v8/src/types.cc

927 lines
29 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/types.h"
#include "src/ostreams.h"
#include "src/types-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Glb and lub computation.
// The largest bitset subsumed by this type.
template<class Config>
int TypeImpl<Config>::BitsetType::Glb(TypeImpl* type) {
DisallowHeapAllocation no_allocation;
if (type->IsBitset()) {
return type->AsBitset();
} else if (type->IsUnion()) {
UnionHandle unioned = handle(type->AsUnion());
DCHECK(unioned->Wellformed());
return unioned->Get(0)->BitsetGlb(); // Other BitsetGlb's are kNone anyway.
} else {
return kNone;
}
}
// The smallest bitset subsuming this type.
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(TypeImpl* type) {
DisallowHeapAllocation no_allocation;
if (type->IsBitset()) {
return type->AsBitset();
} else if (type->IsUnion()) {
UnionHandle unioned = handle(type->AsUnion());
int bitset = kNone;
for (int i = 0; i < unioned->Length(); ++i) {
bitset |= unioned->Get(i)->BitsetLub();
}
return bitset;
} else if (type->IsClass()) {
// Little hack to avoid the need for a region for handlification here...
return Config::is_class(type) ? Lub(*Config::as_class(type)) :
type->AsClass()->Bound(NULL)->AsBitset();
} else if (type->IsConstant()) {
return type->AsConstant()->Bound()->AsBitset();
} else if (type->IsContext()) {
return type->AsContext()->Bound()->AsBitset();
} else if (type->IsArray()) {
return type->AsArray()->Bound()->AsBitset();
} else if (type->IsFunction()) {
return type->AsFunction()->Bound()->AsBitset();
} else {
UNREACHABLE();
return kNone;
}
}
// The smallest bitset subsuming this type, ignoring explicit bounds.
template<class Config>
int TypeImpl<Config>::BitsetType::InherentLub(TypeImpl* type) {
DisallowHeapAllocation no_allocation;
if (type->IsBitset()) {
return type->AsBitset();
} else if (type->IsUnion()) {
UnionHandle unioned = handle(type->AsUnion());
int bitset = kNone;
for (int i = 0; i < unioned->Length(); ++i) {
bitset |= unioned->Get(i)->InherentBitsetLub();
}
return bitset;
} else if (type->IsClass()) {
return Lub(*type->AsClass()->Map());
} else if (type->IsConstant()) {
return Lub(*type->AsConstant()->Value());
} else if (type->IsContext()) {
return kInternal & kTaggedPtr;
} else if (type->IsArray()) {
return kArray;
} else if (type->IsFunction()) {
return kFunction;
} else {
UNREACHABLE();
return kNone;
}
}
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(i::Object* value) {
DisallowHeapAllocation no_allocation;
if (value->IsNumber()) {
return Lub(value->Number()) & (value->IsSmi() ? kTaggedInt : kTaggedPtr);
}
return Lub(i::HeapObject::cast(value)->map());
}
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(double value) {
DisallowHeapAllocation no_allocation;
if (i::IsMinusZero(value)) return kMinusZero;
if (std::isnan(value)) return kNaN;
if (IsUint32Double(value)) return Lub(FastD2UI(value));
if (IsInt32Double(value)) return Lub(FastD2I(value));
return kOtherNumber;
}
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(int32_t value) {
if (value >= 0x40000000) {
return i::SmiValuesAre31Bits() ? kOtherUnsigned31 : kUnsignedSmall;
}
if (value >= 0) return kUnsignedSmall;
if (value >= -0x40000000) return kOtherSignedSmall;
return i::SmiValuesAre31Bits() ? kOtherSigned32 : kOtherSignedSmall;
}
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(uint32_t value) {
DisallowHeapAllocation no_allocation;
if (value >= 0x80000000u) return kOtherUnsigned32;
if (value >= 0x40000000u) {
return i::SmiValuesAre31Bits() ? kOtherUnsigned31 : kUnsignedSmall;
}
return kUnsignedSmall;
}
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(i::Map* map) {
DisallowHeapAllocation no_allocation;
switch (map->instance_type()) {
case STRING_TYPE:
