implement friction anchors, position friction correction, disabled by default. Use colObj->setCollisionFlag(flag | CF_HAS_FRICTION_ANCHOR); See test/RobotClientAPI/SlopeFrictionMain.cpp. In URDF or SDF, add <friction_anchor/> in <contact> section of <link> to enable.
PhysicsServer: properly restore old activation state after releasing picked object
btMultiBodyConstraintSolver: disable flip/flop of contact/friction constraint solving by default (it breaks some internal flaky unit tests)
Change SHARED_MEMORY_MAGIC_NUMBER to make sure server/client are using the same version (shared memory)
add --realtimesimulation to physics server (GUI, VR)
remove --G Xcode from build_cmake_pybullet_double.sh
add UDP network connection for physics client <-> server.
also set spinning friction in rolling friction demo (otherwise objects may keep on spinning forever)
URDF/SDF: add a flag to force concave mesh collisiofor static objects. <collision concave="yes" name="pod_collision">
VR: support teleporting using buttong, allow multiple controllers to be used, fast wireframe rendering,
Turn off warnings about deprecated C routine in btScalar.h/b3Scalar.h
Add a dummy return to stop a warning
Expose defaultContactERP in shared memory api/pybullet.
First start to expose IK in shared memory api/pybullet (not working yet)
This change adds support for calculating Jacobians and
dot(Jacobian)*u terms, along with the required support for
the 3xN matrices in the standalone math library.
It also adds functions to compute kinematics only (position, velocity, accel).
To facilitate tests, the Cl also adds a RandomTreeCreator to create
randomized multibody trees.
Thanks to Thomas Buschmann for this contribution!
Expose inverse dynamics to Bullet shared memory API, through b3CalculateInverseDynamicsCommandInit and
b3GetStatusInverseDynamicsJointForces command/status. See PhysicsClientExeample or pybullet for usage.
Add option for Windows and Linux to set python_lib_dir and python_include_dir for premake and --enable_pybullet option
Expose inverse dynamics to pybullet: [force] = p.calculateInverseDynamics(objectIndex,[q],[qdot],[acc])
Thanks to Jeff Bingham for the suggestion.
allow to reset the state of a single joint
allow to set the target/mode for a single joint motor at a time
rename pybullet API: initializeJointPositions -> resetJointState
in a nutshell, add the following two files:
examples/Importers/ImportMeshUtility/b3ImportMeshUtility.cpp
examples/ThirdPartyLibs/stb_image/stb_image.cpp