This interpreter directly decodes and executes WASM binary code for
the purpose of supporting low-level debugging. It is not currently
integrated into the main WASM implementation.
R=ahaas@chromium.org,clemensh@chromium.org,rossberg@chromium.org,binji@chromium.org
BUG=
Review-Url: https://codereview.chromium.org/1972153002
Cr-Commit-Position: refs/heads/master@{#36497}
Moved globals offsets calculation to the wasm module decoder, since
this is a property of the module, not of each instance.
Qualified as "const" references to WasmModule outside of the decoder
and some test situations.
BUG=
Review-Url: https://codereview.chromium.org/2005933003
Cr-Commit-Position: refs/heads/master@{#36484}
Empty function names are allowed and are output as such, unnamed
functions or functions with no valid UTF-8 name are output as
"<WASM UNNAMED>", while the CallSite object returns null as the
function name.
R=titzer@chromium.org, yangguo@chromium.org
Review-Url: https://codereview.chromium.org/1970503004
Cr-Commit-Position: refs/heads/master@{#36348}
This is a first step to removing the support for the OldFunctions
section altogether, which will greatly simplify the encoder and remove
the need to do local variable remapping in asm->wasm.
R=bradnelson@chromium.org,aseemgarg@chromium.org
BUG=
Review-Url: https://codereview.chromium.org/1974933002
Cr-Commit-Position: refs/heads/master@{#36228}
This changes different locations to extract the reference to the wasm
object and the function index from the stack trace, and make it
available through all the APIs which process stack traces.
The javascript CallSite object now has the new methods isWasm(),
getWasmObject() and getWasmFunctionIndex(); the byte offset is
available via getPosition().
Function names of wasm frames should be fully functional with this
commit, position information works reliably for calls, but not for
traps like unreachable or out-of-bounds accesses.
R=titzer@chromium.org, yangguo@chromium.org
Review-Url: https://codereview.chromium.org/1909353002
Cr-Commit-Position: refs/heads/master@{#36067}
In order to have a wasm object (as JSObject), this adds a method to
instantiate the TestingModule. In order for this to work, the bytecode
and the function names of the TestingModule are stored for usage during
instantiation.
R=titzer@chromium.org
Review-Url: https://codereview.chromium.org/1916403002
Cr-Commit-Position: refs/heads/master@{#35906}
[wasm] Binary 11: Swap the order of section name / section length.
[wasm] Binary 11: Shorter section names.
[wasm] Binary 11: Add a prefix for function type declarations.
[wasm] Binary 11: Function types encoded as pcount, p*, rcount, r*
[wasm] Fix numeric names for functions.
R=rossberg@chromium.org,jfb@chromium.org,ahaas@chromium.org
BUG=chromium:575167
LOG=Y
Review-Url: https://codereview.chromium.org/1896863003
Cr-Commit-Position: refs/heads/master@{#35897}
[wasm] Binary 11: br_table takes a value.
[wasm] Binary 11: Add implicit blocks to if arms.
[wasm] Binary 11: Add arities to call, return, and breaks
[wasm] Binary 11: Add experimental version.
This CL changes the encoder, decoder, and tests to use a postorder
encoding of the AST, which is more efficient in decode time and
space.
R=bradnelson@chromium.org,rossberg@chromium.org,binji@chromium.org
BUG=chromium:575167
LOG=Y
Review-Url: https://codereview.chromium.org/1830663002
Cr-Commit-Position: refs/heads/master@{#35896}
This patch provides a new implementation of popcnt and ctz in the case
where the platform does not provide these instructions. Instead of
building a TF graph which implements it we now call a C function.
Additionally I turned on additional tests in test-run-wasm-64.cc
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1857363003
Cr-Commit-Position: refs/heads/master@{#35685}
The background here is that graphs generated from WASM are not trimmed.
That means there can be some floating control diamonds that are not
reachable from end. An assertion in the scheduler for phis from floating
diamonds checks that the use edge in this situation is the control edge,
but in general, any edge could cause this.
Scheduling still works without this assertion. The longer term fix
is to either trim the graphs (more compile time overhead for WASM)
or improve the scheduler's handling of dead code in the graph. Currently
it does not schedule dead code but the potential use positions of
dead code are used in the computation of the common dominator of uses. We could
recognize dead nodes in PrepareUses() and check in GetBlockForUse()
as per TODO.
R=bradnelson@chromium.org, mstarzinger@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1846933002
Cr-Commit-Position: refs/heads/master@{#35245}
Run_Wasm_F32CopySign was failing because function copysign
that is used to verify the results does implicit conversion
from float to double. In this conversion we lose information
about NaN sign and the test fails.
Fix by using copysignf to avoid unnecessary float to double
conversion.
