If there are enough members in an IAB, we cannot use the constant
address space as MSL compiler complains about there being too many
members. Support emitting the device address space instead.
Rolled the hashes used for glslang, SPIRV-Tools, and SPIRV-Headers to
HEAD, which includes the update to 1.5.
Added passing '--amb' to glslang, so I didn't have to explicitly set
bindings in a large number of test shaders that currently don't, and
now glslang considers them invalid.
Marked all shaders that no longer pass spirv-val as .invalid.
Vulkan has two types of buffer descriptors,
`VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC` and
`VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`, which allow the client to
offset the buffers by an amount given when the descriptor set is bound
to a pipeline. Metal provides no direct support for this when the buffer
in question is in an argument buffer, so once again we're on our own.
These offsets cannot be stored or associated in any way with the
argument buffer itself, because they are set at bind time. Different
pipelines may have different offsets set. Therefore, we must use a
separate buffer, not in any argument buffer, to hold these offsets. Then
the shader must manually offset the buffer pointer.
This change fully supports arrays, including arrays of arrays, even
though Vulkan forbids them. It does not, however, support runtime
arrays. Perhaps later.
Writable textures cannot use argument buffers on iOS. They must be
passed as arguments directly to the shader function. Since we won't know
if a given storage image will have the `NonWritable` decoration at the
time we encode the argument buffer, we must therefore pass all storage
images as discrete arguments. Previously, we were throwing an error if
we encountered an argument buffer with a writable texture in it on iOS.
This was straightforward to implement in GLSL. The
`ShadingRateInterlockOrderedEXT` and `ShadingRateInterlockUnorderedEXT`
modes aren't implemented yet, because we don't support
`SPV_NV_shading_rate` or `SPV_EXT_fragment_invocation_density` yet.
HLSL and MSL were more interesting. They don't support this directly,
but they do support marking resources as "rasterizer ordered," which
does roughly the same thing. So this implementation scans all accesses
inside the critical section and marks all storage resources found
therein as rasterizer ordered. They also don't support the fine-grained
controls on pixel- vs. sample-level interlock and disabling ordering
guarantees that GLSL and SPIR-V do, but that's OK. "Unordered" here
merely means the order is undefined; that it just so happens to be the
same as rasterizer order is immaterial. As for pixel- vs. sample-level
interlock, Vulkan explicitly states:
> With sample shading enabled, [the `PixelInterlockOrderedEXT` and
> `PixelInterlockUnorderedEXT`] execution modes are treated like
> `SampleInterlockOrderedEXT` or `SampleInterlockUnorderedEXT`
> respectively.
and:
> If [the `SampleInterlockOrderedEXT` or `SampleInterlockUnorderedEXT`]
> execution modes are used in single-sample mode they are treated like
> `PixelInterlockOrderedEXT` or `PixelInterlockUnorderedEXT`
> respectively.
So this will DTRT for MoltenVK and gfx-rs, at least.
MSL additionally supports multiple raster order groups; resources that
are not accessed together can be placed in different ROGs to allow them
to be synchronized separately. A more sophisticated analysis might be
able to place resources optimally, but that's outside the scope of this
change. For now, we assign all resources to group 0, which should do for
our purposes.
`glslang` doesn't support the `RasterizerOrdered` UAVs this
implementation produces for HLSL, so the test case needs `fxc.exe`.
It also insists on GLSL 4.50 for `GL_ARB_fragment_shader_interlock`,
even though the spec says it needs either 4.20 or
`GL_ARB_shader_image_load_store`; and it doesn't support the
`GL_NV_fragment_shader_interlock` extension at all. So I haven't been
able to test those code paths.
Fixes#1002.
This command allows the caller to set the base value of
`BuiltInWorkgroupId`, and thus of `BuiltInGlobalInvocationId`. Metal
provides no direct support for this... but it does provide a builtin,
`[[grid_origin]]`, normally used to pass the base values for the stage
input region, which we will now abuse to pass the dispatch base and
avoid burning a buffer binding.
`[[grid_origin]]`, as part of Metal's support for compute stage input,
requires MSL 1.2. For 1.0 and 1.1, we're forced to provide a buffer.
(Curiously, this builtin was undocumented until the MSL 2.2 release. Go
figure.)
This extension provides a new operation which causes a fragment to be
discarded without terminating the fragment shader invocation. The
invocation for the discarded fragment becomes a helper invocation, so
that derivatives will remain defined. The old `HelperInvocation` builtin
becomes undefined when this occurs, so a second new instruction queries
the current helper invocation status.
