v8/src/ic.cc

3017 lines
107 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "codegen.h"
#include "execution.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
char IC::TransitionMarkFromState(IC::State state) {
switch (state) {
case UNINITIALIZED: return '0';
case PREMONOMORPHIC: return '.';
case MONOMORPHIC: return '1';
case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
case POLYMORPHIC: return 'P';
case MEGAMORPHIC: return 'N';
case GENERIC: return 'G';
// We never see the debugger states here, because the state is
// computed from the original code - not the patched code. Let
// these cases fall through to the unreachable code below.
case DEBUG_STUB: break;
}
UNREACHABLE();
return 0;
}
const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
return ".IGNORE_OOB";
}
if (IsGrowStoreMode(mode)) return ".GROW";
return "";
}
void IC::TraceIC(const char* type,
Handle<Object> name,
State old_state,
Code* new_target) {
if (FLAG_trace_ic) {
Object* undef = new_target->GetHeap()->undefined_value();
State new_state = StateFrom(new_target, undef, undef);
PrintF("[%s in ", type);
Isolate* isolate = new_target->GetIsolate();
StackFrameIterator it(isolate);
while (it.frame()->fp() != this->fp()) it.Advance();
StackFrame* raw_frame = it.frame();
if (raw_frame->is_internal()) {
Code* apply_builtin = isolate->builtins()->builtin(
Builtins::kFunctionApply);
if (raw_frame->unchecked_code() == apply_builtin) {
PrintF("apply from ");
it.Advance();
raw_frame = it.frame();
}
}
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
Code::ExtraICState state = new_target->extra_ic_state();
const char* modifier =
GetTransitionMarkModifier(Code::GetKeyedAccessStoreMode(state));
PrintF(" (%c->%c%s)",
TransitionMarkFromState(old_state),
TransitionMarkFromState(new_state),
modifier);
name->Print();
PrintF("]\n");
}
}
#define TRACE_GENERIC_IC(isolate, type, reason) \
do { \
if (FLAG_trace_ic) { \
PrintF("[%s patching generic stub in ", type); \
JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
PrintF(" (%s)]\n", reason); \
} \
} while (false)
#else
#define TRACE_GENERIC_IC(isolate, type, reason)
#endif // DEBUG
#define TRACE_IC(type, name, old_state, new_target) \
ASSERT((TraceIC(type, name, old_state, new_target), true))
IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
// To improve the performance of the (much used) IC code, we unfold a few
// levels of the stack frame iteration code. This yields a ~35% speedup when
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
const Address entry =
Isolate::c_entry_fp(isolate->thread_local_top());
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// If there's another JavaScript frame on the stack or a
// StubFailureTrampoline, we need to look one frame further down the stack to
// find the frame pointer and the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
#ifdef DEBUG
StackFrameIterator it(isolate);
for (int i = 0; i < depth + 1; i++) it.Advance();
StackFrame* frame = it.frame();
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
#endif
fp_ = fp;
pc_address_ = pc_address;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Address IC::OriginalCodeAddress() const {
HandleScope scope(isolate());
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
StackFrameIterator it(isolate());
while (it.frame()->fp() != this->fp()) it.Advance();
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = JSFunction::cast(frame->function());
Handle<SharedFunctionInfo> shared(function->shared(), isolate());
Code* code = shared->code();
ASSERT(Debug::HasDebugInfo(shared));
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
ASSERT(original_code->IsCode());
// Get the address of the call site in the active code. This is the
// place where the call to DebugBreakXXX is and where the IC
// normally would be.
Address addr = Assembler::target_address_from_return_address(pc());
// Return the address in the original code. This is the place where
// the call which has been overwritten by the DebugBreakXXX resides
// and the place where the inline cache system should look.
intptr_t delta =
original_code->instruction_start() - code->instruction_start();
return addr + delta;
}
#endif
static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
Object* receiver,
Object* name) {
if (target->is_keyed_load_stub() ||
target->is_keyed_call_stub() ||
target->is_keyed_store_stub()) {
// Determine whether the failure is due to a name failure.
if (!name->IsName()) return false;
Name* stub_name = target->FindFirstName();
if (Name::cast(name) != stub_name) return false;
}
InlineCacheHolderFlag cache_holder =
Code::ExtractCacheHolderFromFlags(target->flags());
Isolate* isolate = target->GetIsolate();
if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
// The stub was generated for JSObject but called for non-JSObject.
// IC::GetCodeCacheHolder is not applicable.
return false;
} else if (cache_holder == PROTOTYPE_MAP &&
receiver->GetPrototype(isolate)->IsNull()) {
// IC::GetCodeCacheHolder is not applicable.
return false;
}
Map* map = IC::GetCodeCacheHolder(isolate, receiver, cache_holder)->map();
// Decide whether the inline cache failed because of changes to the
// receiver itself or changes to one of its prototypes.
//
// If there are changes to the receiver itself, the map of the
// receiver will have changed and the current target will not be in
// the receiver map's code cache. Therefore, if the current target
// is in the receiver map's code cache, the inline cache failed due
// to prototype check failure.
int index = map->IndexInCodeCache(name, target);
if (index >= 0) {
map->RemoveFromCodeCache(String::cast(name), target, index);
// For loads, handlers are stored in addition to the ICs on the map. Remove
// those, too.
if (target->is_load_stub() || target->is_keyed_load_stub()) {
Code* handler = target->FindFirstCode();
index = map->IndexInCodeCache(name, handler);
if (index >= 0) {
map->RemoveFromCodeCache(String::cast(name), handler, index);
}
}
return true;
}
// If the IC is shared between multiple receivers (slow dictionary mode), then
// the map cannot be deprecated and the stub invalidated.
if (cache_holder != OWN_MAP) return false;
// The stub is not in the cache. We've ruled out all other kinds of failure
// except for proptotype chain changes, a deprecated map, or a map that's
// different from the one that the stub expects. If the map hasn't changed,
// assume it's a prototype failure. Treat deprecated maps in the same way as
// prototype failures (stay monomorphic if possible).
Map* old_map = target->FindFirstMap();
if (old_map == NULL) return false;
return old_map == map || old_map->is_deprecated();
}
IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
IC::State state = target->ic_state();
if (state != MONOMORPHIC || !name->IsString()) return state;
if (receiver->IsUndefined() || receiver->IsNull()) return state;
Code::Kind kind = target->kind();
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
// Call stubs handle this later to allow extra IC state
// transitions.
if (kind != Code::CALL_IC && kind != Code::KEYED_CALL_IC &&
TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
return MONOMORPHIC_PROTOTYPE_FAILURE;
}
// The builtins object is special. It only changes when JavaScript
// builtins are loaded lazily. It is important to keep inline
// caches for the builtins object monomorphic. Therefore, if we get
// an inline cache miss for the builtins object after lazily loading
// JavaScript builtins, we return uninitialized as the state to
// force the inline cache back to monomorphic state.
if (receiver->IsJSBuiltinsObject()) {
return UNINITIALIZED;
}
return MONOMORPHIC;
}
RelocInfo::Mode IC::ComputeMode() {
Address addr = address();
Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr));
for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
!it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() == addr) return info->rmode();
}
UNREACHABLE();
return RelocInfo::NONE32;
}
Failure* IC::TypeError(const char* type,
Handle<Object> object,
Handle<Object> key) {
HandleScope scope(isolate());
Handle<Object> args[2] = { key, object };
Handle<Object> error = isolate()->factory()->NewTypeError(
type, HandleVector(args, 2));
return isolate()->Throw(*error);
}
Failure* IC::ReferenceError(const char* type, Handle<String> name) {
HandleScope scope(isolate());
Handle<Object> error = isolate()->factory()->NewReferenceError(
type, HandleVector(&name, 1));
return isolate()->Throw(*error);
}
static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
bool was_uninitialized =
old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
bool is_uninitialized =
new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
return (was_uninitialized && !is_uninitialized) ? 1 :
(!was_uninitialized && is_uninitialized) ? -1 : 0;
}
void IC::PostPatching(Address address, Code* target, Code* old_target) {
if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
return;
}
Isolate* isolate = target->GetHeap()->isolate();
Code* host = isolate->
inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
if (host->kind() != Code::FUNCTION) return;
if (FLAG_type_info_threshold > 0 &&
old_target->is_inline_cache_stub() &&
target->is_inline_cache_stub()) {
int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
target->ic_state());
// Not all Code objects have TypeFeedbackInfo.
if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_ic_with_type_info_count(delta);
}
}
if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_own_type_change_checksum();
}
if (FLAG_watch_ic_patching) {
host->set_profiler_ticks(0);
isolate->runtime_profiler()->NotifyICChanged();
}
// TODO(2029): When an optimized function is patched, it would
// be nice to propagate the corresponding type information to its
// unoptimized version for the benefit of later inlining.
