Besides the option being gcc specific, this approach is still fragile
and not future proof since we do not know if this will be the only
optimization option gcc will add that transforms loops to memset
(or any libcall).
This patch adds a new header, dl-symbol-redir-ifunc.h, that can b
used to redirect the compiler generated libcalls to port the generic
memset implementation if required.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Add a proper bounds check to __libc_ifunc_impl_list. This makes MAX_IFUNC
redundant and fixes several targets that will write outside the array.
To avoid unnecessary large diffs, pass the maximum in the argument 'i' to
IFUNC_IMPL_ADD - 'max' can be used in new ifunc definitions and existing
ones can be updated if desired.
Passes buildmanyglibc.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add an initial SVE memcpy implementation. Copies up to 32 bytes use SVE
vectors which improves the random memcpy benchmark significantly.
Cleanup the memcpy and memmove ifunc selectors.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
v2 is a complete rewrite of the A64FX memcpy. Performance is improved
by streamlining the code, aligning all large copies and using a single
unrolled loop for all sizes. The code size for memcpy and memmove goes
down from 1796 bytes to 868 bytes. Performance is better in all cases:
bench-memcpy-random is 2.3% faster overall, bench-memcpy-large is ~33%
faster for large sizes, bench-memcpy-walk is 25% faster for small sizes
and 20% for the largest sizes. The geomean of all tests in bench-memcpy
is 5.1% faster, and total time is reduced by 4%.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This patch disables A64FX memcpy/memmove BTI instruction insertion
unconditionally such as A64FX memset patch [1] for performance.
[1] commit 07b427296b
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This patch updates unroll8 code so as not to degrade at the peak
performance 16KB for both FX1000 and FX700.
Inserted 2 instructions at the beginning of the unroll8 loop,
cmp and branch, are a workaround that is found heuristically.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
This patch updates unroll8 code so as not to degrade at the peak
performance 16KB for both FX1000 and FX700.
Inserted 2 instructions at the beginning of the unroll8 loop,
cmp and branch, are a workaround that is found heuristically.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Simplify handling of remaining bytes. Avoid lots of taken branches and complex
whilelo computations, instead unconditionally write vectors from the end.
Reviewed-by: Naohiro Tamura <naohirot@fujitsu.com>
Improve performance of large memsets. Simplify alignment code. For zero memset
use DC ZVA, which almost doubles performance. For non-zero memsets use the
unroll8 loop which is about 10% faster.
Reviewed-by: Naohiro Tamura <naohirot@fujitsu.com>
Improve performance of small memsets by reducing instruction counts and
improving code alignment. Bench-memset shows 35-45% performance gain for
small sizes.
Reviewed-by: Naohiro Tamura <naohirot@fujitsu.com>
This patch optimizes the performance of memset for A64FX [1] which
implements ARMv8-A SVE and has L1 64KB cache per core and L2 8MB cache
per NUMA node.
The performance optimization makes use of Scalable Vector Register
with several techniques such as loop unrolling, memory access
alignment, cache zero fill and prefetch.
SVE assembler code for memset is implemented as Vector Length Agnostic
code so theoretically it can be run on any SOC which supports ARMv8-A
SVE standard.
We confirmed that all testcases have been passed by running 'make
check' and 'make xcheck' not only on A64FX but also on ThunderX2.
And also we confirmed that the SVE 512 bit vector register performance
is roughly 4 times better than Advanced SIMD 128 bit register and 8
times better than scalar 64 bit register by running 'make bench'.
[1] https://github.com/fujitsu/A64FX
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Reviewed-by: Szabolcs Nagy <Szabolcs.Nagy@arm.com>
This patch optimizes the performance of memcpy/memmove for A64FX [1]
which implements ARMv8-A SVE and has L1 64KB cache per core and L2 8MB
cache per NUMA node.
The performance optimization makes use of Scalable Vector Register
with several techniques such as loop unrolling, memory access
alignment, cache zero fill, and software pipelining.
SVE assembler code for memcpy/memmove is implemented as Vector Length
Agnostic code so theoretically it can be run on any SOC which supports
ARMv8-A SVE standard.
We confirmed that all testcases have been passed by running 'make
check' and 'make xcheck' not only on A64FX but also on ThunderX2.
And also we confirmed that the SVE 512 bit vector register performance
is roughly 4 times better than Advanced SIMD 128 bit register and 8
times better than scalar 64 bit register by running 'make bench'.
[1] https://github.com/fujitsu/A64FX
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Reviewed-by: Szabolcs Nagy <Szabolcs.Nagy@arm.com>
Some IFUNC variants are not compatible with BTI and MTE so don't
set them as usable for testing and benchmarking on a BTI or MTE
enabled system.
