODE_TARGET);
}
Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, edx, holder, ebx, eax, edi,
name, &miss);
GenerateFastPropertyLoad(masm(), edi, reg, holder, index);
// Check that the function really is a function.
__ JumpIfSmi(edi, &miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> CallStubCompiler::CompileArrayPushCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
if (argc == 0) {
// Noop, return the length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
Label call_builtin;
if (argc == 1) { // Otherwise fall through to call builtin.
Label attempt_to_grow_elements, with_write_barrier;
// Get the elements array of the object.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
__ j(not_equal, &call_builtin);
// Get the array's length into eax and calculate new length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(eax, Immediate(Smi::FromInt(argc)));
// Get the elements' length into ecx.
__ mov(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(eax, ecx);
__ j(greater, &attempt_to_grow_elements);
// Check if value is a smi.
__ mov(ecx, Operand(esp, argc * kPointerSize));
__ JumpIfNotSmi(ecx, &with_write_barrier);
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Store the value.
__ mov(FieldOperand(edi,
eax,
times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize),
ecx);
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) {
Label fast_object, not_fast_object;
__ CheckFastObjectElements(ebx, &not_fast_object, Label::kNear);
__ jmp(&fast_object);
// In case of fast smi-only, convert to fast object, otherwise bail out.
__ bind(&not_fast_object);
__ CheckFastSmiElements(ebx, &call_builtin);
// edi: elements array
// edx: receiver
// ebx: map
Label try_holey_map;
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
ebx,
edi,
&try_holey_map);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm());
// Restore edi.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
__ jmp(&fast_object);
__ bind(&try_holey_map);
__ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS,
FAST_HOLEY_ELEMENTS,
ebx,
edi,
&call_builtin);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm());
// Restore edi.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
__ bind(&fast_object);
} else {
__ CheckFastObjectElements(ebx, &call_builtin);
}
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Store the value.
__ lea(edx, FieldOperand(edi,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ mov(Operand(edx, 0), ecx);
__ RecordWrite(edi, edx, ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
__ mov(ebx, Operand(esp, argc * kPointerSize));
// Growing elements that are SMI-only requires special handling in case
// the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check;
__ JumpIfSmi(ebx, &no_fast_elements_check);
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ CheckFastObjectElements(ecx, &call_builtin, Label::kFar);
__ bind(&no_fast_elements_check);
// We could be lucky and the elements array could be at the top of
// new-space. In this case we can just grow it in place by moving the
// allocation pointer up.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
const int kAllocationDelta = 4;
// Load top.
__ mov(ecx, Operand::StaticVariable(new_space_allocation_top));
// Check if it's the end of elements.
__ lea(edx, FieldOperand(edi,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmp(edx, ecx);
__ j(not_equal, &call_builtin);
__ add(ecx, Immediate(kAllocationDelta * kPointerSize));
__ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit));
__ j(above, &call_builtin);
// We fit and could grow elements.
__ mov(Operand::StaticVariable(new_space_allocation_top), ecx);
// Push the argument...
__ mov(Operand(edx, 0), ebx);
// ... and fill the rest with holes.
for (int i = 1; i < kAllocationDelta; i++) {
__ mov(Operand(edx, i * kPointerSize),
Immediate(factory()->the_hole_value()));
}
// We know the elements array is in new space so we don't need the
// remembered set, but we just pushed a value onto it so we may have to
// tell the incremental marker to rescan the object that we just grew. We
// don't need to worry about the holes because they are in old space and
// already marked black.
__ RecordWrite(edi, edx, ebx, kDontSaveFPRegs, OMIT_REMEMBERED_SET);
// Restore receiver to edx as finish sequence assumes it's here.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Increment element's and array's sizes.
__ add(FieldOperand(edi, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(kAllocationDelta)));
// NOTE: This only happen in new-space, where we don't
// care about the black-byte-count on pages. Otherwise we should
// update that too if the object is black.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
__ ret((argc + 1) * kPointerSize);
}
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPush, isolate()),
argc + 1,
1);
}
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileArrayPopCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) {
return Handle<Code>::null();
}
Label miss, return_undefined, call_builtin;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
// Get the elements array of the object.
__ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset));
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
__ j(not_equal, &call_builtin);
// Get the array's length into ecx and calculate new length.
