v8/test/cctest/test-strings.cc

1389 lines
46 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Check that we can traverse very deep stacks of ConsStrings using
// StringCharacterStram. Check that Get(int) works on very deep stacks
// of ConsStrings. These operations may not be very fast, but they
// should be possible without getting errors due to too deep recursion.
#include <stdlib.h>
#include "v8.h"
#include "api.h"
#include "factory.h"
#include "objects.h"
#include "cctest.h"
#include "zone-inl.h"
// Adapted from http://en.wikipedia.org/wiki/Multiply-with-carry
class MyRandomNumberGenerator {
public:
MyRandomNumberGenerator() {
init();
}
void init(uint32_t seed = 0x5688c73e) {
static const uint32_t phi = 0x9e3779b9;
c = 362436;
i = kQSize-1;
Q[0] = seed;
Q[1] = seed + phi;
Q[2] = seed + phi + phi;
for (unsigned j = 3; j < kQSize; j++) {
Q[j] = Q[j - 3] ^ Q[j - 2] ^ phi ^ j;
}
}
uint32_t next() {
uint64_t a = 18782;
uint32_t r = 0xfffffffe;
i = (i + 1) & (kQSize-1);
uint64_t t = a * Q[i] + c;
c = (t >> 32);
uint32_t x = static_cast<uint32_t>(t + c);
if (x < c) {
x++;
c++;
}
return (Q[i] = r - x);
}
uint32_t next(int max) {
return next() % max;
}
bool next(double threshold) {
ASSERT(threshold >= 0.0 && threshold <= 1.0);
if (threshold == 1.0) return true;
if (threshold == 0.0) return false;
uint32_t value = next() % 100000;
return threshold > static_cast<double>(value)/100000.0;
}
private:
static const uint32_t kQSize = 4096;
uint32_t Q[kQSize];
uint32_t c;
uint32_t i;
};
using namespace v8::internal;
static const int DEEP_DEPTH = 8 * 1024;
static const int SUPER_DEEP_DEPTH = 80 * 1024;
class Resource: public v8::String::ExternalStringResource,
public ZoneObject {
public:
explicit Resource(Vector<const uc16> string): data_(string.start()) {
length_ = string.length();
}
virtual const uint16_t* data() const { return data_; }
virtual size_t length() const { return length_; }
private:
const uc16* data_;
size_t length_;
};
class AsciiResource: public v8::String::ExternalAsciiStringResource,
public ZoneObject {
public:
explicit AsciiResource(Vector<const char> string): data_(string.start()) {
length_ = string.length();
}
virtual const char* data() const { return data_; }
virtual size_t length() const { return length_; }
private:
const char* data_;
size_t length_;
};
static void InitializeBuildingBlocks(Handle<String>* building_blocks,
int bb_length,
bool long_blocks,
MyRandomNumberGenerator* rng,
Zone* zone) {
// A list of pointers that we don't have any interest in cleaning up.
// If they are reachable from a root then leak detection won't complain.
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
for (int i = 0; i < bb_length; i++) {
int len = rng->next(16);
int slice_head_chars = 0;
int slice_tail_chars = 0;
int slice_depth = 0;
for (int j = 0; j < 3; j++) {
if (rng->next(0.35)) slice_depth++;
}
// Must truncate something for a slice string. Loop until
// at least one end will be sliced.
while (slice_head_chars == 0 && slice_tail_chars == 0) {
slice_head_chars = rng->next(15);
slice_tail_chars = rng->next(12);
}
if (long_blocks) {
// Generate building blocks which will never be merged
len += ConsString::kMinLength + 1;
} else if (len > 14) {
len += 1234;
}
// Don't slice 0 length strings.
if (len == 0) slice_depth = 0;
int slice_length = slice_depth*(slice_head_chars + slice_tail_chars);
len += slice_length;
switch (rng->next(4)) {
case 0: {
uc16 buf[2000];
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x10000);
}
building_blocks[i] =
factory->NewStringFromTwoByte(Vector<const uc16>(buf, len));
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 1: {
char buf[2000];
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x80);
}
building_blocks[i] =
factory->NewStringFromAscii(Vector<const char>(buf, len));
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 2: {
uc16* buf = zone->NewArray<uc16>(len);
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x10000);
}
Resource* resource = new(zone) Resource(Vector<const uc16>(buf, len));
building_blocks[i] = factory->NewExternalStringFromTwoByte(resource);
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 3: {
char* buf = zone->NewArray<char>(len);
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x80);
}
AsciiResource* resource =
new(zone) AsciiResource(Vector<const char>(buf, len));
building_blocks[i] = factory->NewExternalStringFromAscii(resource);
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
}
for (int j = slice_depth; j > 0; j--) {
building_blocks[i] = factory->NewSubString(
building_blocks[i],
slice_head_chars,
building_blocks[i]->length() - slice_tail_chars);
}
CHECK(len == building_blocks[i]->length() + slice_length);
}
}
class ConsStringStats {
public:
ConsStringStats() {
Reset();
}
void Reset();
void VerifyEqual(const ConsStringStats& that) const;
unsigned leaves_;
unsigned empty_leaves_;
unsigned chars_;
unsigned left_traversals_;
unsigned right_traversals_;
private:
DISALLOW_COPY_AND_ASSIGN(ConsStringStats);
};
void ConsStringStats::Reset() {
leaves_ = 0;
empty_leaves_ = 0;
chars_ = 0;
left_traversals_ = 0;
right_traversals_ = 0;
}
void ConsStringStats::VerifyEqual(const ConsStringStats& that) const {
CHECK(this->leaves_ == that.leaves_);
CHECK(this->empty_leaves_ == that.empty_leaves_);
CHECK(this->chars_ == that.chars_);
CHECK(this->left_traversals_ == that.left_traversals_);
CHECK(this->right_traversals_ == that.right_traversals_);
}
class ConsStringGenerationData {
public:
static const int kNumberOfBuildingBlocks = 256;
ConsStringGenerationData(bool long_blocks, Zone* zone);
void Reset();
inline Handle<String> block(int offset);
inline Handle<String> block(uint32_t offset);
// Input variables.
double early_termination_threshold_;
double leftness_;
double rightness_;
double empty_leaf_threshold_;
unsigned max_leaves_;
// Cached data.