case ASCII_STRING_TYPE:
case CONS_STRING_TYPE:
case CONS_ASCII_STRING_TYPE:
case SLICED_STRING_TYPE:
case SLICED_ASCII_STRING_TYPE:
case EXTERNAL_STRING_TYPE:
case EXTERNAL_ASCII_STRING_TYPE:
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_STRING_TYPE:
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case INTERNALIZED_STRING_TYPE:
case ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_TYPE:
case EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
return kString;
case SYMBOL_TYPE:
return kSymbol;
case ODDBALL_TYPE: {
Heap* heap = map->GetHeap();
if (map == heap->undefined_map()) return kUndefined;
if (map == heap->null_map()) return kNull;
if (map == heap->boolean_map()) return kBoolean;
DCHECK(map == heap->the_hole_map() ||
map == heap->uninitialized_map() ||
map == heap->no_interceptor_result_sentinel_map() ||
map == heap->termination_exception_map() ||
map == heap->arguments_marker_map());
return kInternal & kTaggedPtr;
}
case HEAP_NUMBER_TYPE:
return kNumber & kTaggedPtr;
case JS_VALUE_TYPE:
case JS_DATE_TYPE:
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_GENERATOR_OBJECT_TYPE:
case JS_MODULE_TYPE:
case JS_GLOBAL_OBJECT_TYPE:
case JS_BUILTINS_OBJECT_TYPE:
case JS_GLOBAL_PROXY_TYPE:
case JS_ARRAY_BUFFER_TYPE:
case JS_TYPED_ARRAY_TYPE:
case JS_DATA_VIEW_TYPE:
case JS_SET_TYPE:
case JS_MAP_TYPE:
case JS_SET_ITERATOR_TYPE:
case JS_MAP_ITERATOR_TYPE:
case JS_WEAK_MAP_TYPE:
case JS_WEAK_SET_TYPE:
if (map->is_undetectable()) return kUndetectable;
return kOtherObject;
case JS_ARRAY_TYPE:
return kArray;
case JS_FUNCTION_TYPE:
return kFunction;
case JS_REGEXP_TYPE:
return kRegExp;
case JS_PROXY_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return kProxy;
case MAP_TYPE:
// When compiling stub templates, the meta map is used as a place holder
// for the actual map with which the template is later instantiated.
// We treat it as a kind of type variable whose upper bound is Any.
// TODO(rossberg): for caching of CompareNilIC stubs to work correctly,
// we must exclude Undetectable here. This makes no sense, really,
// because it means that the template isn't actually parametric.
// Also, it doesn't apply elsewhere. 8-(
// We ought to find a cleaner solution for compiling stubs parameterised
// over type or class variables, esp ones with bounds...
return kDetectable;
case DECLARED_ACCESSOR_INFO_TYPE:
case EXECUTABLE_ACCESSOR_INFO_TYPE:
case SHARED_FUNCTION_INFO_TYPE:
case ACCESSOR_PAIR_TYPE:
case FIXED_ARRAY_TYPE:
case FOREIGN_TYPE:
case CODE_TYPE:
return kInternal & kTaggedPtr;
default:
UNREACHABLE();
return kNone;
}
}
// -----------------------------------------------------------------------------
// Predicates.
// Check this <= that.
template<class Config>
bool TypeImpl<Config>::SlowIs(TypeImpl* that) {
DisallowHeapAllocation no_allocation;
// Fast path for bitsets.
if (this->IsNone()) return true;
if (that->IsBitset()) {
return BitsetType::Is(BitsetType::Lub(this), that->AsBitset());
}
if (that->IsClass()) {
return this->IsClass()
&& *this->AsClass()->Map() == *that->AsClass()->Map()
&& ((Config::is_class(that) && Config::is_class(this)) ||
BitsetType::New(this->BitsetLub())->Is(
BitsetType::New(that->BitsetLub())));
}
if (that->IsConstant()) {
return this->IsConstant()
&& *this->AsConstant()->Value() == *that->AsConstant()->Value()
&& this->AsConstant()->Bound()->Is(that->AsConstant()->Bound());
}
if (that->IsContext()) {
return this->IsContext()
&& this->AsContext()->Outer()->Equals(that->AsContext()->Outer());
}
if (that->IsArray()) {
return this->IsArray()
&& this->AsArray()->Element()->Equals(that->AsArray()->Element());
}
if (that->IsFunction()) {
// We currently do not allow for any variance here, in order to keep
// Union and Intersect operations simple.
