v8/test/unittests/heap/gc-idle-time-handler-unittest.cc

438 lines
16 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "src/heap/gc-idle-time-handler.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
namespace {
class GCIdleTimeHandlerTest : public ::testing::Test {
public:
GCIdleTimeHandlerTest() {}
virtual ~GCIdleTimeHandlerTest() {}
GCIdleTimeHandler* handler() { return &handler_; }
GCIdleTimeHandler::HeapState DefaultHeapState() {
GCIdleTimeHandler::HeapState result;
result.contexts_disposed = 0;
result.contexts_disposal_rate = GCIdleTimeHandler::kHighContextDisposalRate;
result.size_of_objects = kSizeOfObjects;
result.incremental_marking_stopped = false;
result.can_start_incremental_marking = true;
result.sweeping_in_progress = false;
result.mark_compact_speed_in_bytes_per_ms = kMarkCompactSpeed;
result.incremental_marking_speed_in_bytes_per_ms = kMarkingSpeed;
result.scavenge_speed_in_bytes_per_ms = kScavengeSpeed;
result.used_new_space_size = 0;
result.new_space_capacity = kNewSpaceCapacity;
result.new_space_allocation_throughput_in_bytes_per_ms =
kNewSpaceAllocationThroughput;
return result;
}
static const size_t kSizeOfObjects = 100 * MB;
static const size_t kMarkCompactSpeed = 200 * KB;
static const size_t kMarkingSpeed = 200 * KB;
static const size_t kScavengeSpeed = 100 * KB;
static const size_t kNewSpaceCapacity = 1 * MB;
static const size_t kNewSpaceAllocationThroughput = 10 * KB;
private:
GCIdleTimeHandler handler_;
};
} // namespace
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeInitial) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(1, 0);
EXPECT_EQ(
static_cast<size_t>(GCIdleTimeHandler::kInitialConservativeMarkingSpeed *
GCIdleTimeHandler::kConservativeTimeRatio),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeNonZero) {
size_t marking_speed_in_bytes_per_millisecond = 100;
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
1, marking_speed_in_bytes_per_millisecond);
EXPECT_EQ(static_cast<size_t>(marking_speed_in_bytes_per_millisecond *
GCIdleTimeHandler::kConservativeTimeRatio),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow1) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
10, std::numeric_limits<size_t>::max());
EXPECT_EQ(static_cast<size_t>(GCIdleTimeHandler::kMaximumMarkingStepSize),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow2) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
std::numeric_limits<size_t>::max(), 10);
EXPECT_EQ(static_cast<size_t>(GCIdleTimeHandler::kMaximumMarkingStepSize),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeInitial) {
size_t size = 100 * MB;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, 0);
EXPECT_EQ(size / GCIdleTimeHandler::kInitialConservativeMarkCompactSpeed,
time);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeNonZero) {
size_t size = 100 * MB;
size_t speed = 1 * MB;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed);
EXPECT_EQ(size / speed, time);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeMax) {
size_t size = std::numeric_limits<size_t>::max();
size_t speed = 1;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed);
EXPECT_EQ(GCIdleTimeHandler::kMaxMarkCompactTimeInMs, time);
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeEmptyNewSpace) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_in_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_in_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeFullNewSpace) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
int idle_time_in_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_in_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeUnknownScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = 0;
int idle_time_in_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_in_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeLowScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = 1 * KB;
int idle_time_in_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_in_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeHighScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = kNewSpaceCapacity;
int idle_time_in_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_in_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, ShouldDoMarkCompact) {
size_t idle_time_in_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoMarkCompact(idle_time_in_ms, 0, 0));
}
TEST_F(GCIdleTimeHandlerTest, DontDoMarkCompact) {
size_t idle_time_in_ms = 1;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoMarkCompact(
idle_time_in_ms, kSizeOfObjects, kMarkingSpeed));
}
TEST_F(GCIdleTimeHandlerTest, ShouldDoFinalIncrementalMarkCompact) {
size_t idle_time_in_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact(
idle_time_in_ms, 0, 0));
}
TEST_F(GCIdleTimeHandlerTest, DontDoFinalIncrementalMarkCompact) {
size_t idle_time_in_ms = 1;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact(
idle_time_in_ms, kSizeOfObjects, kMarkingSpeed));
}
TEST_F(GCIdleTimeHandlerTest, ContextDisposeLowRate) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.incremental_marking_stopped = true;
int idle_time_ms = 0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ContextDisposeHighRate) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate =
GCIdleTimeHandler::kHighContextDisposalRate - 1;
heap_state.incremental_marking_stopped = true;
int idle_time_ms = 0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeLargeIdleTime) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate = 1.0;
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms =
static_cast<int>((heap_state.size_of_objects + speed - 1) / speed);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeZeroIdleTime) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate = 1.0;
heap_state.incremental_marking_stopped = true;
int idle_time_ms = 0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate = 1.0;
heap_state.incremental_marking_stopped = true;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms = static_cast<int>(heap_state.size_of_objects / speed - 1);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate = 1.0;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms = static_cast<int>(heap_state.size_of_objects / speed - 1);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, IncrementalMarking1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms;
int idle_time_ms = 10;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_GT(speed * static_cast<size_t>(idle_time_ms),
static_cast<size_t>(action.parameter));
EXPECT_LT(0, action.parameter);
}
TEST_F(GCIdleTimeHandlerTest, IncrementalMarking2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms;
int idle_time_ms = 10;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_GT(speed * static_cast<size_t>(idle_time_ms),
static_cast<size_t>(action.parameter));
EXPECT_LT(0, action.parameter);
}
TEST_F(GCIdleTimeHandlerTest, NotEnoughTime) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms = static_cast<int>(heap_state.size_of_objects / speed - 1);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, StopEventually1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms = static_cast<int>(heap_state.size_of_objects / speed + 1);
for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
handler()->NotifyIdleMarkCompact();
}
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
}
TEST_F(GCIdleTimeHandlerTest, StopEventually2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
// In this case we emulate incremental marking steps that finish with a
// full gc.
handler()->NotifyIdleMarkCompact();
}
heap_state.can_start_incremental_marking = false;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
int idle_time_ms = static_cast<int>(heap_state.size_of_objects / speed + 1);
for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
handler()->NotifyIdleMarkCompact();
}
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
// Emulate mutator work.
for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) {
handler()->NotifyScavenge();
}
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
if (action.type == DONE) break;
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
// In this case we try to emulate incremental marking steps the finish with
// a full gc.
handler()->NotifyIdleMarkCompact();
}
heap_state.can_start_incremental_marking = false;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
// Emulate mutator work.
for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) {
handler()->NotifyScavenge();
}
heap_state.can_start_incremental_marking = true;
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, Scavenge) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
heap_state.used_new_space_size =
heap_state.new_space_capacity -
(kNewSpaceAllocationThroughput * idle_time_ms);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_SCAVENGE, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ScavengeAndDone) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
heap_state.can_start_incremental_marking = false;
heap_state.incremental_marking_stopped = true;
heap_state.used_new_space_size =
heap_state.new_space_capacity -
(kNewSpaceAllocationThroughput * idle_time_ms);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_SCAVENGE, action.type);
heap_state.used_new_space_size = 0;
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ZeroIdleTimeNothingToDo) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ZeroIdleTimeDoNothingButStartIdleRound) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
if (action.type == DONE) break;
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
// In this case we try to emulate incremental marking steps the finish with
// a full gc.
handler()->NotifyIdleMarkCompact();
}
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
// Emulate mutator work.
for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) {
handler()->NotifyScavenge();
}
action = handler()->Compute(0, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
} // namespace internal
} // namespace v8