Handle<String> building_blocks_[kNumberOfBuildingBlocks];
String* empty_string_;
MyRandomNumberGenerator rng_;
// Stats.
ConsStringStats stats_;
unsigned early_terminations_;
private:
DISALLOW_COPY_AND_ASSIGN(ConsStringGenerationData);
};
ConsStringGenerationData::ConsStringGenerationData(bool long_blocks,
Zone* zone) {
rng_.init();
InitializeBuildingBlocks(
building_blocks_, kNumberOfBuildingBlocks, long_blocks, &rng_, zone);
empty_string_ = Isolate::Current()->heap()->empty_string();
Reset();
}
Handle<String> ConsStringGenerationData::block(uint32_t offset) {
return building_blocks_[offset % kNumberOfBuildingBlocks ];
}
Handle<String> ConsStringGenerationData::block(int offset) {
CHECK_GE(offset, 0);
return building_blocks_[offset % kNumberOfBuildingBlocks];
}
void ConsStringGenerationData::Reset() {
early_termination_threshold_ = 0.01;
leftness_ = 0.75;
rightness_ = 0.75;
empty_leaf_threshold_ = 0.02;
max_leaves_ = 1000;
stats_.Reset();
early_terminations_ = 0;
rng_.init();
}
void AccumulateStats(ConsString* cons_string, ConsStringStats* stats) {
int left_length = cons_string->first()->length();
int right_length = cons_string->second()->length();
CHECK(cons_string->length() == left_length + right_length);
// Check left side.
bool left_is_cons = cons_string->first()->IsConsString();
if (left_is_cons) {
stats->left_traversals_++;
AccumulateStats(ConsString::cast(cons_string->first()), stats);
} else {
CHECK_NE(left_length, 0);
stats->leaves_++;
stats->chars_ += left_length;
}
// Check right side.
if (cons_string->second()->IsConsString()) {
stats->right_traversals_++;
AccumulateStats(ConsString::cast(cons_string->second()), stats);
} else {
if (right_length == 0) {
stats->empty_leaves_++;
CHECK(!left_is_cons);
}
stats->leaves_++;
stats->chars_ += right_length;
}
}
void AccumulateStats(Handle<String> cons_string, ConsStringStats* stats) {
DisallowHeapAllocation no_allocation;
if (cons_string->IsConsString()) {
return AccumulateStats(ConsString::cast(*cons_string), stats);
}
// This string got flattened by gc.
stats->chars_ += cons_string->length();
}
void AccumulateStatsWithOperator(
ConsString* cons_string, ConsStringStats* stats) {
unsigned offset = 0;
int32_t type = cons_string->map()->instance_type();
unsigned length = static_cast<unsigned>(cons_string->length());
ConsStringIteratorOp op;
String* string = op.Operate(cons_string, &offset, &type, &length);
CHECK(string != NULL);
while (true) {
ASSERT(!string->IsConsString());
// Accumulate stats.
stats->leaves_++;
stats->chars_ += string->length();
// Check for completion.
bool keep_going_fast_check = op.HasMore();
string = op.ContinueOperation(&type, &length);
if (string == NULL) return;
// Verify no false positives for fast check.
CHECK(keep_going_fast_check);
}
}
void VerifyConsString(Handle<String> root, ConsStringGenerationData* data) {
// Verify basic data.
CHECK(root->IsConsString());
CHECK(static_cast<unsigned>(root->length()) == data->stats_.chars_);
// Recursive verify.
ConsStringStats stats;
AccumulateStats(ConsString::cast(*root), &stats);
stats.VerifyEqual(data->stats_);
// Iteratively verify.
stats.Reset();
AccumulateStatsWithOperator(ConsString::cast(*root), &stats);
// Don't see these. Must copy over.
stats.empty_leaves_ = data->stats_.empty_leaves_;
stats.left_traversals_ = data->stats_.left_traversals_;
stats.right_traversals_ = data->stats_.right_traversals_;
// Adjust total leaves to compensate.
stats.leaves_ += stats.empty_leaves_;
stats.VerifyEqual(data->stats_);
}
static Handle<String> ConstructRandomString(ConsStringGenerationData* data,
unsigned max_recursion) {
Factory* factory = Isolate::Current()->factory();
// Compute termination characteristics.
bool terminate = false;
bool flat = data->rng_.next(data->empty_leaf_threshold_);
bool terminate_early = data->rng_.next(data->early_termination_threshold_);
if (terminate_early) data->early_terminations_++;
// The obvious condition.
terminate |= max_recursion == 0;
// Flat cons string terminate by definition.
terminate |= flat;
// Cap for max leaves.
terminate |= data->stats_.leaves_ >= data->max_leaves_;
// Roll the dice.
terminate |= terminate_early;
// Compute termination characteristics for each side.
bool terminate_left = terminate || !data->rng_.next(data->leftness_);
bool terminate_right = terminate || !data->rng_.next(data->rightness_);
// Generate left string.