if (!this->IsFunction()) return false;
FunctionType* this_fun = this->AsFunction();
FunctionType* that_fun = that->AsFunction();
if (this_fun->Arity() != that_fun->Arity() ||
!this_fun->Result()->Equals(that_fun->Result()) ||
!that_fun->Receiver()->Equals(this_fun->Receiver())) {
return false;
}
for (int i = 0; i < this_fun->Arity(); ++i) {
if (!that_fun->Parameter(i)->Equals(this_fun->Parameter(i))) return false;
}
return true;
}
// (T1 \/ ... \/ Tn) <= T <=> (T1 <= T) /\ ... /\ (Tn <= T)
if (this->IsUnion()) {
UnionHandle unioned = handle(this->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
if (!unioned->Get(i)->Is(that)) return false;
}
return true;
}
// T <= (T1 \/ ... \/ Tn) <=> (T <= T1) \/ ... \/ (T <= Tn)
// (iff T is not a union)
DCHECK(!this->IsUnion() && that->IsUnion());
UnionHandle unioned = handle(that->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
if (this->Is(unioned->Get(i))) return true;
if (this->IsBitset()) break; // Fast fail, only first field is a bitset.
}
return false;
}
template<class Config>
bool TypeImpl<Config>::NowIs(TypeImpl* that) {
DisallowHeapAllocation no_allocation;
// TODO(rossberg): this is incorrect for
// Union(Constant(V), T)->NowIs(Class(M))
// but fuzzing does not cover that!
if (this->IsConstant()) {
i::Object* object = *this->AsConstant()->Value();
if (object->IsHeapObject()) {
i::Map* map = i::HeapObject::cast(object)->map();
for (Iterator<i::Map> it = that->Classes(); !it.Done(); it.Advance()) {
if (*it.Current() == map) return true;
}
}
}
return this->Is(that);
}
// Check if this contains only (currently) stable classes.
template<class Config>
bool TypeImpl<Config>::NowStable() {
DisallowHeapAllocation no_allocation;
for (Iterator<i::Map> it = this->Classes(); !it.Done(); it.Advance()) {
if (!it.Current()->is_stable()) return false;
}
return true;
}
// Check this overlaps that.
template<class Config>
bool TypeImpl<Config>::Maybe(TypeImpl* that) {
DisallowHeapAllocation no_allocation;
// (T1 \/ ... \/ Tn) overlaps T <=> (T1 overlaps T) \/ ... \/ (Tn overlaps T)
if (this->IsUnion()) {
UnionHandle unioned = handle(this->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
if (unioned->Get(i)->Maybe(that)) return true;
}
return false;
}
// T overlaps (T1 \/ ... \/ Tn) <=> (T overlaps T1) \/ ... \/ (T overlaps Tn)
if (that->IsUnion()) {
UnionHandle unioned = handle(that->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
if (this->Maybe(unioned->Get(i))) return true;
}
return false;
}
DCHECK(!this->IsUnion() && !that->IsUnion());
if (this->IsBitset() || that->IsBitset()) {
return BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub());
}
if (this->IsClass()) {
return that->IsClass()
&& *this->AsClass()->Map() == *that->AsClass()->Map();
}
if (this->IsConstant()) {
return that->IsConstant()
&& *this->AsConstant()->Value() == *that->AsConstant()->Value();
}
if (this->IsContext()) {
return this->Equals(that);
}
if (this->IsArray()) {
// There is no variance!
return this->Equals(that);
}
if (this->IsFunction()) {
// There is no variance!
return this->Equals(that);
}
return false;
}
// Check if value is contained in (inhabits) type.