__ mov(ecx, FieldOperand(edx, JSArray::kLengthOffset));
__ sub(ecx, Immediate(Smi::FromInt(1)));
__ j(negative, &return_undefined);
// Get the last element.
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(eax, FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize));
__ cmp(eax, Immediate(factory()->the_hole_value()));
__ j(equal, &call_builtin);
// Set the array's length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), ecx);
// Fill with the hole.
__ mov(FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize),
Immediate(factory()->the_hole_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ mov(eax, Immediate(factory()->undefined_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPop, isolate()),
argc + 1,
1);
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) {
return Handle<Code>::null();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
eax, holder, ebx, edx, edi, name, &miss);
Register receiver = ebx;
Register index = edi;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharCodeAtGenerator generator(receiver,
index,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->nan_value()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(name));
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) {
return Handle<Code>::null();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
eax, holder, ebx, edx, edi, name, &miss);
Register receiver = eax;
Register index = edi;
Register scratch = edx;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharAtGenerator generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->empty_string()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(name));
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = ebx;
__ mov(code, Operand(esp, 1 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ and_(code, Immediate(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator generator(code, eax);
generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileMathFloorCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(SSE2)) {
return Handle<Code>::null();
}
CpuFeatures::Scope use_sse2(SSE2);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &smi);
// Check if the argument is a heap number and load its value into xmm0.
Label slow;
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ movdbl(xmm0, FieldOperand(eax, HeapNumber::kValueOffset));
// Check if the argument is strictly positive. Note this also
// discards NaN.
__ xorpd(xmm1, xmm1);
__ ucomisd(xmm0, xmm1);
__ j(below_equal, &slow);
// Do a truncating conversion.
__ cvttsd2si(eax, Operand(xmm0));
// Check if the result fits into a smi. Note this also checks for
// 0x80000000 which signals a failed conversion.
Label wont_fit_into_smi;
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &wont_fit_into_smi);
// Smi tag and return.
__ SmiTag(eax);
__ bind(&smi);
__ ret(2 * kPointerSize);
// Check if the argument is < 2^kMantissaBits.
Label already_round;
__ bind(&wont_fit_into_smi);
__ LoadPowerOf2(xmm1, ebx, HeapNumber::kMantissaBits);
__ ucomisd(xmm0, xmm1);
__ j(above_equal, &already_round);
// Save a copy of the argument.
__ movaps(xmm2, xmm0);
// Compute (argument + 2^kMantissaBits) - 2^kMantissaBits.
__ addsd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
// Compare the argument and the tentative result to get the right mask:
// if xmm2 < xmm0:
// xmm2 = 1...1
// else:
// xmm2 = 0...0
__ cmpltsd(xmm2, xmm0);
// Subtract 1 if the argument was less than the tentative result.
__ LoadPowerOf2(xmm1, ebx, 0);
__ andpd(xmm1, xmm2);
__ subsd(xmm0, xmm1);
// Return a new heap number.
__ AllocateHeapNumber(eax, ebx, edx, &slow);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(2 * kPointerSize);
// Return the argument (when it's an already round heap number).
__ bind(&already_round);
__ mov(eax, Operand(esp, 1 * kPointerSize));
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileMathAbsCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(eax, &not_smi);
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ mov(ebx, eax);
__ sar(ebx, kBitsPerInt - 1);
// Do bitwise not or do nothing depending on ebx.
__ xor_(eax, ebx);
// Add 1 or do nothing depending on ebx.
__ sub(eax, ebx);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
// Smi case done.
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its exponent and
// sign into ebx.
__ bind(&not_smi);
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ mov(ebx, FieldOperand(eax, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ test(ebx, Immediate(HeapNumber::kSignMask));
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ and_(ebx, ~HeapNumber::kSignMask);
__ mov(ecx, FieldOperand(eax, HeapNumber::kMantissaOffset));
__ AllocateHeapNumber(eax, edi, edx, &slow);
__ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ebx);
__ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return Handle<Code>::null();
if (!cell.is_null()) return Handle<Code>::null();
if (!object->IsJSObject()) return Handle<Code>::null();
int depth = optimization.GetPrototypeDepthOfExpectedType(
Handle<JSObject>::cast(object), holder);
if (depth == kInvalidProtoDepth) return Handle<Code>::null();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss_before_stack_reserved);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_const(), 1);
__ IncrementCounter(counters->call_const_fast_api(), 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before calling any runtime function.