Handle<String> left;
if (terminate_left) {
left = data->block(data->rng_.next());
data->stats_.leaves_++;
data->stats_.chars_ += left->length();
} else {
data->stats_.left_traversals_++;
}
// Generate right string.
Handle<String> right;
if (terminate_right) {
right = data->block(data->rng_.next());
data->stats_.leaves_++;
data->stats_.chars_ += right->length();
} else {
data->stats_.right_traversals_++;
}
// Generate the necessary sub-nodes recursively.
if (!terminate_right) {
// Need to balance generation fairly.
if (!terminate_left && data->rng_.next(0.5)) {
left = ConstructRandomString(data, max_recursion - 1);
}
right = ConstructRandomString(data, max_recursion - 1);
}
if (!terminate_left && left.is_null()) {
left = ConstructRandomString(data, max_recursion - 1);
}
// Build the cons string.
Handle<String> root = factory->NewConsString(left, right);
CHECK(root->IsConsString() && !root->IsFlat());
// Special work needed for flat string.
if (flat) {
data->stats_.empty_leaves_++;
FlattenString(root);
CHECK(root->IsConsString() && root->IsFlat());
}
return root;
}
static Handle<String> ConstructLeft(
ConsStringGenerationData* data,
int depth) {
Factory* factory = Isolate::Current()->factory();
Handle<String> answer = factory->NewStringFromAscii(CStrVector(""));
data->stats_.leaves_++;
for (int i = 0; i < depth; i++) {
Handle<String> block = data->block(i);
Handle<String> next = factory->NewConsString(answer, block);
if (next->IsConsString()) data->stats_.leaves_++;
data->stats_.chars_ += block->length();
answer = next;
}
data->stats_.left_traversals_ = data->stats_.leaves_ - 2;
return answer;
}
static Handle<String> ConstructRight(
ConsStringGenerationData* data,
int depth) {
Factory* factory = Isolate::Current()->factory();
Handle<String> answer = factory->NewStringFromAscii(CStrVector(""));
data->stats_.leaves_++;
for (int i = depth - 1; i >= 0; i--) {
Handle<String> block = data->block(i);
Handle<String> next = factory->NewConsString(block, answer);
if (next->IsConsString()) data->stats_.leaves_++;
data->stats_.chars_ += block->length();
answer = next;
}
data->stats_.right_traversals_ = data->stats_.leaves_ - 2;
return answer;
}
static Handle<String> ConstructBalancedHelper(
ConsStringGenerationData* data,
int from,
int to) {
Factory* factory = Isolate::Current()->factory();
CHECK(to > from);
if (to - from == 1) {
data->stats_.chars_ += data->block(from)->length();
return data->block(from);
}
if (to - from == 2) {
data->stats_.chars_ += data->block(from)->length();
data->stats_.chars_ += data->block(from+1)->length();
return factory->NewConsString(data->block(from), data->block(from+1));
}
Handle<String> part1 =
ConstructBalancedHelper(data, from, from + ((to - from) / 2));
Handle<String> part2 =
ConstructBalancedHelper(data, from + ((to - from) / 2), to);
if (part1->IsConsString()) data->stats_.left_traversals_++;
if (part2->IsConsString()) data->stats_.right_traversals_++;
return factory->NewConsString(part1, part2);
}
static Handle<String> ConstructBalanced(
ConsStringGenerationData* data, int depth = DEEP_DEPTH) {
Handle<String> string = ConstructBalancedHelper(data, 0, depth);
data->stats_.leaves_ =
data->stats_.left_traversals_ + data->stats_.right_traversals_ + 2;
return string;
}
static ConsStringIteratorOp cons_string_iterator_op_1;
static ConsStringIteratorOp cons_string_iterator_op_2;
static void Traverse(Handle<String> s1, Handle<String> s2) {
int i = 0;
StringCharacterStream character_stream_1(*s1, &cons_string_iterator_op_1);
StringCharacterStream character_stream_2(*s2, &cons_string_iterator_op_2);
while (character_stream_1.HasMore()) {
CHECK(character_stream_2.HasMore());
uint16_t c = character_stream_1.GetNext();
CHECK_EQ(c, character_stream_2.GetNext());
i++;
}
CHECK(!character_stream_1.HasMore());
CHECK(!character_stream_2.HasMore());
CHECK_EQ(s1->length(), i);
CHECK_EQ(s2->length(), i);
}
static void TraverseFirst(Handle<String> s1, Handle<String> s2, int chars) {
int i = 0;
StringCharacterStream character_stream_1(*s1, &cons_string_iterator_op_1);
StringCharacterStream character_stream_2(*s2, &cons_string_iterator_op_2);
while (character_stream_1.HasMore() && i < chars) {
CHECK(character_stream_2.HasMore());
uint16_t c = character_stream_1.GetNext();
CHECK_EQ(c, character_stream_2.GetNext());
i++;
}
s1->Get(s1->length() - 1);
s2->Get(s2->length() - 1);
}
TEST(Traverse) {
printf("TestTraverse\n");
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Zone zone(Isolate::Current());
ConsStringGenerationData data(false, &zone);
Handle<String> flat = ConstructBalanced(&data);
FlattenString(flat);
Handle<String> left_asymmetric = ConstructLeft(&data, DEEP_DEPTH);
Handle<String> right_asymmetric = ConstructRight(&data, DEEP_DEPTH);
Handle<String> symmetric = ConstructBalanced(&data);
printf("1\n");
Traverse(flat, symmetric);
printf("2\n");
Traverse(flat, left_asymmetric);
printf("3\n");
Traverse(flat, right_asymmetric);
printf("4\n");
Handle<String> left_deep_asymmetric =
ConstructLeft(&data, SUPER_DEEP_DEPTH);
Handle<String> right_deep_asymmetric =
ConstructRight(&data, SUPER_DEEP_DEPTH);
printf("5\n");
TraverseFirst(left_asymmetric, left_deep_asymmetric, 1050);
printf("6\n");
TraverseFirst(left_asymmetric, right_deep_asymmetric, 65536);
printf("7\n");
FlattenString(left_asymmetric);
printf("10\n");
Traverse(flat, left_asymmetric);
printf("11\n");
FlattenString(right_asymmetric);
printf("12\n");
Traverse(flat, right_asymmetric);
printf("14\n");
FlattenString(symmetric);
printf("15\n");
Traverse(flat, symmetric);
printf("16\n");
FlattenString(left_deep_asymmetric);
printf("18\n");
}
static void VerifyCharacterStream(
String* flat_string, String* cons_string) {
// Do not want to test ConString traversal on flat string.