template<class Config>
bool TypeImpl<Config>::Contains(i::Object* value) {
DisallowHeapAllocation no_allocation;
for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) {
if (*it.Current() == value) return true;
}
return BitsetType::New(BitsetType::Lub(value))->Is(this);
}
template<class Config>
bool TypeImpl<Config>::UnionType::Wellformed() {
DCHECK(this->Length() >= 2);
for (int i = 0; i < this->Length(); ++i) {
DCHECK(!this->Get(i)->IsUnion());
if (i > 0) DCHECK(!this->Get(i)->IsBitset());
for (int j = 0; j < this->Length(); ++j) {
if (i != j) DCHECK(!this->Get(i)->Is(this->Get(j)));
}
}
return true;
}
// -----------------------------------------------------------------------------
// Union and intersection
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Rebound(
int bitset, Region* region) {
TypeHandle bound = BitsetType::New(bitset, region);
if (this->IsClass()) {
return ClassType::New(this->AsClass()->Map(), bound, region);
} else if (this->IsConstant()) {
return ConstantType::New(this->AsConstant()->Value(), bound, region);
} else if (this->IsContext()) {
return ContextType::New(this->AsContext()->Outer(), bound, region);
} else if (this->IsArray()) {
return ArrayType::New(this->AsArray()->Element(), bound, region);
} else if (this->IsFunction()) {
FunctionType* function = this->AsFunction();
int arity = function->Arity();
FunctionHandle type = FunctionType::New(
function->Result(), function->Receiver(), bound, arity, region);
for (int i = 0; i < arity; ++i) {
type->InitParameter(i, function->Parameter(i));
}
return type;
}
UNREACHABLE();
return TypeHandle();
}
template<class Config>
int TypeImpl<Config>::BoundBy(TypeImpl* that) {
DCHECK(!this->IsUnion());
if (that->IsUnion()) {
UnionType* unioned = that->AsUnion();
int length = unioned->Length();
int bitset = BitsetType::kNone;
for (int i = 0; i < length; ++i) {
bitset |= BoundBy(unioned->Get(i)->unhandle());
}
return bitset;
} else if (that->IsClass() && this->IsClass() &&
*this->AsClass()->Map() == *that->AsClass()->Map()) {
return that->BitsetLub();
} else if (that->IsConstant() && this->IsConstant() &&
*this->AsConstant()->Value() == *that->AsConstant()->Value()) {
return that->AsConstant()->Bound()->AsBitset();
} else if (that->IsContext() && this->IsContext() && this->Is(that)) {
return that->AsContext()->Bound()->AsBitset();
} else if (that->IsArray() && this->IsArray() && this->Is(that)) {
return that->AsArray()->Bound()->AsBitset();
} else if (that->IsFunction() && this->IsFunction() && this->Is(that)) {
return that->AsFunction()->Bound()->AsBitset();
}
return that->BitsetGlb();
}
template<class Config>
int TypeImpl<Config>::IndexInUnion(
int bound, UnionHandle unioned, int current_size) {
DCHECK(!this->IsUnion());
for (int i = 0; i < current_size; ++i) {
TypeHandle that = unioned->Get(i);
if (that->IsBitset()) {
if (BitsetType::Is(bound, that->AsBitset())) return i;
} else if (that->IsClass() && this->IsClass()) {
if (*this->AsClass()->Map() == *that->AsClass()->Map()) return i;
} else if (that->IsConstant() && this->IsConstant()) {
if (*this->AsConstant()->Value() == *that->AsConstant()->Value())
return i;
} else if (that->IsContext() && this->IsContext()) {
if (this->Is(that)) return i;
} else if (that->IsArray() && this->IsArray()) {
if (this->Is(that)) return i;
} else if (that->IsFunction() && this->IsFunction()) {
if (this->Is(that)) return i;
}
}
return -1;
}
// Get non-bitsets from type, bounded by upper.
// Store at result starting at index. Returns updated index.
template<class Config>
int TypeImpl<Config>::ExtendUnion(
UnionHandle result, int size, TypeHandle type,
TypeHandle other, bool is_intersect, Region* region) {
if (type->IsUnion()) {
UnionHandle unioned = handle(type->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
TypeHandle type_i = unioned->Get(i);
DCHECK(i == 0 || !(type_i->IsBitset() || type_i->Is(unioned->Get(0))));
if (!type_i->IsBitset()) {
size = ExtendUnion(result, size, type_i, other, is_intersect, region);
}
}
} else if (!type->IsBitset()) {
DCHECK(type->IsClass() || type->IsConstant() ||
type->IsArray() || type->IsFunction() || type->IsContext());
int inherent_bound = type->InherentBitsetLub();
int old_bound = type->BitsetLub();
int other_bound = type->BoundBy(other->unhandle()) & inherent_bound;
int new_bound =
is_intersect ? (old_bound & other_bound) : (old_bound | other_bound);
if (new_bound != BitsetType::kNone) {
int i = type->IndexInUnion(new_bound, result, size);
if (i == -1) {
i = size++;
} else if (result->Get(i)->IsBitset()) {
return size; // Already fully subsumed.