__ sub(esp, Immediate(kFastApiCallArguments * kPointerSize));
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, depth, &miss);
// Move the return address on top of the stack.
__ mov(eax, Operand(esp, 4 * kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), eax);
// esp[2 * kPointerSize] is uninitialized, esp[3 * kPointerSize] contains
// duplicate of return address and will be overwritten.
GenerateFastApiCall(masm(), optimization, argc);
__ bind(&miss);
__ add(esp, Immediate(kFastApiCallArguments * kPointerSize));
__ bind(&miss_before_stack_reserved);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallConstant(Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function,
Handle<String> name,
CheckType check) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder,
Handle<JSGlobalPropertyCell>::null(),
function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(edx, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(isolate()->counters()->call_const(), 1);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax,
edi, name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
break;
case STRING_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
// Check that the object is a string or a symbol.
__ CmpObjectType(edx, FIRST_NONSTRING_TYPE, eax);
__ j(above_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
eax, holder, ebx, edx, edi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case NUMBER_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(edx, &fast);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, eax);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
eax, holder, ebx, edx, edi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case BOOLEAN_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a boolean.
__ cmp(edx, factory()->true_value());
__ j(equal, &fast);
__ cmp(edx, factory()->false_value());
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
eax, holder, ebx, edx, edi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
}
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), ecx, extra_state_);
compiler.Compile(masm(), object, holder, name, &lookup, edx, ebx, edi, eax,
&miss);
// Restore receiver.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ JumpIfSmi(eax, &miss);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
__ mov(edi, eax);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle load cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder, cell, function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Set up the context (function already in edi).
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1);
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
__ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1);
GenerateMissBranch();
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(), object, index, transition, edx, ecx, ebx, &miss);
// Handle store cache miss.
__ bind(&miss);
__ mov(ecx, Immediate(name)); // restore name
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<AccessorInfo> callback,
Handle<String> name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the object hasn't changed.
__ CheckMap(edx, Handle<Map>(object->map()),
&miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(edx, ebx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(edx); // receiver
__ push(Immediate(callback)); // callback info
__ push(ecx); // name
__ push(eax); // value
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> receiver,
Handle<String> name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the object hasn't changed.
__ CheckMap(edx, Handle<Map>(receiver->map()),
&miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(edx, ebx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(edx); // receiver
__ push(ecx); // name
__ push(eax); // value
__ push(Immediate(Smi::FromInt(strict_mode_)));
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> StoreStubCompiler::CompileStoreGlobal(
Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, &miss);
// Compute the cell operand to use.
__ mov(ebx, Immediate(cell));
Operand cell_operand = FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset);
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ cmp(cell_operand, factory()->the_hole_value());
__ j(equal, &miss);
// Store the value in the cell.
__ mov(cell_operand, eax);
// No write barrier here, because cells are always rescanned.
// Return the value (register eax).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1);
__ ret(0);
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(counters->named_store_global_inline_miss(), 1);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_store_field(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(), object, index, transition, edx, ecx, ebx, &miss);
// Handle store cache miss.
__ bind(&miss);
__ DecrementCounter(counters->keyed_store_field(), 1);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub =
KeyedStoreElementStub(is_jsarray, elements_kind, grow_mode_).GetCode();
__ DispatchMap(edx, receiver_map, stub, DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(edx, &miss, Label::kNear);
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
// ebx: receiver->map().
for (int i = 0; i < receiver_maps->length(); ++i) {
__ cmp(edi, receiver_maps->at(i));
if (transitioned_maps->at(i).is_null()) {
__ j(equal, handler_stubs->at(i));
} else {
Label next_map;
__ j(not_equal, &next_map, Label::kNear);
__ mov(ebx, Immediate(transitioned_maps->at(i)));
__ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> last) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
ASSERT(last->IsGlobalObject() || last->HasFastProperties());
// Check the maps of the full prototype chain. Also check that
// global property cells up to (but not including) the last object
// in the prototype chain are empty.