TEST=cctest/test-run-wasm/Run_Wasm_F32CopySign
BUG=
Review URL: https://codereview.chromium.org/1857753002
Cr-Commit-Position: refs/heads/master@{#35237}
We expect that the majority of malloc'd memory held by V8 is allocated
in Zone objects. Introduce an Allocator class that is used by Zones to
manage memory, and allows for querying the current usage.
BUG=none
R=titzer@chromium.org,bmeurer@chromium.org,jarin@chromium.org
LOG=n
TBR=rossberg@chromium.org
Review URL: https://codereview.chromium.org/1847543002
Cr-Commit-Position: refs/heads/master@{#35196}
*) For all tests the input validation was incorrect, i.e. some values
were considered invalid although they were valid. The problem was that
values which are outside int range can get in range through truncation.
*) Removed an assertion in the x64 code generation of
TruncateFloat64ToUint32 which trapped on negative inputs.
*) Introduced a new TF operator TruncateFloat32ToUint32 which does
the same as ChangeFloat32ToUint32 but does not trap on negative inputs.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1843983002
Cr-Commit-Position: refs/heads/master@{#35176}
Int64Mul is lowered to a new turbofan operator, Int32MulPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the multiplication.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1807273002
Cr-Commit-Position: refs/heads/master@{#35131}
The new implementation deals with cycles in the TF graph in two steps:
1) The lowering of phis is delayed to avoid cyclic dependencies.
2) The replacement nodes of phis are created already when the phi is
pushed onto the stack so that other nodes can use these replacements
for their lowering.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1844553002
Cr-Commit-Position: refs/heads/master@{#35126}
In JavaScript code and stubs, JSSP mirrors the CSP but may be unaligned.
But in WASM code only CSP is used, like native code, and it must be
aligned.
Calls into WASM from JS need to carefully align the C stack
pointer (csp) and restore the previous JSSP, while calls from WASM
to JS need to compute a new JSSP and restore their CSP after the
call.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1811283003
Cr-Commit-Position: refs/heads/master@{#35096}
The CL #34701 (https://codereview.chromium.org/1779123002/) added the Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 test cases and X87 failed at them.
The reason is same as the CL #33630 (Issue 1649323002: X87: Change the test case for X87 RunRoundInt32ToFloat32), please refer: https://codereview.chromium.org/1649323002.
Here is the key comments from CL #33630:
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
For CHECK_EQ(a, b) function, if a and b are double or float, it will has similar behaviors like CheckFloatEq(...) and CheckDoubleEq(...) function when compiled by GCC and causes the test case fail.
So we add the following sentence to do type case to keep the same precision for Run_WasmF32SConvertI64/Run_WasmF64SConvertI64. Such as: volatile double expect = static_cast<float>(*i).
ahaas put those codes in CHECK_FLOAT_EQ and CHECK_DOUBLE_EQ macros in CL #34534 (https://codereview.chromium.org/1773513002 ).
So this CL replaced the CHECK_EQ in Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 to CHECK_FLOAT_EQ/CHECK_DOUBLE_EQ for x87 can pass Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 tests.
BUG=
Review URL: https://codereview.chromium.org/1784813004
Cr-Commit-Position: refs/heads/master@{#34813}
Int64Sub is lowered to a new turbofan operator, Int32SubPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the subtraction.
The implementation is very similar to the implementation of Int64Add.
@v8-arm-ports: please take a careful look at the implementation of sbc
in the simulator.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1778893005
Cr-Commit-Position: refs/heads/master@{#34808}
Word64Popcnt is lowered to Word32Popcnt(low-word) + Word32Popcnt(high_word).
Since the optional Word64Popcnt operator does not exist on 32 bit platforms,
I introduced a new operator "Word64PopcntPlaceholder" which is generated
in the WasmCompiler and then lowered in the Int64Lowering.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1803453003
Cr-Commit-Position: refs/heads/master@{#34777}
On 32-bit systems these instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameters is done in the
Int64Lowering. We use the return value of the C function to determine
whether the calculation should trap or not.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1804513002
Cr-Commit-Position: refs/heads/master@{#34768}
Int64Add is lowered to a new turbofan operator, Int32AddPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the addition.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1778493004
Cr-Commit-Position: refs/heads/master@{#34747}
Move all tests that use i64 values into test-run-wasm-64.cc. Introduce
macros that enable tests as they are implemented on 32 bit platforms.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1784343004
Cr-Commit-Position: refs/heads/master@{#34742}
On 32-bit systems I64XConvertFXX instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameter is done in the
Int64Lowering. We use the return value of the C function to determine
whether the conversion should trap or not.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1775903002
Cr-Commit-Position: refs/heads/master@{#34738}
This CL modifies the following to be LEB128:
* Function table indices
* Import table signature indices
* Export table function indices
* Function signature param count
* br/br_if break depth
* br_table target count
* block/loop expression count
Still to do:
* Import/export names (LEB128 count + inline data)
* Data segments (LEB128 offset + size + inline data)
* Function header stuff (should seperate into function sig and body sections)
* Memory access alignment + offset (still discussing)
BUG=
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1775873002
Cr-Commit-Position: refs/heads/master@{#34603}
Local declarations were previously encoded as an optional set of
4 uint16 values as part of the function declaration. This CL
implements the current design of moving these declarations to
a list of pairs of (type, count) that is part of the body.