} else {
int type_i_bound = result->Get(i)->BitsetLub();
new_bound |= type_i_bound;
if (new_bound == type_i_bound) return size;
}
if (new_bound != old_bound) type = type->Rebound(new_bound, region);
result->Set(i, type);
}
}
return size;
}
// Union is O(1) on simple bitsets, but O(n*m) on structured unions.
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Union(
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
return BitsetType::New(type1->AsBitset() | type2->AsBitset(), region);
}
// Fast case: top or bottom types.
if (type1->IsAny() || type2->IsNone()) return type1;
if (type2->IsAny() || type1->IsNone()) return type2;
// Semi-fast case: Unioned objects are neither involved nor produced.
if (!(type1->IsUnion() || type2->IsUnion())) {
if (type1->Is(type2)) return type2;
if (type2->Is(type1)) return type1;
}
// Slow case: may need to produce a Unioned object.
int size = 0;
if (!type1->IsBitset()) {
size += (type1->IsUnion() ? type1->AsUnion()->Length() : 1);
}
if (!type2->IsBitset()) {
size += (type2->IsUnion() ? type2->AsUnion()->Length() : 1);
}
int bitset = type1->BitsetGlb() | type2->BitsetGlb();
if (bitset != BitsetType::kNone) ++size;
DCHECK(size >= 1);
UnionHandle unioned = UnionType::New(size, region);
size = 0;
if (bitset != BitsetType::kNone) {
unioned->Set(size++, BitsetType::New(bitset, region));
}
size = ExtendUnion(unioned, size, type1, type2, false, region);
size = ExtendUnion(unioned, size, type2, type1, false, region);
if (size == 1) {
return unioned->Get(0);
} else {
unioned->Shrink(size);
DCHECK(unioned->Wellformed());
return unioned;
}
}
// Intersection is O(1) on simple bitsets, but O(n*m) on structured unions.
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Intersect(
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
return BitsetType::New(type1->AsBitset() & type2->AsBitset(), region);
}
// Fast case: top or bottom types.
if (type1->IsNone() || type2->IsAny()) return type1;
if (type2->IsNone() || type1->IsAny()) return type2;
// Semi-fast case: Unioned objects are neither involved nor produced.
if (!(type1->IsUnion() || type2->IsUnion())) {
if (type1->Is(type2)) return type1;
if (type2->Is(type1)) return type2;
}
// Slow case: may need to produce a Unioned object.
int size = 0;
if (!type1->IsBitset()) {
size += (type1->IsUnion() ? type1->AsUnion()->Length() : 1);
}
if (!type2->IsBitset()) {
size += (type2->IsUnion() ? type2->AsUnion()->Length() : 1);
}
int bitset = type1->BitsetGlb() & type2->BitsetGlb();
if (bitset != BitsetType::kNone) ++size;
DCHECK(size >= 1);
UnionHandle unioned = UnionType::New(size, region);
size = 0;
if (bitset != BitsetType::kNone) {
unioned->Set(size++, BitsetType::New(bitset, region));
}
size = ExtendUnion(unioned, size, type1, type2, true, region);
size = ExtendUnion(unioned, size, type2, type1, true, region);
if (size == 0) {
return None(region);
} else if (size == 1) {
return unioned->Get(0);
} else {
unioned->Shrink(size);
DCHECK(unioned->Wellformed());
return unioned;
}
}
// -----------------------------------------------------------------------------
// Iteration.