}
void IC::Clear(Address address) {
Code* target = GetTargetAtAddress(address);
// Don't clear debug break inline cache as it will remove the break point.
if (target->is_debug_break()) return;
switch (target->kind()) {
case Code::LOAD_IC: return LoadIC::Clear(address, target);
case Code::KEYED_LOAD_IC: return KeyedLoadIC::Clear(address, target);
case Code::STORE_IC: return StoreIC::Clear(address, target);
case Code::KEYED_STORE_IC: return KeyedStoreIC::Clear(address, target);
case Code::CALL_IC: return CallIC::Clear(address, target);
case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
case Code::COMPARE_IC: return CompareIC::Clear(address, target);
case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
case Code::UNARY_OP_IC:
case Code::BINARY_OP_IC:
case Code::TO_BOOLEAN_IC:
// Clearing these is tricky and does not
// make any performance difference.
return;
default: UNREACHABLE();
}
}
void CallICBase::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
Code* code =
Isolate::Current()->stub_cache()->FindCallInitialize(
target->arguments_count(),
contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
target->kind());
SetTargetAtAddress(address, code);
}
void KeyedLoadIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
SetTargetAtAddress(address, *initialize_stub());
}
void LoadIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address, *initialize_stub());
}
void StoreIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address,
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
? *initialize_stub_strict()
: *initialize_stub());
}
void KeyedStoreIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address,
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
? *initialize_stub_strict()
: *initialize_stub());
}
void CompareIC::Clear(Address address, Code* target) {
ASSERT(target->major_key() == CodeStub::CompareIC);
CompareIC::State handler_state;
Token::Value op;
ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
&handler_state, &op);
// Only clear CompareICs that can retain objects.
if (handler_state != KNOWN_OBJECT) return;
SetTargetAtAddress(address, GetRawUninitialized(op));
PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
}
static bool HasInterceptorGetter(JSObject* object) {
return !object->GetNamedInterceptor()->getter()->IsUndefined();
}
static void LookupForRead(Handle<Object> object,
Handle<String> name,
LookupResult* lookup) {
// Skip all the objects with named interceptors, but
// without actual getter.
while (true) {
object->Lookup(*name, lookup);
// Besides normal conditions (property not found or it's not
// an interceptor), bail out if lookup is not cacheable: we won't
// be able to IC it anyway and regular lookup should work fine.
if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
return;
}
Handle<JSObject> holder(lookup->holder(), lookup->isolate());
if (HasInterceptorGetter(*holder)) {
return;
}
holder->LocalLookupRealNamedProperty(*name, lookup);
if (lookup->IsFound()) {
ASSERT(!lookup->IsInterceptor());
return;
}
Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
if (proto->IsNull()) {
ASSERT(!lookup->IsFound());
return;
}
object = proto;
}
}
Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
Handle<Object> delegate = Execution::GetFunctionDelegate(object);
if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
// Patch the receiver and use the delegate as the function to
// invoke. This is used for invoking objects as if they were functions.
const int argc = target()->arguments_count();
StackFrameLocator locator(isolate());
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *object);
}
return delegate;
}
void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
Handle<Object> object) {
while (callee->IsJSFunctionProxy()) {
callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
isolate());
}
if (callee->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
// Do not wrap receiver for strict mode functions or for builtins.
return;
}
}
// And only wrap string, number or boolean.
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
// Change the receiver to the result of calling ToObject on it.
const int argc = this->target()->arguments_count();
StackFrameLocator locator(isolate());
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *isolate()->factory()->ToObject(object));
}
}
MaybeObject* CallICBase::LoadFunction(State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, name);
}
// Check if the name is trivially convertible to an index and get
// the element if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<Object> result = Object::GetElement(object, index);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
if (result->IsJSFunction()) return *result;
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
// Otherwise, it will fail in the lookup step.
}
// Lookup the property in the object.
LookupResult lookup(isolate());
LookupForRead(object, name, &lookup);
if (!lookup.IsFound()) {
// If the object does not have the requested property, check which
// exception we need to throw.
return IsUndeclaredGlobal(object)
? ReferenceError("not_defined", name)
: TypeError("undefined_method", object, name);
}
// Lookup is valid: Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, extra_ic_state, object, name);
}
// Get the property.
PropertyAttributes attr;
Handle<Object> result =
Object::GetProperty(object, object, &lookup, name, &attr);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
if (lookup.IsInterceptor() && attr == ABSENT) {
// If the object does not have the requested property, check which
// exception we need to throw.
return IsUndeclaredGlobal(object)
? ReferenceError("not_defined", name)
: TypeError("undefined_method", object, name);
}
ASSERT(!result->IsTheHole());
// Make receiver an object if the callee requires it. Strict mode or builtin
// functions do not wrap the receiver, non-strict functions and objects
// called as functions do.
ReceiverToObjectIfRequired(result, object);
if (result->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(result);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Handle stepping into a function if step into is active.
Debug* debug = isolate()->debug();
if (debug->StepInActive()) {
// Protect the result in a handle as the debugger can allocate and might
// cause GC.
debug->HandleStepIn(function, object, fp(), false);
}
#endif
return *function;
}
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
return TypeError("property_not_function", object, name);
}
bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
Handle<Object> object,
Code::ExtraICState* extra_ic_state) {
ASSERT(kind_ == Code::CALL_IC);
if (lookup->type() != CONSTANT_FUNCTION) return false;
JSFunction* function = lookup->GetConstantFunction();
if (!function->shared()->HasBuiltinFunctionId()) return false;
// Fetch the arguments passed to the called function.
const int argc = target()->arguments_count();
Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
Arguments args(argc + 1,
&Memory::Object_at(fp +
StandardFrameConstants::kCallerSPOffset +
argc * kPointerSize));
switch (function->shared()->builtin_function_id()) {
case kStringCharCodeAt:
case kStringCharAt:
if (object->IsString()) {
String* string = String::cast(*object);
// Check there's the right string value or wrapper in the receiver slot.
ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
// If we're in the default (fastest) state and the index is
// out of bounds, update the state to record this fact.
if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
argc >= 1 && args[1]->IsNumber()) {
double index = DoubleToInteger(args.number_at(1));
if (index < 0 || index >= string->length()) {
*extra_ic_state =
StringStubState::update(*extra_ic_state,
STRING_INDEX_OUT_OF_BOUNDS);
return true;
}
}
}
break;
default:
return false;
}
return false;
}
Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
State state,
Code::ExtraICState extra_state,
Handle<Object> object,
Handle<String> name) {
int argc = target()->arguments_count();
Handle<JSObject> holder(lookup->holder(), isolate());
switch (lookup->type()) {
case FIELD: {
PropertyIndex index = lookup->GetFieldIndex();
return isolate()->stub_cache()->ComputeCallField(
argc, kind_, extra_state, name, object, holder, index);
}
case CONSTANT_FUNCTION: {
// Get the constant function and compute the code stub for this
// call; used for rewriting to monomorphic state and making sure
// that the code stub is in the stub cache.
Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
return isolate()->stub_cache()->ComputeCallConstant(
argc, kind_, extra_state, name, object, holder, function);
}
case NORMAL: {
// If we return a null handle, the IC will not be patched.
if (!object->IsJSObject()) return Handle<Code>::null();
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (holder->IsGlobalObject()) {
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
Handle<JSGlobalPropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
Handle<JSFunction> function(JSFunction::cast(cell->value()));
return isolate()->stub_cache()->ComputeCallGlobal(
argc, kind_, extra_state, name, receiver, global, cell, function);
} else {
// There is only one shared stub for calling normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
return isolate()->stub_cache()->ComputeCallNormal(
argc, kind_, extra_state);
}
break;
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(*holder));
return isolate()->stub_cache()->ComputeCallInterceptor(
argc, kind_, extra_state, name, object, holder);
default:
return Handle<Code>::null();
}
}
void CallICBase::UpdateCaches(LookupResult* lookup,
State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
// Compute the number of arguments.
int argc = target()->arguments_count();
Handle<Code> code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
argc, kind_, extra_ic_state);
} else if (state == MONOMORPHIC) {
if (kind_ == Code::CALL_IC &&
TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
} else if (TryRemoveInvalidPrototypeDependentStub(target(),
*object,
*name)) {
state = MONOMORPHIC_PROTOTYPE_FAILURE;
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
} else {
code = isolate()->stub_cache()->ComputeCallMegamorphic(
argc, kind_, extra_ic_state);
}
} else {
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
}
// If there's no appropriate stub we simply avoid updating the caches.
if (code.is_null()) return;
// Patch the call site depending on the state of the cache.
switch (state) {
case UNINITIALIZED:
case MONOMORPHIC_PROTOTYPE_FAILURE:
case PREMONOMORPHIC:
case MONOMORPHIC:
set_target(*code);
break;
case MEGAMORPHIC: {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
Handle<JSObject> cache_object = object->IsJSObject()
? Handle<JSObject>::cast(object)
: Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
isolate());
// Update the stub cache.