R=bradnelson@chromium.org,binji@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1763433002
Cr-Commit-Position: refs/heads/master@{#34564}
I64Shl is lowered to a new turbofan operator, WasmWord64Shl. The new
operator takes 3 inputs, the low-word input, the high-word input, and
the shift, and produces 2 output, the low-word output and the high-word
output.
At the moment I implemented the lowering only for ia32, but I think the
CL is already big enough. I will add the other platforms in separate
CLs.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1756863002
Cr-Commit-Position: refs/heads/master@{#34546}
Instead of using CheckFloatEq and CheckDoubleEq directly, I introduced
a macro which first stores the expected result in a volatile variable.
Here are some comments of previous CLs:
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/.
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type cast to keep the same precision for RunCallInt64ToFloat32/RunCallInt64ToFloat64. Such as: volatile double expect = static_cast<float>(*i).
R=titzer@chromium.org, weiliang.lin@intel.com
Review URL: https://codereview.chromium.org/1773513002
Cr-Commit-Position: refs/heads/master@{#34534}
On 32-bit systems FXXXConvertI64 instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameter is done in the
Int64Lowering.
R=titzer@chromium.org, yangguo@chromium.org
Review URL: https://codereview.chromium.org/1738623003
Cr-Commit-Position: refs/heads/master@{#34487}
I turn the test off for now. The problem is that mips does not deal with
signalling NaNs as expected.
@v8-mips-ports: Could it be that the mips simulator deals differently
with signalling NaNs than the actual hardware? The implementation that
is tested in these tests assumes that sNaN * 1.0 = qNaN, where the bits
of sNaN and qNaN are equal except for the most significant mantissa bit.
This assumption holds for the simulator, but seems not to hold for actual
mips hardware. Do you know more about that?
R=mstarzinger@chromium.org, titzer@chromium.org, v8-mips-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1735673003
Cr-Commit-Position: refs/heads/master@{#34278}
This CL introduces an import section that names functions to be imported
as well as a CallImport bytecode to call imports from this table.
R=binji@chromium.org,bradnelson@chromium.org
LOG=Y
BUG=chromium:575167
Review URL: https://codereview.chromium.org/1709653002
Cr-Commit-Position: refs/heads/master@{#34157}
This cleans up and makes the tests easier to write and understand.
Also prepares for adding the WASM interpreter which needs a
different initialization sequence in tests.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1707403002
Cr-Commit-Position: refs/heads/master@{#34123}
I extended the Int64Lowering to lower calls, loads, stores, returns, and
parameters and apply the lowering on both the test function TF graph and
the WasmRunner TF graph.
The lowering of calls also requires an adjustment of the call descriptor.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1704033002
Cr-Commit-Position: refs/heads/master@{#34121}
The BufferedRawMachineAssemblerTester caused problems for the
Int64Lowering. Instead we construct a TF graph now which is compiled by
Pipeline::GenerateCodeForTesting.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1702023002
Cr-Commit-Position: refs/heads/master@{#34107}
The goal of the Int64Reducer is to replace all int64 nodes in a tf graph
with a set of int32 nodes such that 64 bit tf functions can be executed
on 32 bit platforms. At the moment the Int64Reducer only replaces
Int64Constants, TruncateInt64ToInt32, and Word64And.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1655883002
Cr-Commit-Position: refs/heads/master@{#33721}
If the architecture does not provide rounding instructions, then C
implementations of these rounding instructions are called. The C
implementations from math.h are used, function pointers are registered
as external references so that they can be call from the simulator.
R=titzer@chromium.org
BUG=575379
LOG=Y
Review URL: https://codereview.chromium.org/1661463002
Cr-Commit-Position: refs/heads/master@{#33677}
Motivated by finding a bug in a larger module, this CL adds the ability
to dump out a byte-by-byte, nested view of the decoded AST. This
byte-by-byte output uses the opcode enum to make it readable, but is
suitable for pasting into a byte[] in C or JS and thus making a regression
test.
Also fix a bug; the case of running out of registers for indirect calls.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1616973004
Cr-Commit-Position: refs/heads/master@{#33442}
Platforms which do not provide rounding instructions (like x64 without
sse4.1, arm before v8) fall back to this new soft float inplementation.