template<class Config>
int TypeImpl<Config>::NumClasses() {
DisallowHeapAllocation no_allocation;
if (this->IsClass()) {
return 1;
} else if (this->IsUnion()) {
UnionHandle unioned = handle(this->AsUnion());
int result = 0;
for (int i = 0; i < unioned->Length(); ++i) {
if (unioned->Get(i)->IsClass()) ++result;
}
return result;
} else {
return 0;
}
}
template<class Config>
int TypeImpl<Config>::NumConstants() {
DisallowHeapAllocation no_allocation;
if (this->IsConstant()) {
return 1;
} else if (this->IsUnion()) {
UnionHandle unioned = handle(this->AsUnion());
int result = 0;
for (int i = 0; i < unioned->Length(); ++i) {
if (unioned->Get(i)->IsConstant()) ++result;
}
return result;
} else {
return 0;
}
}
template<class Config> template<class T>
typename TypeImpl<Config>::TypeHandle
TypeImpl<Config>::Iterator<T>::get_type() {
DCHECK(!Done());
return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_;
}
// C++ cannot specialise nested templates, so we have to go through this
// contortion with an auxiliary template to simulate it.
template<class Config, class T>
struct TypeImplIteratorAux {
static bool matches(typename TypeImpl<Config>::TypeHandle type);
static i::Handle<T> current(typename TypeImpl<Config>::TypeHandle type);
};
template<class Config>
struct TypeImplIteratorAux<Config, i::Map> {
static bool matches(typename TypeImpl<Config>::TypeHandle type) {
return type->IsClass();
}
static i::Handle<i::Map> current(typename TypeImpl<Config>::TypeHandle type) {
return type->AsClass()->Map();
}
};
template<class Config>
struct TypeImplIteratorAux<Config, i::Object> {
static bool matches(typename TypeImpl<Config>::TypeHandle type) {
return type->IsConstant();
}
static i::Handle<i::Object> current(
typename TypeImpl<Config>::TypeHandle type) {
return type->AsConstant()->Value();
}
};
template<class Config> template<class T>
bool TypeImpl<Config>::Iterator<T>::matches(TypeHandle type) {
return TypeImplIteratorAux<Config, T>::matches(type);
}
template<class Config> template<class T>
i::Handle<T> TypeImpl<Config>::Iterator<T>::Current() {
return TypeImplIteratorAux<Config, T>::current(get_type());
}
template<class Config> template<class T>
void TypeImpl<Config>::Iterator<T>::Advance() {
DisallowHeapAllocation no_allocation;
++index_;
if (type_->IsUnion()) {
UnionHandle unioned = handle(type_->AsUnion());
for (; index_ < unioned->Length(); ++index_) {
if (matches(unioned->Get(index_))) return;
}
} else if (index_ == 0 && matches(type_)) {
return;
}
index_ = -1;
}
// -----------------------------------------------------------------------------
// Conversion between low-level representations.
template<class Config>
template<class OtherType>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Convert(
typename OtherType::TypeHandle type, Region* region) {
if (type->IsBitset()) {
return BitsetType::New(type->AsBitset(), region);
} else if (type->IsClass()) {
return ClassType::New(
type->AsClass()->Map(),
BitsetType::New(type->BitsetLub(), region), region);
} else if (type->IsConstant()) {
return ConstantType::New(
type->AsConstant()->Value(),
Convert<OtherType>(type->AsConstant()->Bound(), region), region);
} else if (type->IsContext()) {
TypeHandle outer = Convert<OtherType>(type->AsContext()->Outer(), region);
return ContextType::New(outer, region);
} else if (type->IsUnion()) {
int length = type->AsUnion()->Length();
UnionHandle unioned = UnionType::New(length, region);
for (int i = 0; i < length; ++i) {
unioned->Set(i, Convert<OtherType>(type->AsUnion()->Get(i), region));
}
return unioned;
} else if (type->IsArray()) {
return ArrayType::New(
Convert<OtherType>(type->AsArray()->Element(), region),
Convert<OtherType>(type->AsArray()->Bound(), region), region);
} else if (type->IsFunction()) {
FunctionHandle function = FunctionType::New(
Convert<OtherType>(type->AsFunction()->Result(), region),
Convert<OtherType>(type->AsFunction()->Receiver(), region),
Convert<OtherType>(type->AsFunction()->Bound(), region),
type->AsFunction()->Arity(), region);
for (int i = 0; i < function->Arity(); ++i) {
function->InitParameter(i,
Convert<OtherType>(type->AsFunction()->Parameter(i), region));
}
return function;
} else {
UNREACHABLE();
return None(region);
}
}
// -----------------------------------------------------------------------------
// Printing.