UpdateMegamorphicCache(cache_object->map(), *name, *code);
break;
}
case DEBUG_STUB:
break;
case POLYMORPHIC:
case GENERIC:
UNREACHABLE();
break;
}
TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
name, state, target());
}
MaybeObject* KeyedCallIC::LoadFunction(State state,
Handle<Object> object,
Handle<Object> key) {
if (key->IsInternalizedString()) {
return CallICBase::LoadFunction(state,
Code::kNoExtraICState,
object,
Handle<String>::cast(key));
}
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, key);
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic && state != MEGAMORPHIC) {
int argc = target()->arguments_count();
Handle<Code> stub = isolate()->stub_cache()->ComputeCallMegamorphic(
argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = isolate()->stub_cache()->ComputeCallArguments(argc);
}
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedCallIC", key, state, target());
}
Handle<Object> result = GetProperty(isolate(), object, key);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
// Make receiver an object if the callee requires it. Strict mode or builtin
// functions do not wrap the receiver, non-strict functions and objects
// called as functions do.
ReceiverToObjectIfRequired(result, object);
if (result->IsJSFunction()) return *result;
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
return TypeError("property_not_function", object, key);
}
MaybeObject* LoadIC::Load(State state,
Handle<Object> object,
Handle<String> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_load", object, name);
}
if (FLAG_use_ic) {
// Use specialized code for getting the length of strings and
// string wrapper objects. The length property of string wrapper
// objects is read-only and therefore always returns the length of
// the underlying string value. See ECMA-262 15.5.5.1.
if ((object->IsString() || object->IsStringWrapper()) &&
name->Equals(isolate()->heap()->length_string())) {
Handle<Code> stub;
if (state == UNINITIALIZED) {
stub = pre_monomorphic_stub();
} else if (state == PREMONOMORPHIC) {
StringLengthStub string_length_stub(kind(), !object->IsString());
stub = string_length_stub.GetCode(isolate());
} else if (state == MONOMORPHIC && object->IsStringWrapper()) {
StringLengthStub string_length_stub(kind(), true);
stub = string_length_stub.GetCode(isolate());
} else if (state != MEGAMORPHIC) {
ASSERT(state != GENERIC);
stub = megamorphic_stub();
}
if (!stub.is_null()) {
set_target(*stub);
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
#endif
}
// Get the string if we have a string wrapper object.
Handle<Object> string = object->IsJSValue()
? Handle<Object>(Handle<JSValue>::cast(object)->value(), isolate())
: object;
return Smi::FromInt(String::cast(*string)->length());
}
// Use specialized code for getting prototype of functions.
if (object->IsJSFunction() &&
name->Equals(isolate()->heap()->prototype_string()) &&
Handle<JSFunction>::cast(object)->should_have_prototype()) {
Handle<Code> stub;
if (state == UNINITIALIZED) {
stub = pre_monomorphic_stub();
} else if (state == PREMONOMORPHIC) {
FunctionPrototypeStub function_prototype_stub(kind());
stub = function_prototype_stub.GetCode(isolate());
} else if (state != MEGAMORPHIC) {
ASSERT(state != GENERIC);
stub = megamorphic_stub();
}
if (!stub.is_null()) {
set_target(*stub);
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
#endif
}
return *Accessors::FunctionGetPrototype(object);
}
}
// Check if the name is trivially convertible to an index and get
// the element or char if so.
uint32_t index;
if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
// Rewrite to the generic keyed load stub.
if (FLAG_use_ic) set_target(*generic_stub());
return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
}
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
// Named lookup in the object.
LookupResult lookup(isolate());
LookupForRead(object, name, &lookup);
// If we did not find a property, check if we need to throw an exception.
if (!lookup.IsFound()) {
if (IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
LOG(isolate(), SuspectReadEvent(*name, *object));
}
// Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, object, name);
}
PropertyAttributes attr;
if (lookup.IsInterceptor() || lookup.IsHandler()) {
// Get the property.
Handle<Object> result =
Object::GetProperty(object, object, &lookup, name, &attr);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
// If the property is not present, check if we need to throw an
// exception.
if (attr == ABSENT && IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
return *result;
}
// Get the property.
return Object::GetPropertyOrFail(object, object, &lookup, name, &attr);
}
static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
Handle<Map> new_receiver_map) {
ASSERT(!new_receiver_map.is_null());
for (int current = 0; current < receiver_maps->length(); ++current) {
if (!receiver_maps->at(current).is_null() &&
receiver_maps->at(current).is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps->Add(new_receiver_map);
return true;
}
bool IC::UpdatePolymorphicIC(State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Code> code) {
if (code->type() == Code::NORMAL) return false;
if (target()->ic_state() == MONOMORPHIC &&
target()->type() == Code::NORMAL) {
return false;
}
MapHandleList receiver_maps;
CodeHandleList handlers;
int number_of_valid_maps;
int handler_to_overwrite = -1;
Handle<Map> new_receiver_map(receiver->map());
{
AssertNoAllocation no_gc;
target()->FindAllMaps(&receiver_maps);
int number_of_maps = receiver_maps.length();
number_of_valid_maps = number_of_maps;
for (int i = 0; i < number_of_maps; i++) {
Handle<Map> map = receiver_maps.at(i);
// Filter out deprecated maps to ensure its instances get migrated.
if (map->is_deprecated()) {
number_of_valid_maps--;
// If the receiver map is already in the polymorphic IC, this indicates
// there was a prototoype chain failure. In that case, just overwrite the
// handler.
} else if (map.is_identical_to(new_receiver_map)) {
number_of_valid_maps--;
handler_to_overwrite = i;
}
}
if (number_of_valid_maps >= 4) return false;
// Only allow 0 maps in case target() was reset to UNINITIALIZED by the GC.
// In that case, allow the IC to go back monomorphic.
if (number_of_maps == 0 && target()->ic_state() != UNINITIALIZED) {
return false;
}
target()->FindAllCode(&handlers, receiver_maps.length());
}
number_of_valid_maps++;
if (handler_to_overwrite >= 0) {
handlers.Set(handler_to_overwrite, code);
} else {
receiver_maps.Add(new_receiver_map);
handlers.Add(code);
}
Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
&receiver_maps, &handlers, number_of_valid_maps, name);
set_target(*ic);
return true;
}
void LoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
receiver, handler, name);
set_target(*ic);
}
void KeyedLoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedMonomorphicIC(
receiver, handler, name);
set_target(*ic);
}
void IC::CopyICToMegamorphicCache(Handle<String> name) {
MapHandleList receiver_maps;
CodeHandleList handlers;
{
AssertNoAllocation no_gc;
target()->FindAllMaps(&receiver_maps);
target()->FindAllCode(&handlers, receiver_maps.length());
}
for (int i = 0; i < receiver_maps.length(); i++) {
UpdateMegamorphicCache(*receiver_maps.at(i), *name, *handlers.at(i));
}
}
bool IC::IsTransitionedMapOfMonomorphicTarget(Map* receiver_map) {
AssertNoAllocation no_allocation;
Map* current_map = target()->FindFirstMap();
ElementsKind receiver_elements_kind = receiver_map->elements_kind();
bool more_general_transition =
IsMoreGeneralElementsKindTransition(
current_map->elements_kind(), receiver_elements_kind);
Map* transitioned_map = more_general_transition
? current_map->LookupElementsTransitionMap(receiver_elements_kind)
: NULL;
return transitioned_map == receiver_map;
}
// Since GC may have been invoked, by the time PatchCache is called, |state| is
// not necessarily equal to target()->state().
void IC::PatchCache(State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Code> code) {
switch (state) {
case UNINITIALIZED:
case PREMONOMORPHIC:
case MONOMORPHIC_PROTOTYPE_FAILURE:
UpdateMonomorphicIC(receiver, code, name);
break;
case MONOMORPHIC:
// Only move to megamorphic if the target changes.
if (target() != *code) {
if (target()->is_load_stub()) {
bool is_same_handler = false;
{
AssertNoAllocation no_allocation;
Code* old_handler = target()->FindFirstCode();
is_same_handler = old_handler == *code;
}
if (is_same_handler
&& IsTransitionedMapOfMonomorphicTarget(receiver->map())) {
UpdateMonomorphicIC(receiver, code, name);
break;
}
if (UpdatePolymorphicIC(state, strict_mode, receiver, name, code)) {
break;
}
if (target()->type() != Code::NORMAL) {
CopyICToMegamorphicCache(name);
}
}
UpdateMegamorphicCache(receiver->map(), *name, *code);
set_target((strict_mode == kStrictMode)
? *megamorphic_stub_strict()
: *megamorphic_stub());
}
break;
case MEGAMORPHIC:
// Update the stub cache.
