In the current implementation of wasm an unrepresentable input of the
float32-to-int32 conversion is detected by first truncating the input, then
converting the truncated input to int32 and back to float32, and then checking
whether the result is the same as the truncated input.
This input check does not work on arm and arm64 for an input of (INT32_MAX + 1)
because on these platforms the float32-to-int32 conversion results in INT32_MAX
if the input is greater than INT32_MAX. When INT32_MAX is converted back to
float32, then the result is (INT32_MAX + 1) again because INT32_MAX cannot be
represented precisely as float32, and rounding-to-nearest results in (INT32_MAX
+ 1). Since (INT32_MAX + 1) equals the truncated input value, the input appears
to be representable.
With the changes in this CL, the result of the float32-to-int32 conversion is
incremented by 1 if the original result was INT32_MAX. Thereby the detection of
unrepresenable inputs in wasm works. Note that since INT32_MAX cannot be
represented precisely in float32, it can also never be a valid result of the
float32-to-int32 conversion.
@v8-mips-ports, can you do a similar implementation for mips?
R=titzer@chromium.org, Rodolph.Perfetta@arm.com
Review-Url: https://codereview.chromium.org/2105313002
Cr-Commit-Position: refs/heads/master@{#37448}
Reland of https://codereview.chromium.org/2034093002 (reverted by
https://codereview.chromium.org/2080153002).
Original commit message:
Implement WASM support on big-endian platforms. WASM has
an implicit requirement that it is running on little-endian
machine. We achieve WASM support on BE by keeping data
in memory in little-endian order, and changing data
endianness before storing to memory and after loading from
memory.
BUG=
Review-Url: https://codereview.chromium.org/2083523002
Cr-Commit-Position: refs/heads/master@{#37373}
Port 481502dad9
Float32SubMinusZero and Float64SubMinusZero tests are failing because MIPS does not preserve NaN payload according to Wasm spec. Implemented macro-assembler methods that check for NaN operands, and return the qNaN value with preserved payload and sign bits.
TEST=cctest/test-run-wasm/Run_WasmFloat32SubMinusZero, cctest/test-run-wasm/Run_WasmFloat64SubMinusZero
BUG=
patch from issue 2019693002 at patchset 140001 (http://crrev.com/2019693002#ps140001)
R=ahaas@chromium.org
Review-Url: https://codereview.chromium.org/2066483008
Cr-Commit-Position: refs/heads/master@{#37105}
Reason for revert:
[Sheriff] Speculative revert for crashes on chrubuntu chromebooks:
https://build.chromium.org/p/client.v8.ports/builders/V8%20Arm/builds/320
Original issue's description:
> Implement WASM big-endian support.
>
> Implement WASM support on big-endian platforms. WASM has
> an implicit requirement that it is running on little-endian
> machine. We achieve WASM support on BE by keeping data
> in memory in little-endian order, and changing data
> endianness before storing to memory and after loading from
> memory.
>
> BUG=
>
> Committed: https://crrev.com/d3f3f6c8186b2a53f0c539f7bba0c3708c4d83f9
> Cr-Commit-Position: refs/heads/master@{#37065}
TBR=titzer@chromium.org,akos.palfi@imgtec.com,balazs.kilvady@imgtec.com,jyan@ca.ibm.com,ivica.bogosavljevic@imgtec.com
# Not skipping CQ checks because original CL landed more than 1 days ago.
BUG=
Review-Url: https://codereview.chromium.org/2080153002
Cr-Commit-Position: refs/heads/master@{#37091}
Implement WASM support on big-endian platforms. WASM has
an implicit requirement that it is running on little-endian
machine. We achieve WASM support on BE by keeping data
in memory in little-endian order, and changing data
endianness before storing to memory and after loading from
memory.
BUG=
Review-Url: https://codereview.chromium.org/2034093002
Cr-Commit-Position: refs/heads/master@{#37065}
This interpreter directly decodes and executes WASM binary code for
the purpose of supporting low-level debugging. It is not currently
integrated into the main WASM implementation.
R=ahaas@chromium.org,clemensh@chromium.org,rossberg@chromium.org,binji@chromium.org
BUG=
Review-Url: https://codereview.chromium.org/1972153002
Cr-Commit-Position: refs/heads/master@{#36497}
[wasm] Binary 11: br_table takes a value.