CheckPrototypes(object, edx, last, ebx, eax, edi, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
GenerateCheckPropertyCell(
masm(), Handle<GlobalObject>::cast(last), name, eax, &miss);
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ mov(eax, isolate()->factory()->undefined_value());
__ ret(0);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, factory()->empty_string());
}
Handle<Code> LoadStubCompiler::CompileLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, edx, ebx, eax, edi, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadCallback(object, holder, edx, ecx, ebx, eax, edi, callback,
name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> value,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, edx, ebx, eax, edi, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(receiver, holder, &lookup, edx, ecx, eax, ebx, edi,
name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the maps haven't changed.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(object, edx, holder, ebx, eax, edi, name, &miss);
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(ebx, Immediate(cell));
__ mov(ebx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset));
} else {
__ mov(ebx, Operand::Cell(cell));
}
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ cmp(ebx, factory()->the_hole_value());
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ cmp(ebx, factory()->the_hole_value());
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
__ mov(eax, ebx);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(counters->named_load_global_stub_miss(), 1);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadField(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
int index) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_field(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadField(receiver, holder, edx, ebx, eax, edi, index, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_field(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_callback(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadCallback(receiver, holder, edx, ecx, ebx, eax, edi, callback,
name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_callback(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadConstant(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<JSFunction> value) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_constant_function(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadConstant(
receiver, holder, edx, ebx, eax, edi, value, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_constant_function(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadInterceptor(
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_interceptor(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver, holder, &lookup, edx, ecx, eax, ebx, edi,
name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_interceptor(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadArrayLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_array_length(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadArrayLength(masm(), edx, eax, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_array_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadStringLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_string_length(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadStringLength(masm(), edx, eax, ebx, &miss, true);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_string_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadFunctionPrototype(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_function_prototype(), 1);
// Check that the name has not changed.
__ cmp(ecx, Immediate(name));
__ j(not_equal, &miss);
GenerateLoadFunctionPrototype(masm(), edx, eax, ebx, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_function_prototype(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode();
__ DispatchMap(edx, receiver_map, stub, DO_SMI_CHECK);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadPolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_ics) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(edx, &miss);
Register map_reg = ebx;
__ mov(map_reg, FieldOperand(edx, HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int current = 0; current < receiver_count; ++current) {
__ cmp(map_reg, receiver_maps->at(current));
__ j(equal, handler_ics->at(current));
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
// Specialized stub for constructing objects from functions which only have only
// simple assignments of the form this.x = ...; in their body.
Handle<Code> ConstructStubCompiler::CompileConstructStub(
Handle<JSFunction> function) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_stub_call;
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(ebx, factory()->undefined_value());
__ j(not_equal, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(ebx, &generic_stub_call);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ j(not_equal, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// edi: constructor
// ebx: initial map
__ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
__ Assert(not_equal, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject on the heap by moving the new space allocation
// top forward.
// edi: constructor
// ebx: initial map
__ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ shl(ecx, kPointerSizeLog2);
__ AllocateInNewSpace(ecx, edx, ecx, no_reg,
&generic_stub_call, NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields and add the heap tag.
// ebx: initial map
// edx: JSObject (untagged)
__ mov(Operand(edx, JSObject::kMapOffset), ebx);
__ mov(ebx, factory()->empty_fixed_array());
__ mov(Operand(edx, JSObject::kPropertiesOffset), ebx);
__ mov(Operand(edx, JSObject::kElementsOffset), ebx);
// Push the allocated object to the stack. This is the object that will be
// returned (after it is tagged).
__ push(edx);
// eax: argc
// edx: JSObject (untagged)
// Load the address of the first in-object property into edx.
__ lea(edx, Operand(edx, JSObject::kHeaderSize));
// Calculate the location of the first argument. The stack contains the
// allocated object and the return address on top of the argc arguments.
__ lea(ecx, Operand(esp, eax, times_4, 1 * kPointerSize));
// Use edi for holding undefined which is used in several places below.
__ mov(edi, factory()->undefined_value());
// eax: argc
// ecx: first argument
// edx: first in-object property of the JSObject
// edi: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
Handle<SharedFunctionInfo> shared(function->shared());
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
// Check if the argument assigned to the property is actually passed.
// If argument is not passed the property is set to undefined,
// otherwise find it on the stack.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ mov(ebx, edi);
__ cmp(eax, arg_number);
if (CpuFeatures::IsSupported(CMOV)) {
CpuFeatures::Scope use_cmov(CMOV);
__ cmov(above, ebx, Operand(ecx, arg_number * -kPointerSize));
} else {
Label not_passed;
__ j(below_equal, &not_passed);
__ mov(ebx, Operand(ecx, arg_number * -kPointerSize));
__ bind(&not_passed);
}
// Store value in the property.