UpdateMegamorphicCache(receiver->map(), *name, *code);
break;
case POLYMORPHIC:
if (target()->is_load_stub()) {
if (UpdatePolymorphicIC(state, strict_mode, receiver, name, code)) {
break;
}
CopyICToMegamorphicCache(name);
UpdateMegamorphicCache(receiver->map(), *name, *code);
set_target(*megamorphic_stub());
} else {
// When trying to patch a polymorphic keyed load/store element stub
// with anything other than another polymorphic stub, go generic.
set_target((strict_mode == kStrictMode)
? *generic_stub_strict()
: *generic_stub());
}
break;
case DEBUG_STUB:
break;
case GENERIC:
UNREACHABLE();
break;
}
}
static void GetReceiverMapsForStub(Handle<Code> stub,
MapHandleList* result) {
ASSERT(stub->is_inline_cache_stub());
switch (stub->ic_state()) {
case MONOMORPHIC: {
Map* map = stub->FindFirstMap();
if (map != NULL) {
result->Add(Handle<Map>(map));
}
break;
}
case POLYMORPHIC: {
AssertNoAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Handle<Object> object(info->target_object(), stub->GetIsolate());
if (object->IsString()) break;
ASSERT(object->IsMap());
AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
}
break;
}
case MEGAMORPHIC:
break;
case UNINITIALIZED:
case PREMONOMORPHIC:
case MONOMORPHIC_PROTOTYPE_FAILURE:
case GENERIC:
case DEBUG_STUB:
UNREACHABLE();
break;
}
}
void LoadIC::UpdateCaches(LookupResult* lookup,
State state,
Handle<Object> object,
Handle<String> name) {
// Bail out if the result is not cacheable.
if (!lookup->IsCacheable()) return;
// Loading properties from values is not common, so don't try to
// deal with non-JS objects here.
if (!object->IsJSObject()) return;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
Handle<Code> code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
code = pre_monomorphic_stub();
} else {
code = ComputeLoadHandler(lookup, receiver, name);
if (code.is_null()) return;
}
PatchCache(state, kNonStrictMode, receiver, name, code);
TRACE_IC("LoadIC", name, state, target());
}
void IC::UpdateMegamorphicCache(Map* map, Name* name, Code* code) {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe.
isolate()->stub_cache()->Set(name, map, code);
}
Handle<Code> LoadIC::ComputeLoadHandler(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name) {
if (!lookup->IsProperty()) {
// Nonexistent property. The result is undefined.
return isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
}
// Compute monomorphic stub.
Handle<JSObject> holder(lookup->holder());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeLoadField(
name, receiver, holder,
lookup->GetFieldIndex(), lookup->representation());
case CONSTANT_FUNCTION: {
Handle<JSFunction> constant(lookup->GetConstantFunction());
return isolate()->stub_cache()->ComputeLoadConstant(
name, receiver, holder, constant);
}
case NORMAL:
if (holder->IsGlobalObject()) {
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
Handle<JSGlobalPropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
return isolate()->stub_cache()->ComputeLoadGlobal(
name, receiver, global, cell, lookup->IsDontDelete());
}
// There is only one shared stub for loading normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (!holder.is_identical_to(receiver)) break;
return isolate()->stub_cache()->ComputeLoadNormal(name, receiver);
case CALLBACKS: {
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->getter()) == 0) break;
if (!info->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeLoadCallback(
name, receiver, holder, info);
} else if (callback->IsAccessorPair()) {
Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
isolate());
if (!getter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
return isolate()->stub_cache()->ComputeLoadViaGetter(
name, receiver, holder, Handle<JSFunction>::cast(getter));
} else if (receiver->IsJSArray() &&
name->Equals(isolate()->heap()->length_string())) {
PropertyIndex lengthIndex =
PropertyIndex::NewHeaderIndex(JSArray::kLengthOffset / kPointerSize);
return isolate()->stub_cache()->ComputeLoadField(
name, receiver, holder, lengthIndex, Representation::Tagged());
}
// TODO(dcarney): Handle correctly.
if (callback->IsDeclaredAccessorInfo()) break;
ASSERT(callback->IsForeign());
// No IC support for old-style native accessors.
break;
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(*holder));
return isolate()->stub_cache()->ComputeLoadInterceptor(
name, receiver, holder);
default:
break;
}
return Handle<Code>::null();
}
static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
// This helper implements a few common fast cases for converting
// non-smi keys of keyed loads/stores to a smi or a string.
if (key->IsHeapNumber()) {
double value = Handle<HeapNumber>::cast(key)->value();
if (std::isnan(value)) {
key = isolate->factory()->nan_string();
} else {
int int_value = FastD2I(value);
if (value == int_value && Smi::IsValid(int_value)) {
key = Handle<Smi>(Smi::FromInt(int_value), isolate);
}
}
} else if (key->IsUndefined()) {
key = isolate->factory()->undefined_string();
}
return key;
}
Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
State ic_state = target()->ic_state();
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return generic_stub();
}
Handle<Map> receiver_map(receiver->map(), isolate());
MapHandleList target_receiver_maps;
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
// yet will do so and stay there.
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
if (target() == *string_stub()) {
target_receiver_maps.Add(isolate()->factory()->string_map());
} else {
GetReceiverMapsForStub(Handle<Code>(target(), isolate()),
&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
}
// The first time a receiver is seen that is a transitioned version of the
// previous monomorphic receiver type, assume the new ElementsKind is the
// monomorphic type. This benefits global arrays that only transition
// once, and all call sites accessing them are faster if they remain
// monomorphic. If this optimistic assumption is not true, the IC will
// miss again and it will become polymorphic and support both the
// untransitioned and transitioned maps.
if (ic_state == MONOMORPHIC &&
IsMoreGeneralElementsKindTransition(
target_receiver_maps.at(0)->elements_kind(),
receiver->GetElementsKind())) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
ASSERT(ic_state != GENERIC);
// Determine the list of receiver maps that this call site has seen,
// adding the map that was just encountered.
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return generic_stub();
}
return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
&target_receiver_maps);
}
MaybeObject* KeyedLoadIC::Load(State state,
Handle<Object> object,
Handle<Object> key,
ICMissMode miss_mode) {
// Check for values that can be converted into an internalized string directly
// or is representable as a smi.
key = TryConvertKey(key, isolate());
if (key->IsInternalizedString()) {
return LoadIC::Load(state, object, Handle<String>::cast(key));
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic) {
Handle<Code> stub = generic_stub();
if (miss_mode != MISS_FORCE_GENERIC) {
if (object->IsString() && key->IsNumber()) {
if (state == UNINITIALIZED) {
stub = string_stub();
}
} else if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = non_strict_arguments_stub();
} else if (receiver->HasIndexedInterceptor()) {
stub = indexed_interceptor_stub();
} else if (!key->ToSmi()->IsFailure() &&
(target() != *non_strict_arguments_stub())) {
stub = LoadElementStub(receiver);
}
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "force generic");
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedLoadIC", key, state, target());
}
return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
}
Handle<Code> KeyedLoadIC::ComputeLoadHandler(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty()) return Handle<Code>::null();
// Compute a monomorphic stub.
