If this is computed *before* a `demote`, but used *after*, forwarding it
will produce the wrong value. This does make for uglier shaders, but
it's necessary right now to ensure correctness.
I needed to use an assembly shader to produce the test for this.
`spirv-opt` is not smart enough (or too smart?) to eliminate the
variable that would be used in GLSL to express this.
This extension provides a new operation which causes a fragment to be
discarded without terminating the fragment shader invocation. The
invocation for the discarded fragment becomes a helper invocation, so
that derivatives will remain defined. The old `HelperInvocation` builtin
becomes undefined when this occurs, so a second new instruction queries
the current helper invocation status.
This is only fully supported for GLSL. HLSL doesn't support the
`IsHelperInvocation` operation and MSL doesn't support the
`DemoteToHelperInvocation` op.
Fixes#1052.
Fix fallout from changes.
There's a bug in glslang that prevents `float16_t`, `[u]int16_t`, and
`[u]int8_t` constants from adding the corresponding SPIR-V capabilities.
SPIRV-Tools, meanwhile, tightened validation so that these constants are
only valid if the corresponding `Float16`, `Int16`, and `Int8` caps are
on. This affects the `16bit-constants.frag` test for GLSL and MSL.
The only piece added by this extension is the `DeviceIndex` builtin,
which tells the shader which device in a grouped logical device it is
running on.
Metal's pipeline state objects are owned by the `MTLDevice` that created
them. Since Metal doesn't support logical grouping of devices the way
Vulkan does, we'll thus have to create a pipeline state for each device
in a grouped logical device. The upcoming peer group support in Metal 3
will not change this. For this reason, for Metal, the device index is
supplied as a constant at pipeline compile time.
There's an interaction between `VK_KHR_device_group` and
`VK_KHR_multiview` in the
`VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT`, which defines the
view index to be the same as the device index. The new
`view_index_from_device_index` MSL option supports this functionality.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
Storage was in place already, so mostly just dealing with bitcasts and
constants.
Simplies some of the bitcasting logic, and this exposed some bugs in the
implementation. Refactor to use correct width integers with explicit bitcast opcodes.
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.
In GLSL, 8-bit types require GL_EXT_shader_8bit_storage. 16-bit types
can use either GL_AMD_gpu_shader_int16/GL_AMD_gpu_shader_half_float or
GL_EXT_shader_16bit_storage.
When trying to validate buffer sizes, we usually need to bail out when
using SpecConstantOps, but for some very specific cases where we allow
unsized arrays currently, we can safely allow "unknown" sized arrays as
well.
This is probably the best we can do, when we have even more difficult
cases than this, we throw a more sensible error message.
Previously, when generating non-Vulkan GLSL, each use of a spec constant
would be subsituted for its default value and the declaration of the constant
itself would be omitted completely.
This change slightly alters this behavior. The uses of the constant are kept,
as well as the declaration, although the latter is stripped of the layout
qualifier. The declaration is also prepended with the following code:
#ifndef <constant name>_value
#define <constant name> <default constant value>
#endif
and the constant itself now looks like
const <constant type> <constant name> = <constant name>_value;
The rationale for this change is that it gives the user a way to provide
custom values for specialization constants even when the target does not
support them.
Update SPIRV-Tools/glslang commits.
Use vulkan1.1 environment for testing.
Found new "errors" in SPIRV-Tools, so disable validation on those shaders
for now.
Previously, we would generate parentheses proactively when generating
binary ops, however, this leads to uglier code and hits warnings in
compilers when used as a conditional.
The size of an array can be a specialization constant or a spec constant
op. This complicates things quite a lot.
Reflection becomes very painful in the presence of expressions instead
of literals so add a new array which expresses this.
It is unlikely that we will need to do accurate reflection of interface
types which have specialization constant size.
SSBOs and UBOs will for now throw exception if a dynamic size is used since it
is very difficult to know the real size.
This is now fixed in ESSL 3.10 backend of glslang, so we can remove the old workaround
of dropping full memory barriers.
Also fixes unrelated issue which newer glslang detects.