[wasm] Binary 11: Add implicit blocks to if arms.
[wasm] Binary 11: Add arities to call, return, and breaks
[wasm] Binary 11: Add experimental version.
This CL changes the encoder, decoder, and tests to use a postorder
encoding of the AST, which is more efficient in decode time and
space.
R=bradnelson@chromium.org,rossberg@chromium.org,binji@chromium.org
BUG=chromium:575167
LOG=Y
Review-Url: https://codereview.chromium.org/1830663002
Cr-Commit-Position: refs/heads/master@{#35896}
The background here is that graphs generated from WASM are not trimmed.
That means there can be some floating control diamonds that are not
reachable from end. An assertion in the scheduler for phis from floating
diamonds checks that the use edge in this situation is the control edge,
but in general, any edge could cause this.
Scheduling still works without this assertion. The longer term fix
is to either trim the graphs (more compile time overhead for WASM)
or improve the scheduler's handling of dead code in the graph. Currently
it does not schedule dead code but the potential use positions of
dead code are used in the computation of the common dominator of uses. We could
recognize dead nodes in PrepareUses() and check in GetBlockForUse()
as per TODO.
R=bradnelson@chromium.org, mstarzinger@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1846933002
Cr-Commit-Position: refs/heads/master@{#35245}
Run_Wasm_F32CopySign was failing because function copysign
that is used to verify the results does implicit conversion
from float to double. In this conversion we lose information
about NaN sign and the test fails.
Fix by using copysignf to avoid unnecessary float to double
conversion.
TEST=cctest/test-run-wasm/Run_Wasm_F32CopySign
BUG=
Review URL: https://codereview.chromium.org/1857753002
Cr-Commit-Position: refs/heads/master@{#35237}
We expect that the majority of malloc'd memory held by V8 is allocated
in Zone objects. Introduce an Allocator class that is used by Zones to
manage memory, and allows for querying the current usage.
BUG=none
R=titzer@chromium.org,bmeurer@chromium.org,jarin@chromium.org
LOG=n
TBR=rossberg@chromium.org
Review URL: https://codereview.chromium.org/1847543002
Cr-Commit-Position: refs/heads/master@{#35196}
*) For all tests the input validation was incorrect, i.e. some values
were considered invalid although they were valid. The problem was that
values which are outside int range can get in range through truncation.
*) Removed an assertion in the x64 code generation of
TruncateFloat64ToUint32 which trapped on negative inputs.
*) Introduced a new TF operator TruncateFloat32ToUint32 which does
the same as ChangeFloat32ToUint32 but does not trap on negative inputs.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1843983002
Cr-Commit-Position: refs/heads/master@{#35176}
In JavaScript code and stubs, JSSP mirrors the CSP but may be unaligned.
But in WASM code only CSP is used, like native code, and it must be
aligned.
Calls into WASM from JS need to carefully align the C stack
pointer (csp) and restore the previous JSSP, while calls from WASM
to JS need to compute a new JSSP and restore their CSP after the
call.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1811283003
Cr-Commit-Position: refs/heads/master@{#35096}
Word64Popcnt is lowered to Word32Popcnt(low-word) + Word32Popcnt(high_word).
Since the optional Word64Popcnt operator does not exist on 32 bit platforms,
I introduced a new operator "Word64PopcntPlaceholder" which is generated
in the WasmCompiler and then lowered in the Int64Lowering.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1803453003
Cr-Commit-Position: refs/heads/master@{#34777}
On 32-bit systems these instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameters is done in the
Int64Lowering. We use the return value of the C function to determine
whether the calculation should trap or not.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1804513002
Cr-Commit-Position: refs/heads/master@{#34768}
Move all tests that use i64 values into test-run-wasm-64.cc. Introduce
macros that enable tests as they are implemented on 32 bit platforms.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1784343004
Cr-Commit-Position: refs/heads/master@{#34742}
On 32-bit systems I64XConvertFXX instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameter is done in the
Int64Lowering. We use the return value of the C function to determine
whether the conversion should trap or not.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1775903002
Cr-Commit-Position: refs/heads/master@{#34738}
This CL modifies the following to be LEB128:
* Function table indices
* Import table signature indices
* Export table function indices
* Function signature param count
* br/br_if break depth
* br_table target count
* block/loop expression count
Still to do:
* Import/export names (LEB128 count + inline data)
* Data segments (LEB128 offset + size + inline data)
* Function header stuff (should seperate into function sig and body sections)
* Memory access alignment + offset (still discussing)
BUG=
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1775873002
Cr-Commit-Position: refs/heads/master@{#34603}
Local declarations were previously encoded as an optional set of
4 uint16 values as part of the function declaration. This CL
implements the current design of moving these declarations to
a list of pairs of (type, count) that is part of the body.