Handle<JSObject> holder(lookup->holder(), isolate());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeKeyedLoadField(
name, receiver, holder,
lookup->GetFieldIndex(), lookup->representation());
case CONSTANT_FUNCTION: {
Handle<JSFunction> constant(lookup->GetConstantFunction(), isolate());
return isolate()->stub_cache()->ComputeKeyedLoadConstant(
name, receiver, holder, constant);
}
case CALLBACKS: {
Handle<Object> callback_object(lookup->GetCallbackObject(), isolate());
// TODO(dcarney): Handle DeclaredAccessorInfo correctly.
if (!callback_object->IsExecutableAccessorInfo()) break;
Handle<ExecutableAccessorInfo> callback =
Handle<ExecutableAccessorInfo>::cast(callback_object);
if (v8::ToCData<Address>(callback->getter()) == 0) break;
if (!callback->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeKeyedLoadCallback(
name, receiver, holder, callback);
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(lookup->holder()));
return isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
name, receiver, holder);
default:
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
return generic_stub();
}
return Handle<Code>::null();
}
static bool LookupForWrite(Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value,
LookupResult* lookup,
IC::State* state) {
Handle<JSObject> holder = receiver;
receiver->Lookup(*name, lookup);
if (lookup->IsFound()) {
if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
if (lookup->holder() == *receiver) {
if (lookup->IsInterceptor() &&
receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
receiver->LocalLookupRealNamedProperty(*name, lookup);
return lookup->IsFound() &&
!lookup->IsReadOnly() &&
lookup->CanHoldValue(value) &&
lookup->IsCacheable();
}
return lookup->CanHoldValue(value);
}
if (lookup->IsPropertyCallbacks()) return true;
// Currently normal holders in the prototype chain are not supported. They
// would require a runtime positive lookup and verification that the details
// have not changed.
if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
}
// While normally LookupTransition gets passed the receiver, in this case we
// pass the holder of the property that we overwrite. This keeps the holder in
// the LookupResult intact so we can later use it to generate a prototype
// chain check. This avoids a double lookup, but requires us to pass in the
// receiver when trying to fetch extra information from the transition.
receiver->map()->LookupTransition(*holder, *name, lookup);
if (!lookup->IsTransition()) return false;
PropertyDetails target_details =
lookup->GetTransitionDetails(receiver->map());
if (target_details.IsReadOnly()) return false;
// If the value that's being stored does not fit in the field that the
// instance would transition to, create a new transition that fits the value.
// This has to be done before generating the IC, since that IC will embed the
// transition target.
// Ensure the instance and its map were migrated before trying to update the
// transition target.
ASSERT(!receiver->map()->is_deprecated());
if (!value->FitsRepresentation(target_details.representation())) {
Handle<Map> target(lookup->GetTransitionMapFromMap(receiver->map()));
Map::GeneralizeRepresentation(
target, target->LastAdded(), value->OptimalRepresentation());
*state = MONOMORPHIC_PROTOTYPE_FAILURE;
}
return true;
}
MaybeObject* StoreIC::Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
// Handle proxies.
if (object->IsJSProxy()) {
return JSReceiver::SetPropertyOrFail(
Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode);
}
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_store", object, name);
}
// The length property of string values is read-only. Throw in strict mode.
if (strict_mode == kStrictMode && object->IsString() &&
name->Equals(isolate()->heap()->length_string())) {
return TypeError("strict_read_only_property", object, name);
}
// Ignore other stores where the receiver is not a JSObject.
// TODO(1475): Must check prototype chains of object wrappers.
if (!object->IsJSObject()) return *value;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
// Check if the given name is an array index.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<Object> result =
JSObject::SetElement(receiver, index, value, NONE, strict_mode);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
return *value;
}
// Observed objects are always modified through the runtime.
if (FLAG_harmony_observation && receiver->map()->is_observed()) {
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
// Use specialized code for setting the length of arrays with fast
// properties. Slow properties might indicate redefinition of the length
// property.
if (FLAG_use_ic &&
receiver->IsJSArray() &&
name->Equals(isolate()->heap()->length_string()) &&
Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
receiver->HasFastProperties()) {
Handle<Code> stub =
StoreArrayLengthStub(kind(), strict_mode).GetCode(isolate());
set_target(*stub);
TRACE_IC("StoreIC", name, state, *stub);
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
if (receiver->IsJSGlobalProxy()) {
if (FLAG_use_ic && kind() != Code::KEYED_STORE_IC) {
// Generate a generic stub that goes to the runtime when we see a global
// proxy as receiver.
Handle<Code> stub = (strict_mode == kStrictMode)
? global_proxy_stub_strict()
: global_proxy_stub();
set_target(*stub);
TRACE_IC("StoreIC", name, state, *stub);
}
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
LookupResult lookup(isolate());
if (LookupForWrite(receiver, name, value, &lookup, &state)) {
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
}
} else if (strict_mode == kStrictMode &&
!(lookup.IsProperty() && lookup.IsReadOnly()) &&
IsUndeclaredGlobal(object)) {
// Strict mode doesn't allow setting non-existent global property.
return ReferenceError("not_defined", name);
}
// Set the property.
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
void StoreIC::UpdateCaches(LookupResult* lookup,
State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
ASSERT(!receiver->IsJSGlobalProxy());
ASSERT(lookup->IsFound());
// These are not cacheable, so we never see such LookupResults here.
ASSERT(!lookup->IsHandler());
Handle<Code> code =
ComputeStoreMonomorphic(lookup, strict_mode, receiver, name);
if (code.is_null()) return;
PatchCache(state, strict_mode, receiver, name, code);
TRACE_IC("StoreIC", name, state, target());
}
Handle<Code> StoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name) {
Handle<JSObject> holder(lookup->holder());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeStoreField(
name, receiver, lookup, strict_mode);
case NORMAL:
if (receiver->IsGlobalObject()) {
// The stub generated for the global object picks the value directly
// from the property cell. So the property must be directly on the
// global object.
Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
Handle<JSGlobalPropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
return isolate()->stub_cache()->ComputeStoreGlobal(
name, global, cell, strict_mode);
}
ASSERT(holder.is_identical_to(receiver));
return isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
case CALLBACKS: {
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->setter()) == 0) break;
if (!holder->HasFastProperties()) break;
if (!info->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeStoreCallback(
name, receiver, holder, info, strict_mode);
} else if (callback->IsAccessorPair()) {
Handle<Object> setter(
Handle<AccessorPair>::cast(callback)->setter(), isolate());
if (!setter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
return isolate()->stub_cache()->ComputeStoreViaSetter(
name, receiver, holder, Handle<JSFunction>::cast(setter),
strict_mode);
}
// TODO(dcarney): Handle correctly.
if (callback->IsDeclaredAccessorInfo()) break;
ASSERT(callback->IsForeign());
// No IC support for old-style native accessors.
break;
}
case INTERCEPTOR:
ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
return isolate()->stub_cache()->ComputeStoreInterceptor(
name, receiver, strict_mode);
case CONSTANT_FUNCTION:
break;
case TRANSITION: {
// Explicitly pass in the receiver map since LookupForWrite may have
// stored something else than the receiver in the holder.
Handle<Map> transition(
lookup->GetTransitionTarget(receiver->map()), isolate());
int descriptor = transition->LastAdded();
DescriptorArray* target_descriptors = transition->instance_descriptors();
PropertyDetails details = target_descriptors->GetDetails(descriptor);
if (details.type() != FIELD || details.attributes() != NONE) break;
return isolate()->stub_cache()->ComputeStoreTransition(
name, receiver, lookup, transition, strict_mode);
}
case NONEXISTENT:
case HANDLER:
UNREACHABLE();
break;
}
return Handle<Code>::null();
}
Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode,
StrictModeFlag strict_mode) {
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
if (!FLAG_compiled_keyed_stores &&
(store_mode == STORE_NO_TRANSITION_HANDLE_COW ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS)) {
// TODO(danno): We'll soon handle MONOMORPHIC ICs that also support
// copying COW arrays and silently ignoring some OOB stores into external
// arrays, but for now use the generic.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "COW/OOB external array");
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
State ic_state = target()->ic_state();
Handle<Map> receiver_map(receiver->map(), isolate());
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
// yet will do so and stay there.
Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
monomorphic_map, strict_mode, store_mode);
}
MapHandleList target_receiver_maps;
target()->FindAllMaps(&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
// In the case that there is a non-map-specific IC is installed (e.g. keyed
// stores into properties in dictionary mode), then there will be not
// receiver maps in the target.
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
// There are several special cases where an IC that is MONOMORPHIC can still
// transition to a different GetNonTransitioningStoreMode IC that handles a
// superset of the original IC. Handle those here if the receiver map hasn't
// changed or it has transitioned to a more general kind.
KeyedAccessStoreMode old_store_mode =
Code::GetKeyedAccessStoreMode(target()->extra_ic_state());
Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
if (ic_state == MONOMORPHIC && old_store_mode == STANDARD_STORE) {
// If the "old" and "new" maps are in the same elements map family, stay
// MONOMORPHIC and use the map for the most generic ElementsKind.
Handle<Map> transitioned_receiver_map = receiver_map;
if (IsTransitionStoreMode(store_mode)) {
transitioned_receiver_map =
ComputeTransitionedMap(receiver, store_mode);
}
if (IsTransitionedMapOfMonomorphicTarget(*transitioned_receiver_map)) {
// Element family is the same, use the "worst" case map.