__ mov(Operand(edx, i * kPointerSize), ebx);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ mov(Operand(edx, i * kPointerSize), Immediate(constant));
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ mov(Operand(edx, i * kPointerSize), edi);
}
// Move argc to ebx and retrieve and tag the JSObject to return.
__ mov(ebx, eax);
__ pop(eax);
__ or_(eax, Immediate(kHeapObjectTag));
// Remove caller arguments and receiver from the stack and return.
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ IncrementCounter(counters->constructed_objects_stub(), 1);
__ ret(0);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Handle<Code> code = isolate()->builtins()->JSConstructStubGeneric();
__ jmp(code, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(ecx, &miss_force_generic);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
__ LoadFromNumberDictionary(&slow, eax, ecx, ebx, edx, edi, eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow);
__ pop(edx);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> miss_force_generic_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_force_generic_ic, RelocInfo::CODE_TARGET);
}
static void GenerateSmiKeyCheck(MacroAssembler* masm,
Register key,
Register scratch,
XMMRegister xmm_scratch0,
XMMRegister xmm_scratch1,
Label* fail) {
// Check that key is a smi and if SSE2 is available a heap number
// containing a smi and branch if the check fails.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
Label key_ok;
__ JumpIfSmi(key, &key_ok);
__ cmp(FieldOperand(key, HeapObject::kMapOffset),
Immediate(Handle<Map>(masm->isolate()->heap()->heap_number_map())));
__ j(not_equal, fail);
__ movdbl(xmm_scratch0, FieldOperand(key, HeapNumber::kValueOffset));
__ cvttsd2si(scratch, Operand(xmm_scratch0));
__ cvtsi2sd(xmm_scratch1, scratch);
__ ucomisd(xmm_scratch1, xmm_scratch0);
__ j(not_equal, fail);
__ j(parity_even, fail); // NaN.
// Check if the key fits in the smi range.
__ cmp(scratch, 0xc0000000);
__ j(sign, fail);
__ SmiTag(scratch);
__ mov(key, scratch);
__ bind(&key_ok);
} else {
__ JumpIfNotSmi(key, fail);
}
}
void KeyedLoadStubCompiler::GenerateLoadExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, failed_allocation, slow;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, eax, xmm0, xmm1, &miss_force_generic);
// Check that the index is in range.
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(ecx, FieldOperand(ebx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &miss_force_generic);
__ mov(ebx, FieldOperand(ebx, ExternalArray::kExternalPointerOffset));
// ebx: base pointer of external storage
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ SmiUntag(ecx); // Untag the index.
__ movsx_b(eax, Operand(ebx, ecx, times_1, 0));
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
__ SmiUntag(ecx); // Untag the index.
__ movzx_b(eax, Operand(ebx, ecx, times_1, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
__ movsx_w(eax, Operand(ebx, ecx, times_1, 0));
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movzx_w(eax, Operand(ebx, ecx, times_1, 0));
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
__ mov(eax, Operand(ebx, ecx, times_2, 0));
break;
case EXTERNAL_FLOAT_ELEMENTS:
__ fld_s(Operand(ebx, ecx, times_2, 0));
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ fld_d(Operand(ebx, ecx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// eax: value
// For floating-point array type:
// FP(0): value
if (elements_kind == EXTERNAL_INT_ELEMENTS ||
elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
if (elements_kind == EXTERNAL_INT_ELEMENTS) {
__ cmp(eax, 0xc0000000);
__ j(sign, &box_int);
} else {
ASSERT_EQ(EXTERNAL_UNSIGNED_INT_ELEMENTS, elements_kind);
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &box_int);
}
__ SmiTag(eax);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
if (elements_kind == EXTERNAL_INT_ELEMENTS) {
__ push(eax);
__ fild_s(Operand(esp, 0));
__ pop(eax);
} else {
ASSERT_EQ(EXTERNAL_UNSIGNED_INT_ELEMENTS, elements_kind);
// Need to zero-extend the value.
// There's no fild variant for unsigned values, so zero-extend
// to a 64-bit int manually.