CHECK(flat_string->IsFlat() && !flat_string->IsConsString());
CHECK(cons_string->IsConsString());
// TODO(dcarney) Test stream reset as well.
int length = flat_string->length();
// Iterate start search in multiple places in the string.
int outer_iterations = length > 20 ? 20 : length;
for (int j = 0; j <= outer_iterations; j++) {
int offset = length * j / outer_iterations;
if (offset < 0) offset = 0;
// Want to test the offset == length case.
if (offset > length) offset = length;
StringCharacterStream flat_stream(
flat_string, &cons_string_iterator_op_1, static_cast<unsigned>(offset));
StringCharacterStream cons_stream(
cons_string, &cons_string_iterator_op_2, static_cast<unsigned>(offset));
for (int i = offset; i < length; i++) {
uint16_t c = flat_string->Get(i);
CHECK(flat_stream.HasMore());
CHECK(cons_stream.HasMore());
CHECK_EQ(c, flat_stream.GetNext());
CHECK_EQ(c, cons_stream.GetNext());
}
CHECK(!flat_stream.HasMore());
CHECK(!cons_stream.HasMore());
}
}
static inline void PrintStats(const ConsStringGenerationData& data) {
#ifdef DEBUG
printf(
"%s: [%d], %s: [%d], %s: [%d], %s: [%d], %s: [%d], %s: [%d]\n",
"leaves", data.stats_.leaves_,
"empty", data.stats_.empty_leaves_,
"chars", data.stats_.chars_,
"lefts", data.stats_.left_traversals_,
"rights", data.stats_.right_traversals_,
"early_terminations", data.early_terminations_);
#endif
}
template<typename BuildString>
void TestStringCharacterStream(BuildString build, int test_cases) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope outer_scope(isolate);
Zone zone(isolate);
ConsStringGenerationData data(true, &zone);
for (int i = 0; i < test_cases; i++) {
printf("%d\n", i);
HandleScope inner_scope(isolate);
AlwaysAllocateScope always_allocate;
// Build flat version of cons string.
Handle<String> flat_string = build(i, &data);
ConsStringStats flat_string_stats;
AccumulateStats(flat_string, &flat_string_stats);
// Flatten string.
FlattenString(flat_string);
// Build unflattened version of cons string to test.
Handle<String> cons_string = build(i, &data);
ConsStringStats cons_string_stats;
AccumulateStats(cons_string, &cons_string_stats);
DisallowHeapAllocation no_allocation;
PrintStats(data);
// Full verify of cons string.
cons_string_stats.VerifyEqual(flat_string_stats);
cons_string_stats.VerifyEqual(data.stats_);
VerifyConsString(cons_string, &data);
String* flat_string_ptr =
flat_string->IsConsString() ?
ConsString::cast(*flat_string)->first() :
*flat_string;
VerifyCharacterStream(flat_string_ptr, *cons_string);
}
}
static const int kCharacterStreamNonRandomCases = 8;
static Handle<String> BuildEdgeCaseConsString(
int test_case, ConsStringGenerationData* data) {
Factory* factory = Isolate::Current()->factory();
data->Reset();
switch (test_case) {
case 0:
return ConstructBalanced(data, 71);
case 1:
return ConstructLeft(data, 71);
case 2:
return ConstructRight(data, 71);
case 3:
return ConstructLeft(data, 10);
case 4:
return ConstructRight(data, 10);
case 5:
// 2 element balanced tree.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.leaves_ += 2;
return factory->NewConsString(data->block(0), data->block(1));
case 6:
// Simple flattened tree.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.leaves_ += 2;
data->stats_.empty_leaves_ += 1;
{
Handle<String> string =
factory->NewConsString(data->block(0), data->block(1));
FlattenString(string);
return string;
}
case 7:
// Left node flattened.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.chars_ += data->block(2)->length();
data->stats_.leaves_ += 3;
data->stats_.empty_leaves_ += 1;
data->stats_.left_traversals_ += 1;
{
Handle<String> left =
factory->NewConsString(data->block(0), data->block(1));
FlattenString(left);
return factory->NewConsString(left, data->block(2));
}
case 8:
// Left node and right node flattened.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.chars_ += data->block(2)->length();
data->stats_.chars_ += data->block(3)->length();
data->stats_.leaves_ += 4;
data->stats_.empty_leaves_ += 2;
data->stats_.left_traversals_ += 1;
data->stats_.right_traversals_ += 1;
{
Handle<String> left =
factory->NewConsString(data->block(0), data->block(1));
FlattenString(left);
Handle<String> right =
factory->NewConsString(data->block(2), data->block(2));
FlattenString(right);
return factory->NewConsString(left, right);
}
}
UNREACHABLE();
return Handle<String>();
}
TEST(StringCharacterStreamEdgeCases) {
printf("TestStringCharacterStreamEdgeCases\n");
TestStringCharacterStream(
BuildEdgeCaseConsString, kCharacterStreamNonRandomCases);
}
static const int kBalances = 3;
static const int kTreeLengths = 4;
static const int kEmptyLeaves = 4;
static const int kUniqueRandomParameters =
kBalances*kTreeLengths*kEmptyLeaves;
static void InitializeGenerationData(
int test_case, ConsStringGenerationData* data) {
// Clear the settings and reinit the rng.