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
transitioned_receiver_map, strict_mode, store_mode);
} else if (*previous_receiver_map == receiver->map()) {
if (IsGrowStoreMode(store_mode) ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
// A "normal" IC that handles stores can switch to a version that can
// grow at the end of the array, handle OOB accesses or copy COW arrays
// and still stay MONOMORPHIC.
return isolate()->stub_cache()->ComputeKeyedStoreElement(
receiver_map, strict_mode, store_mode);
}
}
}
ASSERT(ic_state != GENERIC);
bool map_added =
AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
if (IsTransitionStoreMode(store_mode)) {
Handle<Map> transitioned_receiver_map =
ComputeTransitionedMap(receiver, store_mode);
map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
transitioned_receiver_map);
}
if (!map_added) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
// Make sure all polymorphic handlers have the same store mode, otherwise the
// generic stub must be used.
store_mode = GetNonTransitioningStoreMode(store_mode);
if (old_store_mode != STANDARD_STORE) {
if (store_mode == STANDARD_STORE) {
store_mode = old_store_mode;
} else if (store_mode != old_store_mode) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
}
// If the store mode isn't the standard mode, make sure that all polymorphic
// receivers are either external arrays, or all "normal" arrays. Otherwise,
// use the generic stub.
if (store_mode != STANDARD_STORE) {
int external_arrays = 0;
for (int i = 0; i < target_receiver_maps.length(); ++i) {
if (target_receiver_maps[i]->has_external_array_elements()) {
external_arrays++;
}
}
if (external_arrays != 0 &&
external_arrays != target_receiver_maps.length()) {
TRACE_GENERIC_IC(isolate(), "KeyedIC",
"unsupported combination of external and normal arrays");
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
}
return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
&target_receiver_maps, store_mode, strict_mode);
}
Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode) {
switch (store_mode) {
case STORE_TRANSITION_SMI_TO_OBJECT:
case STORE_TRANSITION_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
case STORE_TRANSITION_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
return JSObject::GetElementsTransitionMap(receiver,
FAST_HOLEY_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
return JSObject::GetElementsTransitionMap(receiver,
FAST_HOLEY_DOUBLE_ELEMENTS);
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
ASSERT(receiver->map()->has_external_array_elements());
// Fall through
case STORE_NO_TRANSITION_HANDLE_COW:
case STANDARD_STORE:
case STORE_AND_GROW_NO_TRANSITION:
return Handle<Map>(receiver->map(), isolate());
}
return Handle<Map>::null();
}
bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
int index) {
if (receiver->IsJSArray()) {
return JSArray::cast(*receiver)->length()->IsSmi() &&
index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
}
return index >= receiver->elements()->length();
}
KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
Handle<Object> key,
Handle<Object> value) {
ASSERT(!key->ToSmi()->IsFailure());
Smi* smi_key = NULL;
key->ToSmi()->To(&smi_key);
int index = smi_key->value();
bool oob_access = IsOutOfBoundsAccess(receiver, index);
bool allow_growth = receiver->IsJSArray() && oob_access;
if (allow_growth) {
// Handle growing array in stub if necessary.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
}
}
if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
return STORE_AND_GROW_NO_TRANSITION;
} else {
// Handle only in-bounds elements accesses.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_TRANSITION_SMI_TO_DOUBLE;
}
} else if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
if (!FLAG_trace_external_array_abuse &&
receiver->map()->has_external_array_elements() && oob_access) {
return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
}
Heap* heap = receiver->GetHeap();
if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
return STORE_NO_TRANSITION_HANDLE_COW;
} else {
return STANDARD_STORE;
}
}
}
MaybeObject* KeyedStoreIC::Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
ICMissMode miss_mode) {
// Check for values that can be converted into an internalized string directly
// or is representable as a smi.
key = TryConvertKey(key, isolate());
if (key->IsInternalizedString()) {
return StoreIC::Store(state,
strict_mode,
object,
Handle<String>::cast(key),
value,
JSReceiver::MAY_BE_STORE_FROM_KEYED);
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
!(FLAG_harmony_observation && object->IsJSObject() &&
JSObject::cast(*object)->map()->is_observed());
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic) {
Handle<Code> stub = (strict_mode == kStrictMode)
? generic_stub_strict()
: generic_stub();
if (miss_mode != MISS_FORCE_GENERIC) {
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
bool key_is_smi_like = key->IsSmi() ||
(FLAG_compiled_keyed_stores && !key->ToSmi()->IsFailure());
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = non_strict_arguments_stub();
} else if (key_is_smi_like &&
(target() != *non_strict_arguments_stub())) {
KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
stub = StoreElementStub(receiver, store_mode, strict_mode);
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "key not a number");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "not an object");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "force generic");
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedStoreIC", key, state, target());
}
return Runtime::SetObjectPropertyOrFail(
isolate(), object , key, value, NONE, strict_mode);
}
Handle<Code> KeyedStoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name) {
// If the property has a non-field type allowing map transitions
// where there is extra room in the object, we leave the IC in its
// current state.
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeKeyedStoreField(
name, receiver, lookup, strict_mode);
case TRANSITION: {
// Explicitly pass in the receiver map since LookupForWrite may have
// stored something else than the receiver in the holder.
Handle<Map> transition(
lookup->GetTransitionTarget(receiver->map()), isolate());
int descriptor = transition->LastAdded();
DescriptorArray* target_descriptors = transition->instance_descriptors();
PropertyDetails details = target_descriptors->GetDetails(descriptor);
if (details.type() == FIELD && details.attributes() == NONE) {
return isolate()->stub_cache()->ComputeKeyedStoreTransition(
name, receiver, lookup, transition, strict_mode);
}
// fall through.
}
case NORMAL:
case CONSTANT_FUNCTION:
case CALLBACKS:
case INTERCEPTOR:
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
return (strict_mode == kStrictMode)
? generic_stub_strict()
: generic_stub();
case HANDLER:
case NONEXISTENT:
UNREACHABLE();
break;
}
return Handle<Code>::null();
}
#undef TRACE_IC
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CallIC ic(isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
MaybeObject* maybe_result = ic.LoadFunction(state,
extra_ic_state,
args.at<Object>(0),
args.at<String>(1));
JSFunction* raw_function;
if (!maybe_result->To(&raw_function)) return maybe_result;
// The first time the inline cache is updated may be the first time the
// function it references gets called. If the function is lazily compiled
// then the first call will trigger a compilation. We check for this case
// and we do the compilation immediately, instead of waiting for the stub
// currently attached to the JSFunction object to trigger compilation.
if (raw_function->is_compiled()) return raw_function;
Handle<JSFunction> function(raw_function);
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedCallIC ic(isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
MaybeObject* maybe_result =
ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
// Result could be a function or a failure.
JSFunction* raw_function = NULL;
if (!maybe_result->To(&raw_function)) return maybe_result;
if (raw_function->is_compiled()) return raw_function;
Handle<JSFunction> function(raw_function, isolate);
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<String>(1));
}
// Used from ic-<arch>.cc
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state,
args.at<Object>(0),
args.at<Object>(1),
MISS_FORCE_GENERIC);
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<String>(1),
args.at<Object>(2));
}
RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
NoHandleAllocation nha(isolate);
ASSERT(args.length() == 2);
JSArray* receiver = JSArray::cast(args[0]);
Object* len = args[1];
// The generated code should filter out non-Smis before we get here.
ASSERT(len->IsSmi());
#ifdef DEBUG
// The length property has to be a writable callback property.
LookupResult debug_lookup(isolate);
receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
#endif
Object* result;
MaybeObject* maybe_result = receiver->SetElementsLength(len);
if (!maybe_result->To(&result)) return maybe_result;
return len;
}
// Extend storage is called in a store inline cache when
// it is necessary to extend the properties array of a
// JSObject.
RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
NoHandleAllocation na(isolate);
ASSERT(args.length() == 3);
// Convert the parameters
JSObject* object = JSObject::cast(args[0]);
Map* transition = Map::cast(args[1]);
Object* value = args[2];
// Check the object has run out out property space.
ASSERT(object->HasFastProperties());
ASSERT(object->map()->unused_property_fields() == 0);
// Expand the properties array.
