Setting force_temporary to true produces invalid GLSL because sampler
variables are copied:
highp sampler2D _377 = DiffuseMapTexture;
This change fixes the problem by always forwarding forwardable
variables. I also took an opportunity to restructure the code to make
it easier to read and add extra conditions to in the future.
- Add new Windows support
- Use CMake/CTest instead of Make + shell scripts
- Use --parallel in CTest
- Fix CTest on Windows
- Cleanups in test_shaders.py
- Force specific commit for SPIRV-Headers
- Fix Inf/NaN odd-ball case by moving to ASM
HLSL just picked the variable name which did not work as expected for
some users. Use the same logic as GLSL and set up declared_block_names,
so the actual name can be queried later.
This is a large refactor which splits out the SPIR-V parser from
Compiler and moves it into its more appropriately named Parser module.
The Parser is responsible for building a ParsedIR structure which is
then consumed by one or more compilers.
Compiler can take a ParsedIR by value or move reference. This should
allow for optimal case for both multiple compilations and single
compilation scenarios.
A lot of changes in spirv-opt output.
Some new invalid SPIR-V was found but most of them were not significant
for SPIRV-Cross, so just marked them as invalid.
Even as of Metal 2.1, MSL still doesn't support arrays of buffers
directly. Therefore, we must manually expand them. In the prologue, we
define arrays holding the argument pointers; these arrays are what the
transpiled code ends up referencing. We might be able to do similar
things for textures and samplers prior to MSL 2.0.
Speaking of which, also enable texture arrays on iOS MSL 1.2.
It'll be useful to have an "auxiliary buffer" for other builtins--e.g.
`DrawIndex` (which should be easier to implement now), or `ViewIndex`
when someone gets around to implementing multiview.
Pass this buffer to leaf functions as well.
Test that we handle this for integer textures as well.
It's intended to be used with MoltenVK to support arbitrary
`VkComponentMapping` settings. The idea is that MoltenVK will pass a
buffer (which it set to some buffer index that isn't being used)
containing packed versions of the `VkComponentMapping` struct, one for
each sampled image.
Yes, this is horribly ugly. It is unfortunately necessary. Much of the
ugliness is to support swizzling gather operations, where we need to
alter the component that the gather operates on--something complicated
by the `gather()` method requiring the passed-in component to be a
constant expression. It doesn't even support swizzling gathers on depth
textures, though I could add that if it turns out we need it.
This requires MSL 2.0+.
Also, force `ViewportIndex` and `Layer` to be defined as the correct
type, which is always `uint` in MSL.
Since Metal doesn't yet have geometry shaders, the vertex shader (or
tessellation evaluation shader == "post-tessellation vertex shader" in
Metal jargon) is the only kind of shader that can set this output. This
currently requires an extension to Vulkan, which causes validation of
the SPIR-V binaries for the test cases to fail. Therefore, the test
cases are marked "invalid", even though they're actually perfectly valid
SPIR-V--they just won't work without the
`SPV_EXT_shader_viewport_index_layer` extension.
Need some pretty hideous ladder variable system, but high level
languages do not support breaking out of a loop. break in switch blocks
and break in loops alias each other.