data->Reset();
// Spin up the rng to a known location that is unique per test.
static const int kPerTestJump = 501;
for (int j = 0; j < test_case*kPerTestJump; j++) {
data->rng_.next();
}
// Choose balanced, left or right heavy trees.
switch (test_case % kBalances) {
case 0:
// Nothing to do. Already balanced.
break;
case 1:
// Left balanced.
data->leftness_ = 0.90;
data->rightness_ = 0.15;
break;
case 2:
// Right balanced.
data->leftness_ = 0.15;
data->rightness_ = 0.90;
break;
default:
UNREACHABLE();
break;
}
// Must remove the influence of the above decision.
test_case /= kBalances;
// Choose tree length.
switch (test_case % kTreeLengths) {
case 0:
data->max_leaves_ = 16;
data->early_termination_threshold_ = 0.2;
break;
case 1:
data->max_leaves_ = 50;
data->early_termination_threshold_ = 0.05;
break;
case 2:
data->max_leaves_ = 500;
data->early_termination_threshold_ = 0.03;
break;
case 3:
data->max_leaves_ = 5000;
data->early_termination_threshold_ = 0.001;
break;
default:
UNREACHABLE();
break;
}
// Must remove the influence of the above decision.
test_case /= kTreeLengths;
// Choose how much we allow empty nodes, including not at all.
data->empty_leaf_threshold_ =
0.03 * static_cast<double>(test_case % kEmptyLeaves);
}
static Handle<String> BuildRandomConsString(
int test_case, ConsStringGenerationData* data) {
InitializeGenerationData(test_case, data);
return ConstructRandomString(data, 200);
}
TEST(StringCharacterStreamRandom) {
printf("StringCharacterStreamRandom\n");
TestStringCharacterStream(BuildRandomConsString, kUniqueRandomParameters*7);
}
static const int DEEP_ASCII_DEPTH = 100000;
TEST(DeepAscii) {
printf("TestDeepAscii\n");
CcTest::InitializeVM();
Factory* factory = Isolate::Current()->factory();
v8::HandleScope scope(CcTest::isolate());
char* foo = NewArray<char>(DEEP_ASCII_DEPTH);
for (int i = 0; i < DEEP_ASCII_DEPTH; i++) {
foo[i] = "foo "[i % 4];
}
Handle<String> string =
factory->NewStringFromAscii(Vector<const char>(foo, DEEP_ASCII_DEPTH));
Handle<String> foo_string = factory->NewStringFromAscii(CStrVector("foo"));
for (int i = 0; i < DEEP_ASCII_DEPTH; i += 10) {
string = factory->NewConsString(string, foo_string);
}
Handle<String> flat_string = factory->NewConsString(string, foo_string);
FlattenString(flat_string);
for (int i = 0; i < 500; i++) {
TraverseFirst(flat_string, string, DEEP_ASCII_DEPTH);
}
DeleteArray<char>(foo);
}
TEST(Utf8Conversion) {
// Smoke test for converting strings to utf-8.
CcTest::InitializeVM();
v8::HandleScope handle_scope(CcTest::isolate());
// A simple ascii string
const char* ascii_string = "abcdef12345";
int len =
v8::String::New(ascii_string,
StrLength(ascii_string))->Utf8Length();
CHECK_EQ(StrLength(ascii_string), len);
// A mixed ascii and non-ascii string
// U+02E4 -> CB A4
// U+0064 -> 64
// U+12E4 -> E1 8B A4
// U+0030 -> 30
// U+3045 -> E3 81 85
const uint16_t mixed_string[] = {0x02E4, 0x0064, 0x12E4, 0x0030, 0x3045};
// The characters we expect to be output
const unsigned char as_utf8[11] = {0xCB, 0xA4, 0x64, 0xE1, 0x8B, 0xA4, 0x30,
0xE3, 0x81, 0x85, 0x00};
// The number of bytes expected to be written for each length
const int lengths[12] = {0, 0, 2, 3, 3, 3, 6, 7, 7, 7, 10, 11};
const int char_lengths[12] = {0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5};
v8::Handle<v8::String> mixed = v8::String::New(mixed_string, 5);
CHECK_EQ(10, mixed->Utf8Length());
// Try encoding the string with all capacities
char buffer[11];
const char kNoChar = static_cast<char>(-1);
for (int i = 0; i <= 11; i++) {
// Clear the buffer before reusing it
for (int j = 0; j < 11; j++)
buffer[j] = kNoChar;
int chars_written;
int written = mixed->WriteUtf8(buffer, i, &chars_written);
CHECK_EQ(lengths[i], written);
CHECK_EQ(char_lengths[i], chars_written);
// Check that the contents are correct
for (int j = 0; j < lengths[i]; j++)
CHECK_EQ(as_utf8[j], static_cast<unsigned char>(buffer[j]));
// Check that the rest of the buffer hasn't been touched
for (int j = lengths[i]; j < 11; j++)
CHECK_EQ(kNoChar, buffer[j]);
}
}
TEST(ExternalShortStringAdd) {
Isolate* isolate = Isolate::Current();
Zone zone(isolate);
CcTest::InitializeVM();
v8::HandleScope handle_scope(CcTest::isolate());
// Make sure we cover all always-flat lengths and at least one above.