FixedArray* old_storage = object->properties();
int new_unused = transition->unused_property_fields();
int new_size = old_storage->length() + new_unused + 1;
Object* result;
MaybeObject* maybe_result = old_storage->CopySize(new_size);
if (!maybe_result->ToObject(&result)) return maybe_result;
FixedArray* new_storage = FixedArray::cast(result);
Object* to_store = value;
if (FLAG_track_double_fields) {
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
if (details.representation().IsDouble()) {
MaybeObject* maybe_storage =
isolate->heap()->AllocateHeapNumber(value->Number());
if (!maybe_storage->To(&to_store)) return maybe_storage;
}
}
new_storage->set(old_storage->length(), to_store);
// Set the new property value and do the map transition.
object->set_properties(new_storage);
object->set_map(transition);
// Return the stored value.
return value;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS);
}
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
NoHandleAllocation na(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
NONE,
strict_mode);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
NoHandleAllocation na(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
NONE,
strict_mode);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS_FORCE_GENERIC);
}
void UnaryOpIC::patch(Code* code) {
set_target(code);
}
const char* UnaryOpIC::GetName(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED: return "Uninitialized";
case SMI: return "Smi";
case NUMBER: return "Number";
case GENERIC: return "Generic";
default: return "Invalid";
}
}
UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED:
return ::v8::internal::UNINITIALIZED;
case SMI:
case NUMBER:
return MONOMORPHIC;
case GENERIC:
return ::v8::internal::GENERIC;
}
UNREACHABLE();
return ::v8::internal::UNINITIALIZED;
}
UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) {
::v8::internal::TypeInfo operand_type =
::v8::internal::TypeInfo::TypeFromValue(operand);
if (operand_type.IsSmi()) {
return SMI;
} else if (operand_type.IsNumber()) {
return NUMBER;
} else {
return GENERIC;
}
}
UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType(
TypeInfo current_type,
TypeInfo previous_type) {
switch (previous_type) {
case UNINITIALIZED:
return current_type;
case SMI:
return (current_type == GENERIC) ? GENERIC : NUMBER;
case NUMBER:
return GENERIC;
case GENERIC:
// We should never do patching if we are in GENERIC state.
UNREACHABLE();
return GENERIC;
}
UNREACHABLE();
return GENERIC;
}
void BinaryOpIC::patch(Code* code) {
set_target(code);
}
const char* BinaryOpIC::GetName(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED: return "Uninitialized";
case SMI: return "Smi";
case INT32: return "Int32";
case NUMBER: return "Number";
case ODDBALL: return "Oddball";
case STRING: return "String";
case GENERIC: return "Generic";
default: return "Invalid";
}
}
BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED:
return ::v8::internal::UNINITIALIZED;
case SMI:
case INT32:
case NUMBER:
case ODDBALL:
case STRING:
return MONOMORPHIC;
case GENERIC:
return ::v8::internal::GENERIC;
}
UNREACHABLE();
return ::v8::internal::UNINITIALIZED;
}
RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) {
ASSERT(args.length() == 4);
HandleScope scope(isolate);
Handle<Object> operand = args.at<Object>(0);
Token::Value op = static_cast<Token::Value>(args.smi_at(1));
UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2));
UnaryOpIC::TypeInfo previous_type =
static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3));
UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand);
type = UnaryOpIC::ComputeNewType(type, previous_type);
UnaryOpStub stub(op, mode, type);
Handle<Code> code = stub.GetCode(isolate);
if (!code.is_null()) {
if (FLAG_trace_ic) {
PrintF("[UnaryOpIC in ");
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
PrintF(" (%s->%s)#%s @ %p]\n",
UnaryOpIC::GetName(previous_type),
UnaryOpIC::GetName(type),
Token::Name(op),
static_cast<void*>(*code));
}
UnaryOpIC ic(isolate);
ic.patch(*code);
}
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
Object* builtin = NULL; // Initialization calms down the compiler.
switch (op) {
case Token::SUB:
builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS);
break;
case Token::BIT_NOT:
builtin = builtins->javascript_builtin(Builtins::BIT_NOT);
break;
default:
UNREACHABLE();
}
Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
bool caught_exception;
Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL,
&caught_exception);
if (caught_exception) {
return Failure::Exception();
}
return *result;
}
static BinaryOpIC::TypeInfo TypeInfoFromValue(Handle<Object> value,
Token::Value op) {
::v8::internal::TypeInfo type =
::v8::internal::TypeInfo::TypeFromValue(value);
if (type.IsSmi()) return BinaryOpIC::SMI;
if (type.IsInteger32()) {
if (kSmiValueSize == 32) return BinaryOpIC::SMI;
return BinaryOpIC::INT32;
}
if (type.IsNumber()) return BinaryOpIC::NUMBER;
if (type.IsString()) return BinaryOpIC::STRING;
if (value->IsUndefined()) {
if (op == Token::BIT_AND ||
op == Token::BIT_OR ||
op == Token::BIT_XOR ||
op == Token::SAR ||
op == Token::SHL ||
op == Token::SHR) {
if (kSmiValueSize == 32) return BinaryOpIC::SMI;
return BinaryOpIC::INT32;
}
return BinaryOpIC::ODDBALL;
}
return BinaryOpIC::GENERIC;
}
static BinaryOpIC::TypeInfo InputState(BinaryOpIC::TypeInfo old_type,
Handle<Object> value,
Token::Value op) {
BinaryOpIC::TypeInfo new_type = TypeInfoFromValue(value, op);
if (old_type == BinaryOpIC::STRING) {
if (new_type == BinaryOpIC::STRING) return new_type;
return BinaryOpIC::GENERIC;
}
return Max(old_type, new_type);
}
RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
ASSERT(args.length() == 3);
HandleScope scope(isolate);
Handle<Object> left = args.at<Object>(0);
Handle<Object> right = args.at<Object>(1);
int key = args.smi_at(2);
Token::Value op = BinaryOpStub::decode_op_from_minor_key(key);
BinaryOpIC::TypeInfo previous_left, previous_right, unused_previous_result;
BinaryOpStub::decode_types_from_minor_key(
key, &previous_left, &previous_right, &unused_previous_result);
BinaryOpIC::TypeInfo new_left = InputState(previous_left, left, op);
BinaryOpIC::TypeInfo new_right = InputState(previous_right, right, op);
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
// STRING is only used for ADD operations.
if ((new_left == BinaryOpIC::STRING || new_right == BinaryOpIC::STRING) &&
op != Token::ADD) {
new_left = new_right = BinaryOpIC::GENERIC;
}
BinaryOpIC::TypeInfo new_overall = Max(new_left, new_right);
BinaryOpIC::TypeInfo previous_overall = Max(previous_left, previous_right);
if (new_overall == BinaryOpIC::SMI && previous_overall == BinaryOpIC::SMI) {
if (op == Token::DIV ||
op == Token::MUL ||
op == Token::SHR ||
kSmiValueSize == 32) {
// Arithmetic on two Smi inputs has yielded a heap number.
// That is the only way to get here from the Smi stub.
// With 32-bit Smis, all overflows give heap numbers, but with
// 31-bit Smis, most operations overflow to int32 results.
result_type = BinaryOpIC::NUMBER;
} else {
// Other operations on SMIs that overflow yield int32s.
result_type = BinaryOpIC::INT32;
}
}
if (new_overall == BinaryOpIC::INT32 &&
previous_overall == BinaryOpIC::INT32) {
if (new_left == previous_left && new_right == previous_right) {
result_type = BinaryOpIC::NUMBER;
}
}
BinaryOpStub stub(key, new_left, new_right, result_type);
Handle<Code> code = stub.GetCode(isolate);
if (!code.is_null()) {
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[BinaryOpIC in ");
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
PrintF(" ((%s+%s)->((%s+%s)->%s))#%s @ %p]\n",
BinaryOpIC::GetName(previous_left),
BinaryOpIC::GetName(previous_right),
BinaryOpIC::GetName(new_left),
BinaryOpIC::GetName(new_right),
BinaryOpIC::GetName(result_type),
Token::Name(op),
static_cast<void*>(*code));
}
#endif
BinaryOpIC ic(isolate);
ic.patch(*code);
// Activate inlined smi code.
if (previous_overall == BinaryOpIC::UNINITIALIZED) {
PatchInlinedSmiCode(ic.address(), ENABLE_INLINED_SMI_CHECK);
}
}
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
Object* builtin = NULL; // Initialization calms down the compiler.