template<class Config>
const char* TypeImpl<Config>::BitsetType::Name(int bitset) {
switch (bitset) {
case REPRESENTATION(kAny): return "Any";
#define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
case REPRESENTATION(k##type): return #type;
REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
#undef RETURN_NAMED_REPRESENTATION_TYPE
#define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
case SEMANTIC(k##type): return #type;
SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
#undef RETURN_NAMED_SEMANTIC_TYPE
default:
return NULL;
}
}
template <class Config>
void TypeImpl<Config>::BitsetType::Print(OStream& os, // NOLINT
int bitset) {
DisallowHeapAllocation no_allocation;
const char* name = Name(bitset);
if (name != NULL) {
os << name;
return;
}
static const int named_bitsets[] = {
#define BITSET_CONSTANT(type, value) REPRESENTATION(k##type),
REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
#define BITSET_CONSTANT(type, value) SEMANTIC(k##type),
SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
};
bool is_first = true;
os << "(";
for (int i(ARRAY_SIZE(named_bitsets) - 1); bitset != 0 && i >= 0; --i) {
int subset = named_bitsets[i];
if ((bitset & subset) == subset) {
if (!is_first) os << " | ";
is_first = false;
os << Name(subset);
bitset -= subset;
}
}
DCHECK(bitset == 0);
os << ")";
}
template <class Config>
void TypeImpl<Config>::PrintTo(OStream& os, PrintDimension dim) { // NOLINT
DisallowHeapAllocation no_allocation;
if (dim != REPRESENTATION_DIM) {
if (this->IsBitset()) {
BitsetType::Print(os, SEMANTIC(this->AsBitset()));
} else if (this->IsClass()) {
os << "Class(" << static_cast<void*>(*this->AsClass()->Map()) << " < ";
BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim);
os << ")";
} else if (this->IsConstant()) {
os << "Constant(" << static_cast<void*>(*this->AsConstant()->Value())
<< " : ";
BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim);
os << ")";
} else if (this->IsRange()) {
os << "Range(" << this->AsRange()->Min()
<< ".." << this->AsRange()->Max() << " : ";
BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim);
os << ")";
} else if (this->IsContext()) {
os << "Context(";
this->AsContext()->Outer()->PrintTo(os, dim);
os << ")";
} else if (this->IsUnion()) {
os << "(";
UnionHandle unioned = handle(this->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
TypeHandle type_i = unioned->Get(i);
if (i > 0) os << " | ";
type_i->PrintTo(os, dim);
}
os << ")";
} else if (this->IsArray()) {
os << "Array(";
AsArray()->Element()->PrintTo(os, dim);
os << ")";
} else if (this->IsFunction()) {
if (!this->AsFunction()->Receiver()->IsAny()) {
this->AsFunction()->Receiver()->PrintTo(os, dim);
os << ".";
}
os << "(";
for (int i = 0; i < this->AsFunction()->Arity(); ++i) {
if (i > 0) os << ", ";
this->AsFunction()->Parameter(i)->PrintTo(os, dim);
}
os << ")->";
this->AsFunction()->Result()->PrintTo(os, dim);
} else {
UNREACHABLE();
}
}
if (dim == BOTH_DIMS) os << "/";
if (dim != SEMANTIC_DIM) {
BitsetType::Print(os, REPRESENTATION(this->BitsetLub()));
}
}
// -----------------------------------------------------------------------------
// Instantiations.
template class TypeImpl<ZoneTypeConfig>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Map>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Object>;
template class TypeImpl<HeapTypeConfig>;
template class TypeImpl<HeapTypeConfig>::Iterator<i::Map>;
template class TypeImpl<HeapTypeConfig>::Iterator<i::Object>;
template TypeImpl<ZoneTypeConfig>::TypeHandle
TypeImpl<ZoneTypeConfig>::Convert<HeapType>(
TypeImpl<HeapTypeConfig>::TypeHandle, TypeImpl<ZoneTypeConfig>::Region*);
template TypeImpl<HeapTypeConfig>::TypeHandle
TypeImpl<HeapTypeConfig>::Convert<Type>(
TypeImpl<ZoneTypeConfig>::TypeHandle, TypeImpl<HeapTypeConfig>::Region*);
} } // namespace v8::internal