R=bradnelson@chromium.org,binji@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1763433002
Cr-Commit-Position: refs/heads/master@{#34564}
Instead of using CheckFloatEq and CheckDoubleEq directly, I introduced
a macro which first stores the expected result in a volatile variable.
Here are some comments of previous CLs:
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/.
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type cast to keep the same precision for RunCallInt64ToFloat32/RunCallInt64ToFloat64. Such as: volatile double expect = static_cast<float>(*i).
R=titzer@chromium.org, weiliang.lin@intel.com
Review URL: https://codereview.chromium.org/1773513002
Cr-Commit-Position: refs/heads/master@{#34534}
On 32-bit systems FXXXConvertI64 instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameter is done in the
Int64Lowering.
R=titzer@chromium.org, yangguo@chromium.org
Review URL: https://codereview.chromium.org/1738623003
Cr-Commit-Position: refs/heads/master@{#34487}
I turn the test off for now. The problem is that mips does not deal with
signalling NaNs as expected.
@v8-mips-ports: Could it be that the mips simulator deals differently
with signalling NaNs than the actual hardware? The implementation that
is tested in these tests assumes that sNaN * 1.0 = qNaN, where the bits
of sNaN and qNaN are equal except for the most significant mantissa bit.
This assumption holds for the simulator, but seems not to hold for actual
mips hardware. Do you know more about that?
R=mstarzinger@chromium.org, titzer@chromium.org, v8-mips-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1735673003
Cr-Commit-Position: refs/heads/master@{#34278}
This cleans up and makes the tests easier to write and understand.
Also prepares for adding the WASM interpreter which needs a
different initialization sequence in tests.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1707403002
Cr-Commit-Position: refs/heads/master@{#34123}
I extended the Int64Lowering to lower calls, loads, stores, returns, and
parameters and apply the lowering on both the test function TF graph and
the WasmRunner TF graph.
The lowering of calls also requires an adjustment of the call descriptor.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1704033002
Cr-Commit-Position: refs/heads/master@{#34121}
The BufferedRawMachineAssemblerTester caused problems for the
Int64Lowering. Instead we construct a TF graph now which is compiled by
Pipeline::GenerateCodeForTesting.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1702023002
Cr-Commit-Position: refs/heads/master@{#34107}
The goal of the Int64Reducer is to replace all int64 nodes in a tf graph
with a set of int32 nodes such that 64 bit tf functions can be executed
on 32 bit platforms. At the moment the Int64Reducer only replaces
Int64Constants, TruncateInt64ToInt32, and Word64And.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1655883002
Cr-Commit-Position: refs/heads/master@{#33721}
If the architecture does not provide rounding instructions, then C
implementations of these rounding instructions are called. The C
implementations from math.h are used, function pointers are registered
as external references so that they can be call from the simulator.
R=titzer@chromium.org
BUG=575379
LOG=Y
Review URL: https://codereview.chromium.org/1661463002
Cr-Commit-Position: refs/heads/master@{#33677}
Motivated by finding a bug in a larger module, this CL adds the ability
to dump out a byte-by-byte, nested view of the decoded AST. This
byte-by-byte output uses the opcode enum to make it readable, but is
suitable for pasting into a byte[] in C or JS and thus making a regression
test.
Also fix a bug; the case of running out of registers for indirect calls.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1616973004
Cr-Commit-Position: refs/heads/master@{#33442}
Platforms which do not provide rounding instructions (like x64 without
sse4.1, arm before v8) fall back to this new soft float inplementation.
BUG=575379
LOG=Y
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1611513003
Cr-Commit-Position: refs/heads/master@{#33412}
Reason for revert:
Code is incorrect for -0.
Original issue's description:
> [turbofan] Implement rounding of floats on x64 and ia32 without sse4.1.