This is only fully supported for GLSL. HLSL doesn't support the
`IsHelperInvocation` operation and MSL doesn't support the
`DemoteToHelperInvocation` op.
Fixes#1052.
This provides a few functions normally available in OpenCL to the SPIR-V
shader environment. These functions happen to be available in Metal as
well.
No GLSL, unfortunately. Intel has yet to publish a
`GL_INTEL_shader_integer_functions2` spec.
Fix fallout from changes.
There's a bug in glslang that prevents `float16_t`, `[u]int16_t`, and
`[u]int8_t` constants from adding the corresponding SPIR-V capabilities.
SPIRV-Tools, meanwhile, tightened validation so that these constants are
only valid if the corresponding `Float16`, `Int16`, and `Int8` caps are
on. This affects the `16bit-constants.frag` test for GLSL and MSL.
The only piece added by this extension is the `DeviceIndex` builtin,
which tells the shader which device in a grouped logical device it is
running on.
Metal's pipeline state objects are owned by the `MTLDevice` that created
them. Since Metal doesn't support logical grouping of devices the way
Vulkan does, we'll thus have to create a pipeline state for each device
in a grouped logical device. The upcoming peer group support in Metal 3
will not change this. For this reason, for Metal, the device index is
supplied as a constant at pipeline compile time.
There's an interaction between `VK_KHR_device_group` and
`VK_KHR_multiview` in the
`VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT`, which defines the
view index to be the same as the device index. The new
`view_index_from_device_index` MSL option supports this functionality.
Using the `PostDepthCoverage` mode specifies that the `gl_SampleMaskIn`
variable is to contain the computed coverage mask following the early
fragment tests, which this mode requires and implicitly enables.
Note that unlike Vulkan and OpenGL, Metal places this on the sample mask
input itself, and furthermore does *not* implicitly enable early
fragment testing. If it isn't enabled explicitly with an
`[[early_fragment_tests]]` attribute, the compiler will error out. So we
have to enable that mode explicitly if `PostDepthCoverage` is enabled
but `EarlyFragmentTests` isn't.
For Metal, only iOS supports this; for some reason, Apple has yet to
implement it on macOS, even though many desktop cards support it.
The old method of using a different unpacked matrix type doesn't work
for scalar alignment. It certainly wouldn't have any effect for a square
matrix, since the number of columns and rows are the same. So now we'll
store them as arrays of packed vectors.
Relaxed block layout relaxed the restrictions on vector alignment,
allowing them to be aligned on scalar boundaries. Scalar block layout
relaxes this further, allowing *any* member to be aligned on a scalar
boundary. The requirement that a vector not improperly straddle a
16-byte boundary is also relaxed.
I've also added a test showing that `std430` layout works with UBOs.
I'm troubled by the dual meaning of the `Packed` extended decoration. In
some instances (struct, `float[]`, and `vec2[]` members), it actually
means the exact opposite, that the member needs extra padding. This is
especially problematic for `vec2[]`, because now we need to distinguish
the two cases by checking the array stride. I wonder if this should
actually be split into two decorations.
There is a case where we can deduce a for/while loop, but the continue
block is actually very painful to deal with, so handle that case as
well. Removes an exceptional case.
MSL prior to 2.2 doesn't support these natively in any stage but
compute. But, we can (assuming no threads were terminated prematurely)
get their values with some creative uses of the
`simd_prefix_exclusive_sum()` and `simd_sum()` functions.
Also, fix a missing `to_expression()` with `BuiltInSubgroupEqMask`.
For KhronosGroup/MoltenVK#629.
This is needed to support `VK_KHR_multiview`, which is in turn needed
for Vulkan 1.1 support. Unfortunately, Metal provides no native support
for this, and Apple is once again less than forthcoming, so we have to
implement it all ourselves.
Tessellation and geometry shaders are deliberately unsupported for now.
The problem is that the current implementation encodes the `ViewIndex`
as part of the `InstanceIndex`, which in the SPIR-V environment at least
only exists in the vertex shader. So we need to work out a way to pass
the view index along to the later stages.
This implementation runs vertex shaders for all views up to the highest
bit set in the view mask, even those whose bits are clear. The fragments
for the inactive views are then discarded. Avoiding this is difficult:
calculating the view indices becomes far more complicated if we can only
run for those views which are set in the mask.
If we compile multiple times due to forced_recompile, we had
deferred_declaration = true while emitting function prototypes which
broke an assumption. Fix this by clearing out stale state before leaving
a function.