__ push(Immediate(0));
__ push(eax);
__ fild_d(Operand(esp, 0));
__ pop(eax);
__ pop(eax);
}
// FP(0): value
__ AllocateHeapNumber(eax, ebx, edi, &failed_allocation);
// Set the value.
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(eax, ebx, edi, &failed_allocation);
// Set the value.
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else {
__ SmiTag(eax);
__ ret(0);
}
// If we fail allocation of the HeapNumber, we still have a value on
// top of the FPU stack. Remove it.
__ bind(&failed_allocation);
__ fstp(0);
// Fall through to slow case.
// Slow case: Jump to runtime.
__ bind(&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_load_external_array_slow(), 1);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
// Miss case: Jump to runtime.
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, slow, check_heap_number;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, ebx, xmm0, xmm1, &miss_force_generic);
// Check that the index is in range.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(ecx, FieldOperand(edi, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
__ JumpIfNotSmi(eax, &slow);
} else {
__ JumpIfNotSmi(eax, &check_heap_number);
}
// smi case
__ mov(ebx, eax); // Preserve the value in eax as the return value.
__ SmiUntag(ebx);
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// edi: base pointer of external storage
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
__ ClampUint8(ebx);
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ mov_w(Operand(edi, ecx, times_1, 0), ebx);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ mov(Operand(edi, ecx, times_2, 0), ebx);
break;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
// Need to perform int-to-float conversion.
__ push(ebx);
__ fild_s(Operand(esp, 0));
__ pop(ebx);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ fstp_s(Operand(edi, ecx, times_2, 0));
} else { // elements_kind == EXTERNAL_DOUBLE_ELEMENTS.
__ fstp_d(Operand(edi, ecx, times_4, 0));
}
break;
default:
UNREACHABLE();
break;
}
__ ret(0); // Return the original value.
// TODO(danno): handle heap number -> pixel array conversion
if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
__ bind(&check_heap_number);
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->heap_number_map()));
__ j(not_equal, &slow);
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// edi: base pointer of external storage
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ fstp_s(Operand(edi, ecx, times_2, 0));
__ ret(0);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ fstp_d(Operand(edi, ecx, times_4, 0));
__ ret(0);
} else {
// Perform float-to-int conversion with truncation (round-to-zero)
// behavior.
// For the moment we make the slow call to the runtime on
// processors that don't support SSE2. The code in IntegerConvert
// (code-stubs-ia32.cc) is roughly what is needed here though the
// conversion failure case does not need to be handled.
if (CpuFeatures::IsSupported(SSE2)) {
if ((elements_kind == EXTERNAL_INT_ELEMENTS ||
elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) &&
CpuFeatures::IsSupported(SSE3)) {
CpuFeatures::Scope scope(SSE3);
// fisttp stores values as signed integers. To represent the
// entire range of int and unsigned int arrays, store as a
// 64-bit int and discard the high 32 bits.
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ sub(esp, Immediate(2 * kPointerSize));
__ fisttp_d(Operand(esp, 0));
// If conversion failed (NaN, infinity, or a number outside
// signed int64 range), the result is 0x8000000000000000, and
// we must handle this case in the runtime.
Label ok;
__ cmp(Operand(esp, kPointerSize), Immediate(0x80000000u));
__ j(not_equal, &ok);
__ cmp(Operand(esp, 0), Immediate(0));
__ j(not_equal, &ok);
__ add(esp, Immediate(2 * kPointerSize)); // Restore the stack.
__ jmp(&slow);
__ bind(&ok);
__ pop(ebx);
__ add(esp, Immediate(kPointerSize));
__ mov(Operand(edi, ecx, times_2, 0), ebx);
} else {
ASSERT(CpuFeatures::IsSupported(SSE2));
CpuFeatures::Scope scope(SSE2);
__ cvttsd2si(ebx, FieldOperand(eax, HeapNumber::kValueOffset));
__ cmp(ebx, 0x80000000u);
__ j(equal, &slow);
// ebx: untagged integer value
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
__ ClampUint8(ebx);
// Fall through.
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ mov_w(Operand(edi, ecx, times_1, 0), ebx);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ mov(Operand(edi, ecx, times_2, 0), ebx);
break;
default:
UNREACHABLE();
break;
}
}
__ ret(0); // Return original value.
}
}
}
// Slow case: call runtime.