static const int kMaxLength = 20;
CHECK_GT(kMaxLength, i::ConsString::kMinLength);
// Allocate two JavaScript arrays for holding short strings.
v8::Handle<v8::Array> ascii_external_strings =
v8::Array::New(kMaxLength + 1);
v8::Handle<v8::Array> non_ascii_external_strings =
v8::Array::New(kMaxLength + 1);
// Generate short ascii and non-ascii external strings.
for (int i = 0; i <= kMaxLength; i++) {
char* ascii = zone.NewArray<char>(i + 1);
for (int j = 0; j < i; j++) {
ascii[j] = 'a';
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
AsciiResource* ascii_resource =
new(&zone) AsciiResource(Vector<const char>(ascii, i));
v8::Local<v8::String> ascii_external_string =
v8::String::NewExternal(ascii_resource);
ascii_external_strings->Set(v8::Integer::New(i), ascii_external_string);
uc16* non_ascii = zone.NewArray<uc16>(i + 1);
for (int j = 0; j < i; j++) {
non_ascii[j] = 0x1234;
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
Resource* resource = new(&zone) Resource(Vector<const uc16>(non_ascii, i));
v8::Local<v8::String> non_ascii_external_string =
v8::String::NewExternal(resource);
non_ascii_external_strings->Set(v8::Integer::New(i),
non_ascii_external_string);
}
// Add the arrays with the short external strings in the global object.
v8::Handle<v8::Object> global = CcTest::env()->Global();
global->Set(v8_str("external_ascii"), ascii_external_strings);
global->Set(v8_str("external_non_ascii"), non_ascii_external_strings);
global->Set(v8_str("max_length"), v8::Integer::New(kMaxLength));
// Add short external ascii and non-ascii strings checking the result.
static const char* source =
"function test() {"
" var ascii_chars = 'aaaaaaaaaaaaaaaaaaaa';"
" var non_ascii_chars = '\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234';" //NOLINT
" if (ascii_chars.length != max_length) return 1;"
" if (non_ascii_chars.length != max_length) return 2;"
" var ascii = Array(max_length + 1);"
" var non_ascii = Array(max_length + 1);"
" for (var i = 0; i <= max_length; i++) {"
" ascii[i] = ascii_chars.substring(0, i);"
" non_ascii[i] = non_ascii_chars.substring(0, i);"
" };"
" for (var i = 0; i <= max_length; i++) {"
" if (ascii[i] != external_ascii[i]) return 3;"
" if (non_ascii[i] != external_non_ascii[i]) return 4;"
" for (var j = 0; j < i; j++) {"
" if (external_ascii[i] !="
" (external_ascii[j] + external_ascii[i - j])) return 5;"
" if (external_non_ascii[i] !="
" (external_non_ascii[j] + external_non_ascii[i - j])) return 6;"
" if (non_ascii[i] != (non_ascii[j] + non_ascii[i - j])) return 7;"
" if (ascii[i] != (ascii[j] + ascii[i - j])) return 8;"
" if (ascii[i] != (external_ascii[j] + ascii[i - j])) return 9;"
" if (ascii[i] != (ascii[j] + external_ascii[i - j])) return 10;"
" if (non_ascii[i] !="
" (external_non_ascii[j] + non_ascii[i - j])) return 11;"
" if (non_ascii[i] !="
" (non_ascii[j] + external_non_ascii[i - j])) return 12;"
" }"
" }"
" return 0;"
"};"
"test()";
CHECK_EQ(0, CompileRun(source)->Int32Value());
}
TEST(JSONStringifySliceMadeExternal) {
Isolate* isolate = Isolate::Current();
Zone zone(isolate);
CcTest::InitializeVM();
// Create a sliced string from a one-byte string. The latter is turned
// into a two-byte external string. Check that JSON.stringify works.
v8::HandleScope handle_scope(CcTest::isolate());
v8::Handle<v8::String> underlying =
CompileRun("var underlying = 'abcdefghijklmnopqrstuvwxyz';"
"underlying")->ToString();
v8::Handle<v8::String> slice =
CompileRun("var slice = underlying.slice(1);"
"slice")->ToString();
CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString());
CHECK(v8::Utils::OpenHandle(*underlying)->IsSeqOneByteString());
int length = underlying->Length();
uc16* two_byte = zone.NewArray<uc16>(length + 1);
underlying->Write(two_byte);
Resource* resource =
new(&zone) Resource(Vector<const uc16>(two_byte, length));
CHECK(underlying->MakeExternal(resource));
CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString());
CHECK(v8::Utils::OpenHandle(*underlying)->IsExternalTwoByteString());
CHECK_EQ("\"bcdefghijklmnopqrstuvwxyz\"",
*v8::String::Utf8Value(CompileRun("JSON.stringify(slice)")));
}
TEST(CachedHashOverflow) {
// We incorrectly allowed strings to be tagged as array indices even if their
// values didn't fit in the hash field.