BUG=575379
LOG=Y
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1611513003
Cr-Commit-Position: refs/heads/master@{#33412}
Reason for revert:
Code is incorrect for -0.
Original issue's description:
> [turbofan] Implement rounding of floats on x64 and ia32 without sse4.1.
>
> The implementation sets the rounding mode flag and then uses the
> cvtsd2si and cvtsi2sd instructions (convert between float and int) to do
> the rounding. Input values outside int range either don't have to be
> rounded anyways, or are rounded by calculating input + 2^52 - 2^52 for
> positive inputs, or input -2^52 + 2^52 for negative inputs. The original
> rounding mode is restored afterwards.
>
> R=titzer@chromium.org
>
> B=575379
>
> Committed: https://crrev.com/fa5d09e547abe79a8c82f780deb980c53ad78beb
> Cr-Commit-Position: refs/heads/master@{#33367}
TBR=titzer@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1593313010
Cr-Commit-Position: refs/heads/master@{#33369}
The implementation sets the rounding mode flag and then uses the
cvtsd2si and cvtsi2sd instructions (convert between float and int) to do
the rounding. Input values outside int range either don't have to be
rounded anyways, or are rounded by calculating input + 2^52 - 2^52 for
positive inputs, or input -2^52 + 2^52 for negative inputs. The original
rounding mode is restored afterwards.
R=titzer@chromium.org
B=575379
Review URL: https://codereview.chromium.org/1584663007
Cr-Commit-Position: refs/heads/master@{#33367}
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function, those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type case to keep the same precision for Run_WasmCall_Float32Sub.
Such as: volatile float expect = *i +/- *j; // *i +/- *j, etc.
BUG=
Review URL: https://codereview.chromium.org/1561023002
Cr-Commit-Position: refs/heads/master@{#33143}
Work around ppc assembler use of Mul, Div macros.
Disable several tests that fail for nosse4.
Disable several tests that fail for msan.
BUG=
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1562513002
Cr-Commit-Position: refs/heads/master@{#33126}
The new implementation detects if the input value is outside i32 range
and traps it that case.
The range check is done as follows:
The input value is converted to int32 and then back to float. If the
result is the same as the truncated input value, then the input value
is within int32 range.
R=bmeurer@chromium.org
Review URL: https://codereview.chromium.org/1537393003
Cr-Commit-Position: refs/heads/master@{#32984}
Make WasmModule free it's own memory, avoid mixing stack and
heap allocations in tests. This fixes several memory leaks.
Fix several signed compare issues.
Fix several floating point warnings.
Don't setup heap as external, as then the GC can't collect it.
Disable some tests that fail under ASAN.
R=ahaas@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1538543002
Cr-Commit-Position: refs/heads/master@{#32948}
The code generation for pushing call parameters on the stack does not
distinguish between float32 and float64 parameters because both are
stored in the same registers. Therefore float32 parameters require two
words on the stack. The wasm linkage, however, only considered one word
on the stack for float32 parameters, which caused the problem that
float32 parameters were not located correctly on the stack. I fixed the
problem by considering two words for float32 parameters on the stack.
R=bradnelson@chromium.org
Review URL: https://codereview.chromium.org/1529773003
Cr-Commit-Position: refs/heads/master@{#32893}
The test Run_Wasm_StoreMem_offset_oob contained an I64STORE instruction,
which is not yet implemented on 32 bit platforms. I turned off those
parts of the test on 32 bit platforms which contain I64 instructions.
R=bradnelson@chromium.org
Review URL: https://codereview.chromium.org/1526573002
Cr-Commit-Position: refs/heads/master@{#32842}
Before this change traps always returned a 32 bit word in tests. With this
change traps return either a 32 bit word or a64 bit word, depending on the size
of the actual return value of the test.
Additionally this CL implements the wasm instructions I64SCONVERTF32,
I64UCONVERTF32, I64SCONVERTF64, and I64UCONVERTF64.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1519013003
Cr-Commit-Position: refs/heads/master@{#32800}
As discussed in person, this adds the code from v8-native-prototype into
V8 proper, guarded by GYP flags that do not build the code by default.
Passing wasm=on to 'make' or setting v8_wasm as a GYP flag activates
building of this code.
An additional header file is added to and exported from the compiler
directory, src/compiler/wasm-compiler.h. This exposes a limited interface
with opaque Node and Graph types to the decoder to build TF graphs, as
well as functions to compile WASM graphs.
The mjsunit tests added are blacklisted because they fail without the
WASM object exposed to JS, which is also disabled by the build config
option.
This corresponds closely to 5981e06ebc, with some formatting fixes and moving some files into src/compiler.
R=mstarzinger@chromium.org, bradnelson@chromium.org
BUG=
Review URL: https://codereview.chromium.org/1504713014
Cr-Commit-Position: refs/heads/master@{#32794}