__ bind(&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_store_external_array_slow(), 1);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, eax, xmm0, xmm1, &miss_force_generic);
// Get the elements array.
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(eax);
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(eax, FixedArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Load the result and make sure it's not the hole.
__ mov(ebx, Operand(eax, ecx, times_2,
FixedArray::kHeaderSize - kHeapObjectTag));
__ cmp(ebx, masm->isolate()->factory()->the_hole_value());
__ j(equal, &miss_force_generic);
__ mov(eax, ebx);
__ ret(0);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, slow_allocate_heapnumber;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, eax, xmm0, xmm1, &miss_force_generic);
// Get the elements array.
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(eax);
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(eax, FixedDoubleArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Check for the hole
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ cmp(FieldOperand(eax, ecx, times_4, offset), Immediate(kHoleNanUpper32));
__ j(equal, &miss_force_generic);
// Always allocate a heap number for the result.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(xmm0, FieldOperand(eax, ecx, times_4,
FixedDoubleArray::kHeaderSize));
} else {
__ fld_d(FieldOperand(eax, ecx, times_4, FixedDoubleArray::kHeaderSize));
}
__ AllocateHeapNumber(eax, ebx, edi, &slow_allocate_heapnumber);
// Set the value.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
__ ret(0);
__ bind(&slow_allocate_heapnumber);
// A value was pushed on the floating point stack before the allocation, if
// the allocation fails it needs to be removed.
if (!CpuFeatures::IsSupported(SSE2)) {
__ fstp(0);
}
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastElement(
MacroAssembler* masm,
bool is_js_array,
ElementsKind elements_kind,
KeyedAccessGrowMode grow_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, grow, slow, transition_elements_kind;
Label check_capacity, prepare_slow, finish_store, commit_backing_store;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, ebx, xmm0, xmm1, &miss_force_generic);
if (IsFastSmiElementsKind(elements_kind)) {
__ JumpIfNotSmi(eax, &transition_elements_kind);
}
// Get the elements array and make sure it is a fast element array, not 'cow'.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
if (is_js_array) {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // smis.
if (grow_mode == ALLOW_JSARRAY_GROWTH) {
__ j(above_equal, &grow);
} else {
__ j(above_equal, &miss_force_generic);
}
} else {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // smis.
__ j(above_equal, &miss_force_generic);
}
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->fixed_array_map()));
__ j(not_equal, &miss_force_generic);
__ bind(&finish_store);
if (IsFastSmiElementsKind(elements_kind)) {
// ecx is a smi, use times_half_pointer_size instead of
// times_pointer_size
__ mov(FieldOperand(edi,
ecx,
times_half_pointer_size,
FixedArray::kHeaderSize), eax);
} else {
ASSERT(IsFastObjectElementsKind(elements_kind));
// Do the store and update the write barrier.
// ecx is a smi, use times_half_pointer_size instead of
// times_pointer_size
__ lea(ecx, FieldOperand(edi,
ecx,
times_half_pointer_size,
FixedArray::kHeaderSize));
__ mov(Operand(ecx, 0), eax);
// Make sure to preserve the value in register eax.
__ mov(ebx, eax);
__ RecordWrite(edi, ecx, ebx, kDontSaveFPRegs);
}
// Done.
__ ret(0);
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
// Handle transition to other elements kinds without using the generic stub.
__ bind(&transition_elements_kind);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic_miss, RelocInfo::CODE_TARGET);
if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
// Handle transition requiring the array to grow.
__ bind(&grow);
// Make sure the array is only growing by a single element, anything else
// must be handled by the runtime. Flags are already set by previous
// compare.
__ j(not_equal, &miss_force_generic);
// Check for the empty array, and preallocate a small backing store if
// possible.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array()));
__ j(not_equal, &check_capacity);
int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
__ AllocateInNewSpace(size, edi, ebx, ecx, &prepare_slow, TAG_OBJECT);
// Restore the key, which is known to be the array length.
// eax: value
// ecx: key
// edx: receiver
// edi: elements
// Make sure that the backing store can hold additional elements.