// See http://code.google.com/p/v8/issues/detail?id=728
Isolate* isolate = Isolate::Current();
Zone zone(isolate);
CcTest::InitializeVM();
v8::HandleScope handle_scope(CcTest::isolate());
// Lines must be executed sequentially. Combining them into one script
// makes the bug go away.
const char* lines[] = {
"var x = [];",
"x[4] = 42;",
"var s = \"1073741828\";",
"x[s];",
"x[s] = 37;",
"x[4];",
"x[s];",
NULL
};
Handle<Smi> fortytwo(Smi::FromInt(42), isolate);
Handle<Smi> thirtyseven(Smi::FromInt(37), isolate);
Handle<Object> results[] = { isolate->factory()->undefined_value(),
fortytwo,
isolate->factory()->undefined_value(),
isolate->factory()->undefined_value(),
thirtyseven,
fortytwo,
thirtyseven // Bug yielded 42 here.
};
const char* line;
for (int i = 0; (line = lines[i]); i++) {
printf("%s\n", line);
v8::Local<v8::Value> result =
v8::Script::Compile(v8::String::New(line))->Run();
CHECK_EQ(results[i]->IsUndefined(), result->IsUndefined());
CHECK_EQ(results[i]->IsNumber(), result->IsNumber());
if (result->IsNumber()) {
CHECK_EQ(Smi::cast(results[i]->ToSmi()->ToObjectChecked())->value(),
result->ToInt32()->Value());
}
}
}
TEST(SliceFromCons) {
FLAG_string_slices = true;
CcTest::InitializeVM();
Factory* factory = Isolate::Current()->factory();
v8::HandleScope scope(CcTest::isolate());
Handle<String> string =
factory->NewStringFromAscii(CStrVector("parentparentparent"));
Handle<String> parent = factory->NewConsString(string, string);
CHECK(parent->IsConsString());
CHECK(!parent->IsFlat());
Handle<String> slice = factory->NewSubString(parent, 1, 25);
// After slicing, the original string becomes a flat cons.
CHECK(parent->IsFlat());
CHECK(slice->IsSlicedString());
CHECK_EQ(SlicedString::cast(*slice)->parent(),
// Parent could have been short-circuited.
parent->IsConsString() ? ConsString::cast(*parent)->first()
: *parent);
CHECK(SlicedString::cast(*slice)->parent()->IsSeqString());
CHECK(slice->IsFlat());
}
class AsciiVectorResource : public v8::String::ExternalAsciiStringResource {
public:
explicit AsciiVectorResource(i::Vector<const char> vector)
: data_(vector) {}
virtual ~AsciiVectorResource() {}
virtual size_t length() const { return data_.length(); }
virtual const char* data() const { return data_.start(); }
private:
i::Vector<const char> data_;
};
TEST(SliceFromExternal) {
FLAG_string_slices = true;
CcTest::InitializeVM();
Factory* factory = Isolate::Current()->factory();
v8::HandleScope scope(CcTest::isolate());
AsciiVectorResource resource(
i::Vector<const char>("abcdefghijklmnopqrstuvwxyz", 26));
Handle<String> string = factory->NewExternalStringFromAscii(&resource);
CHECK(string->IsExternalString());
Handle<String> slice = factory->NewSubString(string, 1, 25);
CHECK(slice->IsSlicedString());
CHECK(string->IsExternalString());
CHECK_EQ(SlicedString::cast(*slice)->parent(), *string);
CHECK(SlicedString::cast(*slice)->parent()->IsExternalString());
CHECK(slice->IsFlat());
}
TEST(TrivialSlice) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
FLAG_string_slices = true;
CcTest::InitializeVM();
Factory* factory = Isolate::Current()->factory();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result;
Handle<String> string;
const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';";
const char* check = "str.slice(0,26)";
const char* crosscheck = "str.slice(1,25)";
CompileRun(init);
result = CompileRun(check);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(!string->IsSlicedString());
string = factory->NewSubString(string, 0, 26);
CHECK(!string->IsSlicedString());
result = CompileRun(crosscheck);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK_EQ("bcdefghijklmnopqrstuvwxy", *(string->ToCString()));
}
TEST(SliceFromSlice) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
FLAG_string_slices = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result;
Handle<String> string;
const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';";
const char* slice = "var slice = str.slice(1,-1); slice";
const char* slice_from_slice = "slice.slice(1,-1);";
CompileRun(init);
result = CompileRun(slice);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK(SlicedString::cast(*string)->parent()->IsSeqString());
CHECK_EQ("bcdefghijklmnopqrstuvwxy", *(string->ToCString()));
result = CompileRun(slice_from_slice);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK(SlicedString::cast(*string)->parent()->IsSeqString());
CHECK_EQ("cdefghijklmnopqrstuvwx", *(string->ToCString()));
}
TEST(AsciiArrayJoin) {
// Set heap limits.
static const int K = 1024;
v8::ResourceConstraints constraints;
constraints.set_max_young_space_size(256 * K);
constraints.set_max_old_space_size(4 * K * K);
v8::SetResourceConstraints(&constraints);
// String s is made of 2^17 = 131072 'c' characters and a is an array
// starting with 'bad', followed by 2^14 times the string s. That means the
// total length of the concatenated strings is 2^31 + 3. So on 32bit systems
// summing the lengths of the strings (as Smis) overflows and wraps.
static const char* join_causing_out_of_memory =
"var two_14 = Math.pow(2, 14);"
"var two_17 = Math.pow(2, 17);"
"var s = Array(two_17 + 1).join('c');"
"var a = ['bad'];"
"for (var i = 1; i <= two_14; i++) a.push(s);"
"a.join("");";
v8::HandleScope scope(v8::Isolate::GetCurrent());
LocalContext context;
v8::V8::IgnoreOutOfMemoryException();
v8::Local<v8::Script> script =
v8::Script::Compile(v8::String::New(join_causing_out_of_memory));
v8::Local<v8::Value> result = script->Run();
// Check for out of memory state.