switch (op) {
case Token::ADD:
builtin = builtins->javascript_builtin(Builtins::ADD);
break;
case Token::SUB:
builtin = builtins->javascript_builtin(Builtins::SUB);
break;
case Token::MUL:
builtin = builtins->javascript_builtin(Builtins::MUL);
break;
case Token::DIV:
builtin = builtins->javascript_builtin(Builtins::DIV);
break;
case Token::MOD:
builtin = builtins->javascript_builtin(Builtins::MOD);
break;
case Token::BIT_AND:
builtin = builtins->javascript_builtin(Builtins::BIT_AND);
break;
case Token::BIT_OR:
builtin = builtins->javascript_builtin(Builtins::BIT_OR);
break;
case Token::BIT_XOR:
builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
break;
case Token::SHR:
builtin = builtins->javascript_builtin(Builtins::SHR);
break;
case Token::SAR:
builtin = builtins->javascript_builtin(Builtins::SAR);
break;
case Token::SHL:
builtin = builtins->javascript_builtin(Builtins::SHL);
break;
default:
UNREACHABLE();
}
Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
bool caught_exception;
Handle<Object> builtin_args[] = { right };
Handle<Object> result = Execution::Call(builtin_function,
left,
ARRAY_SIZE(builtin_args),
builtin_args,
&caught_exception);
if (caught_exception) {
return Failure::Exception();
}
return *result;
}
Code* CompareIC::GetRawUninitialized(Token::Value op) {
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code, Isolate::Current()));
return code;
}
Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
return stub.GetCode(isolate);
}
const char* CompareIC::GetStateName(State state) {
switch (state) {
case UNINITIALIZED: return "UNINITIALIZED";
case SMI: return "SMI";
case NUMBER: return "NUMBER";
case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
case STRING: return "STRING";
case UNIQUE_NAME: return "UNIQUE_NAME";
case OBJECT: return "OBJECT";
case KNOWN_OBJECT: return "KNOWN_OBJECT";
case GENERIC: return "GENERIC";
default:
UNREACHABLE();
return NULL;
}
}
static CompareIC::State InputState(CompareIC::State old_state,
Handle<Object> value) {
switch (old_state) {
case CompareIC::UNINITIALIZED:
if (value->IsSmi()) return CompareIC::SMI;
if (value->IsHeapNumber()) return CompareIC::NUMBER;
if (value->IsInternalizedString()) return CompareIC::INTERNALIZED_STRING;
if (value->IsString()) return CompareIC::STRING;
if (value->IsSymbol()) return CompareIC::UNIQUE_NAME;
if (value->IsJSObject()) return CompareIC::OBJECT;
break;
case CompareIC::SMI:
if (value->IsSmi()) return CompareIC::SMI;
if (value->IsHeapNumber()) return CompareIC::NUMBER;
break;
case CompareIC::NUMBER:
if (value->IsNumber()) return CompareIC::NUMBER;
break;
case CompareIC::INTERNALIZED_STRING:
if (value->IsInternalizedString()) return CompareIC::INTERNALIZED_STRING;
if (value->IsString()) return CompareIC::STRING;
if (value->IsSymbol()) return CompareIC::UNIQUE_NAME;
break;
case CompareIC::STRING:
if (value->IsString()) return CompareIC::STRING;
break;
case CompareIC::UNIQUE_NAME:
if (value->IsUniqueName()) return CompareIC::UNIQUE_NAME;
break;
case CompareIC::OBJECT:
if (value->IsJSObject()) return CompareIC::OBJECT;
break;
case CompareIC::GENERIC:
break;
case CompareIC::KNOWN_OBJECT:
UNREACHABLE();
break;
}
return CompareIC::GENERIC;
}
CompareIC::State CompareIC::TargetState(State old_state,
State old_left,
State old_right,
bool has_inlined_smi_code,
Handle<Object> x,
Handle<Object> y) {
switch (old_state) {
case UNINITIALIZED:
if (x->IsSmi() && y->IsSmi()) return SMI;
if (x->IsNumber() && y->IsNumber()) return NUMBER;
if (Token::IsOrderedRelationalCompareOp(op_)) {
// Ordered comparisons treat undefined as NaN, so the
// NUMBER stub will do the right thing.
if ((x->IsNumber() && y->IsUndefined()) ||
(y->IsNumber() && x->IsUndefined())) {
return NUMBER;
}
}
if (x->IsInternalizedString() && y->IsInternalizedString()) {
// We compare internalized strings as plain ones if we need to determine
// the order in a non-equality compare.
return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
}
if (x->IsString() && y->IsString()) return STRING;
if (!Token::IsEqualityOp(op_)) return GENERIC;
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
if (x->IsJSObject() && y->IsJSObject()) {
if (Handle<JSObject>::cast(x)->map() ==
Handle<JSObject>::cast(y)->map()) {
return KNOWN_OBJECT;
} else {
return OBJECT;
}
}
return GENERIC;
case SMI:
return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
case INTERNALIZED_STRING:
ASSERT(Token::IsEqualityOp(op_));
if (x->IsString() && y->IsString()) return STRING;
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
return GENERIC;
case NUMBER:
// If the failure was due to one side changing from smi to heap number,
// then keep the state (if other changed at the same time, we will get
// a second miss and then go to generic).
if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
return GENERIC;
case KNOWN_OBJECT:
ASSERT(Token::IsEqualityOp(op_));
if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
return GENERIC;
case STRING:
case UNIQUE_NAME:
case OBJECT:
case GENERIC:
return GENERIC;
}
UNREACHABLE();
return GENERIC; // Make the compiler happy.
}
void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
HandleScope scope(isolate());
State previous_left, previous_right, previous_state;
ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
&previous_right, &previous_state, NULL);
State new_left = InputState(previous_left, x);
State new_right = InputState(previous_right, y);
State state = TargetState(previous_state, previous_left, previous_right,
HasInlinedSmiCode(address()), x, y);
ICCompareStub stub(op_, new_left, new_right, state);
if (state == KNOWN_OBJECT) {
stub.set_known_map(
Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
}
set_target(*stub.GetCode(isolate()));
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[CompareIC in ");
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
GetStateName(previous_left),
GetStateName(previous_right),
GetStateName(previous_state),
GetStateName(new_left),
GetStateName(new_right),
GetStateName(state),
Token::Name(op_),
static_cast<void*>(*stub.GetCode(isolate())));
}
#endif
// Activate inlined smi code.
if (previous_state == UNINITIALIZED) {
PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
}
}
// Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
NoHandleAllocation na(isolate);
ASSERT(args.length() == 3);
CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
return ic.target();
}
Code* CompareNilIC::GetRawUninitialized(EqualityKind kind,
NilValue nil) {
CompareNilICStub stub(kind, nil);
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code, Isolate::Current()));
return code;
}
void CompareNilIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
Code::ExtraICState state = target->extended_extra_ic_state();
EqualityKind kind =
CompareNilICStub::EqualityKindFromExtraICState(state);
NilValue nil =
CompareNilICStub::NilValueFromExtraICState(state);
SetTargetAtAddress(address, GetRawUninitialized(kind, nil));
}
MaybeObject* CompareNilIC::DoCompareNilSlow(EqualityKind kind,
NilValue nil,
Handle<Object> object) {
if (kind == kStrictEquality) {
if (nil == kNullValue) {
return Smi::FromInt(object->IsNull());
} else {
return Smi::FromInt(object->IsUndefined());
}
}
if (object->IsNull() || object->IsUndefined()) {
return Smi::FromInt(true);
}
return Smi::FromInt(object->IsUndetectableObject());
}
MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
Code::ExtraICState extra_ic_state = target()->extended_extra_ic_state();
// Extract the current supported types from the patched IC and calculate what
// types must be supported as a result of the miss.
bool already_monomorphic;
CompareNilICStub::Types types =
CompareNilICStub::GetPatchedICFlags(extra_ic_state,
object, &already_monomorphic);
EqualityKind kind =
CompareNilICStub::EqualityKindFromExtraICState(extra_ic_state);
NilValue nil =
CompareNilICStub::NilValueFromExtraICState(extra_ic_state);
// Find or create the specialized stub to support the new set of types.
CompareNilICStub stub(kind, nil, types);
Handle<Code> code;
if ((types & CompareNilICStub::kCompareAgainstMonomorphicMap) != 0) {
Handle<Map> monomorphic_map(already_monomorphic
? target()->FindFirstMap()
: HeapObject::cast(*object)->map());
code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map,
nil,
stub.GetTypes());
} else {
code = stub.GetCode(isolate());
}
patch(*code);
return DoCompareNilSlow(kind, nil, object);
}
void CompareNilIC::patch(Code* code) {
set_target(code);
}
RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
CompareNilIC ic(isolate);
return ic.CompareNil(object);
}
RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
UNREACHABLE();
CHECK(false);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(MaybeObject*, ToBoolean_Patch) {
ASSERT(args.length() == 3);
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Register tos = Register::from_code(args.smi_at(1));
ToBooleanStub::Types old_types(args.smi_at(2));
ToBooleanStub::Types new_types(old_types);
bool to_boolean_value = new_types.Record(object);
old_types.TraceTransition(new_types);
ToBooleanStub stub(tos, new_types);
Handle<Code> code = stub.GetCode(isolate);
ToBooleanIC ic(isolate);
ic.patch(*code);
return Smi::FromInt(to_boolean_value ? 1 : 0);
}
void ToBooleanIC::patch(Code* code) {
set_target(code);
}
static const Address IC_utilities[] = {
#define ADDR(name) FUNCTION_ADDR(name),
IC_UTIL_LIST(ADDR)
NULL
#undef ADDR
};
Address IC::AddressFromUtilityId(IC::UtilityId id) {
return IC_utilities[id];
}
} } // namespace v8::internal