__ mov(FieldOperand(edi, JSObject::kMapOffset),
Immediate(masm->isolate()->factory()->fixed_array_map()));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
__ mov(ebx, Immediate(masm->isolate()->factory()->the_hole_value()));
for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) {
__ mov(FieldOperand(edi, FixedArray::SizeFor(i)), ebx);
}
// Store the element at index zero.
__ mov(FieldOperand(edi, FixedArray::SizeFor(0)), eax);
// Install the new backing store in the JSArray.
__ mov(FieldOperand(edx, JSObject::kElementsOffset), edi);
__ RecordWriteField(edx, JSObject::kElementsOffset, edi, ebx,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Increment the length of the array.
__ mov(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ ret(0);
__ bind(&check_capacity);
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->fixed_cow_array_map()));
__ j(equal, &miss_force_generic);
// eax: value
// ecx: key
// edx: receiver
// edi: elements
// Make sure that the backing store can hold additional elements.
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
__ j(above_equal, &slow);
// Grow the array and finish the store.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ jmp(&finish_store);
__ bind(&prepare_slow);
// Restore the key, which is known to be the array length.
__ mov(ecx, Immediate(0));
__ bind(&slow);
Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ jmp(ic_slow, RelocInfo::CODE_TARGET);
}
}
void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
MacroAssembler* masm,
bool is_js_array,
KeyedAccessGrowMode grow_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, transition_elements_kind, grow, slow;
Label check_capacity, prepare_slow, finish_store, commit_backing_store;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi or a heap number convertible to a smi.
GenerateSmiKeyCheck(masm, ecx, ebx, xmm0, xmm1, &miss_force_generic);
// Get the elements array.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(edi);
if (is_js_array) {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // smis.
if (grow_mode == ALLOW_JSARRAY_GROWTH) {
__ j(above_equal, &grow);
} else {
__ j(above_equal, &miss_force_generic);
}
} else {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // smis.
__ j(above_equal, &miss_force_generic);
}
__ bind(&finish_store);
__ StoreNumberToDoubleElements(eax, edi, ecx, edx, xmm0,
&transition_elements_kind, true);
__ ret(0);
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
// Handle transition to other elements kinds without using the generic stub.
__ bind(&transition_elements_kind);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic_miss, RelocInfo::CODE_TARGET);
if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
// Handle transition requiring the array to grow.
__ bind(&grow);
// Make sure the array is only growing by a single element, anything else
// must be handled by the runtime. Flags are already set by previous
// compare.
__ j(not_equal, &miss_force_generic);
// Transition on values that can't be stored in a FixedDoubleArray.
Label value_is_smi;
__ JumpIfSmi(eax, &value_is_smi);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Immediate(Handle<Map>(masm->isolate()->heap()->heap_number_map())));
__ j(not_equal, &transition_elements_kind);
__ bind(&value_is_smi);
// Check for the empty array, and preallocate a small backing store if
// possible.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array()));
__ j(not_equal, &check_capacity);
int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements);
__ AllocateInNewSpace(size, edi, ebx, ecx, &prepare_slow, TAG_OBJECT);
// Restore the key, which is known to be the array length.
__ mov(ecx, Immediate(0));
// eax: value
// ecx: key
// edx: receiver
// edi: elements
// Initialize the new FixedDoubleArray. Leave elements unitialized for
// efficiency, they are guaranteed to be initialized before use.
__ mov(FieldOperand(edi, JSObject::kMapOffset),
Immediate(masm->isolate()->factory()->fixed_double_array_map()));
__ mov(FieldOperand(edi, FixedDoubleArray::kLengthOffset),
Immediate(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
// Install the new backing store in the JSArray.
__ mov(FieldOperand(edx, JSObject::kElementsOffset), edi);
__ RecordWriteField(edx, JSObject::kElementsOffset, edi, ebx,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Increment the length of the array.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ jmp(&finish_store);
__ bind(&check_capacity);
// eax: value
// ecx: key
// edx: receiver
// edi: elements
// Make sure that the backing store can hold additional elements.
__ cmp(ecx, FieldOperand(edi, FixedDoubleArray::kLengthOffset));
__ j(above_equal, &slow);
// Grow the array and finish the store.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ jmp(&finish_store);
__ bind(&prepare_slow);
// Restore the key, which is known to be the array length.
__ mov(ecx, Immediate(0));
__ bind(&slow);
Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ jmp(ic_slow, RelocInfo::CODE_TARGET);
}
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32