>
> The implementation sets the rounding mode flag and then uses the
> cvtsd2si and cvtsi2sd instructions (convert between float and int) to do
> the rounding. Input values outside int range either don't have to be
> rounded anyways, or are rounded by calculating input + 2^52 - 2^52 for
> positive inputs, or input -2^52 + 2^52 for negative inputs. The original
> rounding mode is restored afterwards.
>
> R=titzer@chromium.org
>
> B=575379
>
> Committed: https://crrev.com/fa5d09e547abe79a8c82f780deb980c53ad78beb
> Cr-Commit-Position: refs/heads/master@{#33367}
TBR=titzer@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1593313010
Cr-Commit-Position: refs/heads/master@{#33369}
The implementation sets the rounding mode flag and then uses the
cvtsd2si and cvtsi2sd instructions (convert between float and int) to do
the rounding. Input values outside int range either don't have to be
rounded anyways, or are rounded by calculating input + 2^52 - 2^52 for
positive inputs, or input -2^52 + 2^52 for negative inputs. The original
rounding mode is restored afterwards.
R=titzer@chromium.org
B=575379
Review URL: https://codereview.chromium.org/1584663007
Cr-Commit-Position: refs/heads/master@{#33367}
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function, those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type case to keep the same precision for Run_WasmCall_Float32Sub.
Such as: volatile float expect = *i +/- *j; // *i +/- *j, etc.
BUG=
Review URL: https://codereview.chromium.org/1561023002
Cr-Commit-Position: refs/heads/master@{#33143}
Work around ppc assembler use of Mul, Div macros.
Disable several tests that fail for nosse4.
Disable several tests that fail for msan.
BUG=
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1562513002
Cr-Commit-Position: refs/heads/master@{#33126}
The new implementation detects if the input value is outside i32 range
and traps it that case.
The range check is done as follows:
The input value is converted to int32 and then back to float. If the
result is the same as the truncated input value, then the input value
is within int32 range.
R=bmeurer@chromium.org
Review URL: https://codereview.chromium.org/1537393003
Cr-Commit-Position: refs/heads/master@{#32984}
Make WasmModule free it's own memory, avoid mixing stack and
heap allocations in tests. This fixes several memory leaks.
Fix several signed compare issues.
Fix several floating point warnings.
Don't setup heap as external, as then the GC can't collect it.
Disable some tests that fail under ASAN.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1538543002
Cr-Commit-Position: refs/heads/master@{#32948}
The code generation for pushing call parameters on the stack does not
distinguish between float32 and float64 parameters because both are
stored in the same registers. Therefore float32 parameters require two
words on the stack. The wasm linkage, however, only considered one word
on the stack for float32 parameters, which caused the problem that
float32 parameters were not located correctly on the stack. I fixed the
problem by considering two words for float32 parameters on the stack.
R=bradnelson@chromium.org
Review URL: https://codereview.chromium.org/1529773003
Cr-Commit-Position: refs/heads/master@{#32893}
The test Run_Wasm_StoreMem_offset_oob contained an I64STORE instruction,
which is not yet implemented on 32 bit platforms. I turned off those
parts of the test on 32 bit platforms which contain I64 instructions.
R=bradnelson@chromium.org
Review URL: https://codereview.chromium.org/1526573002
Cr-Commit-Position: refs/heads/master@{#32842}
Before this change traps always returned a 32 bit word in tests. With this
change traps return either a 32 bit word or a64 bit word, depending on the size
of the actual return value of the test.
Additionally this CL implements the wasm instructions I64SCONVERTF32,
I64UCONVERTF32, I64SCONVERTF64, and I64UCONVERTF64.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1519013003
Cr-Commit-Position: refs/heads/master@{#32800}
As discussed in person, this adds the code from v8-native-prototype into
V8 proper, guarded by GYP flags that do not build the code by default.
Passing wasm=on to 'make' or setting v8_wasm as a GYP flag activates
building of this code.
An additional header file is added to and exported from the compiler
directory, src/compiler/wasm-compiler.h. This exposes a limited interface
with opaque Node and Graph types to the decoder to build TF graphs, as
well as functions to compile WASM graphs.
The mjsunit tests added are blacklisted because they fail without the
WASM object exposed to JS, which is also disabled by the build config
option.
This corresponds closely to 5981e06ebc, with some formatting fixes and moving some files into src/compiler.
R=mstarzinger@chromium.org, bradnelson@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1504713014
Cr-Commit-Position: refs/heads/master@{#32794}