CHECK(result.IsEmpty());
CHECK(context->HasOutOfMemoryException());
}
static void CheckException(const char* source) {
// An empty handle is returned upon exception.
CHECK(CompileRun(source).IsEmpty());
}
TEST(RobustSubStringStub) {
// This tests whether the SubStringStub can handle unsafe arguments.
// If not recognized, those unsafe arguments lead to out-of-bounds reads.
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result;
Handle<String> string;
CompileRun("var short = 'abcdef';");
// Invalid indices.
CheckException("%_SubString(short, 0, 10000);");
CheckException("%_SubString(short, -1234, 5);");
CheckException("%_SubString(short, 5, 2);");
// Special HeapNumbers.
CheckException("%_SubString(short, 1, Infinity);");
CheckException("%_SubString(short, NaN, 5);");
// String arguments.
CheckException("%_SubString(short, '2', '5');");
// Ordinary HeapNumbers can be handled (in runtime).
result = CompileRun("%_SubString(short, Math.sqrt(4), 5.1);");
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK_EQ("cde", *(string->ToCString()));
CompileRun("var long = 'abcdefghijklmnopqrstuvwxyz';");
// Invalid indices.
CheckException("%_SubString(long, 0, 10000);");
CheckException("%_SubString(long, -1234, 17);");
CheckException("%_SubString(long, 17, 2);");
// Special HeapNumbers.
CheckException("%_SubString(long, 1, Infinity);");
CheckException("%_SubString(long, NaN, 17);");
// String arguments.
CheckException("%_SubString(long, '2', '17');");
// Ordinary HeapNumbers within bounds can be handled (in runtime).
result = CompileRun("%_SubString(long, Math.sqrt(4), 17.1);");
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK_EQ("cdefghijklmnopq", *(string->ToCString()));
// Test that out-of-bounds substring of a slice fails when the indices
// would have been valid for the underlying string.
CompileRun("var slice = long.slice(1, 15);");
CheckException("%_SubString(slice, 0, 17);");
}
TEST(RegExpOverflow) {
// Result string has the length 2^32, causing a 32-bit integer overflow.
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
LocalContext context;
v8::V8::IgnoreOutOfMemoryException();
v8::Local<v8::Value> result = CompileRun(
"var a = 'a'; "
"for (var i = 0; i < 16; i++) { "
" a += a; "
"} "
"a.replace(/a/g, a); ");
CHECK(result.IsEmpty());
CHECK(context->HasOutOfMemoryException());
}
TEST(StringReplaceAtomTwoByteResult) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
LocalContext context;
v8::Local<v8::Value> result = CompileRun(
"var subject = 'ascii~only~string~'; "
"var replace = '\x80'; "
"subject.replace(/~/g, replace); ");
CHECK(result->IsString());
Handle<String> string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSeqTwoByteString());
v8::Local<v8::String> expected = v8_str("ascii\x80only\x80string\x80");
CHECK(expected->Equals(result));
}
TEST(IsAscii) {
CHECK(String::IsAscii(static_cast<char*>(NULL), 0));
CHECK(String::IsOneByte(static_cast<uc16*>(NULL), 0));
}
template<typename Op, bool return_first>
static uint16_t ConvertLatin1(uint16_t c) {
uint32_t result[Op::kMaxWidth];
int chars;
chars = Op::Convert(c, 0, result, NULL);
if (chars == 0) return 0;
CHECK_LE(chars, static_cast<int>(sizeof(result)));
if (!return_first && chars > 1) {
return 0;
}
return result[0];
}
static void CheckCanonicalEquivalence(uint16_t c, uint16_t test) {
uint16_t expect = ConvertLatin1<unibrow::Ecma262UnCanonicalize, true>(c);
if (expect > unibrow::Latin1::kMaxChar) expect = 0;
CHECK_EQ(expect, test);
}
TEST(Latin1IgnoreCase) {
using namespace unibrow;
for (uint16_t c = Latin1::kMaxChar + 1; c != 0; c++) {
uint16_t lower = ConvertLatin1<ToLowercase, false>(c);
uint16_t upper = ConvertLatin1<ToUppercase, false>(c);
uint16_t test = Latin1::ConvertNonLatin1ToLatin1(c);
// Filter out all character whose upper is not their lower or vice versa.
if (lower == 0 && upper == 0) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (lower > Latin1::kMaxChar && upper > Latin1::kMaxChar) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (lower == 0 && upper != 0) {
lower = ConvertLatin1<ToLowercase, false>(upper);
}
if (upper == 0 && lower != c) {
upper = ConvertLatin1<ToUppercase, false>(lower);
}
if (lower > Latin1::kMaxChar && upper > Latin1::kMaxChar) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (upper != c && lower != c) {
CheckCanonicalEquivalence(c, test);
continue;
}
CHECK_EQ(Min(upper, lower), test);
}
}