As far as IFUNC selectors are concerned a system is BTI enabled if
the cpu supports it and glibc was built with BTI branch protection.
Most IFUNC variants are BTI compatible, but thunderx2 memcpy and
memmove use a jump table with indirect jump, without a BTI j.
Fixes bug 26818.
The hwcap value is now in linux 5.10 and in glibc bits/hwcap.h, so use
that definition.
Move the definition to init-arch.h so all ifunc selectors can use it
and expose an "mte" shorthand for mte enabled runtime.
For now we allow user code to enable tag checks and use PROT_MTE
mappings without libc involvment, this is not guaranteed ABI, but
can be useful for testing and debugging with MTE.
In commit 863d775c48, kunpeng920 is added to default memcpy version,
however, there is performance degradation when the copy size is some large bytes, eg: 100k.
This is the result, tested in glibc-2.28:
before backport after backport Performance improvement
memcpy_1k 0.005 0.005 0.00%
memcpy_10k 0.032 0.029 10.34%
memcpy_100k 0.356 0.429 -17.02%
memcpy_1m 7.470 11.153 -33.02%
This is the demo
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
char a[1024*1024] = {12};
char b[1024*1024] = {13};
int main(int argc, char *argv[])
{
int i = atoi(argv[1]);
int j;
int size = atoi(argv[2]);
for (j = 0; j < i; j++)
memcpy(b, a, size*1024);
return 0;
}
# gcc -g -O0 memcpy.c -o memcpy
# time taskset -c 10 ./memcpy 100000 1024
Co-authored-by: liqingqing <liqingqing3@huawei.com>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
DELOUSE was added to asm code to make them compatible with non-LP64
ABIs, but it is an unfortunate name and the code was not compatible
with ABIs where pointer and size_t are different. Glibc currently
only supports the LP64 ABI so these macros are not really needed or
tested, but for now the name is changed to be more meaningful instead
of removing them completely.
Some DELOUSE macros were dropped: clone, strlen and strnlen used it
unnecessarily.
The out of tree ILP32 patches are currently not maintained and will
likely need a rework to rebase them on top of the time64 changes.
This symbol is not in the implementation reserved namespace for static
linking and it was never used: it seems it was mistakenly added in the
orignal strlen_asimd commit 436e4d5b96
Add CPU detection of Neoverse N2 and Neoverse V1, and select __memcpy_simd as
the memcpy/memmove ifunc.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
On some microarchitectures performance of the backwards memmove improves if
the stores use STR with decreasing addresses. So change the memmove loop
in memcpy_advsimd.S to use 2x STR rather than STP.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Make glibc MTE-safe on systems where MTE is available. This allows
using heap tagging with an LD_PRELOADed malloc implementation that
enables MTE. We don't document this as guaranteed contract yet, so
glibc may not be MTE safe when HWCAP2_MTE is set (older glibcs
certainly aren't). This is mainly for testing and debugging.
The HWCAP flag is not exposed in public headers until Linux adds it
to its uapi. The HWCAP value reservation will be in Linux 5.9.
Optimize strlen using a mix of scalar and SIMD code. On modern micro
architectures large strings are 2.6 times faster than existing
strlen_asimd and 35% faster than the new MTE version of strlen.
On a random strlen benchmark using small sizes the speedup is 7% vs
strlen_asimd and 40% vs the MTE strlen. This fixes the main strlen
regressions on Cortex-A53 and other cores with a simple Neon unit.
Rename __strlen_generic to __strlen_mte, and select strlen_asimd when
MTE is not enabled (this is waiting on support for a HWCAP_MTE bit).
This fixes big-endian bug 25824. Passes GLIBC regression tests.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
Add a new memcpy using 128-bit Q registers - this is faster on modern
cores and reduces codesize. Similar to the generic memcpy, small cases
include copies up to 32 bytes. 64-128 byte copies are split into two
cases to improve performance of 64-96 byte copies. Large copies align
the source rather than the destination.
bench-memcpy-random is ~9% faster than memcpy_falkor on Neoverse N1,
so make this memcpy the default on N1 (on Centriq it is 15% faster than
memcpy_falkor).
Passes GLIBC regression tests.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
To enable building glibc with branch protection, assembly code
needs BTI landing pads and ELF object file markings in the form
of a GNU property note.
The landing pads are unconditionally added to all functions that
may be indirectly called. When the code segment is not mapped
with PROT_BTI these instructions are nops. They are kept in the
code when BTI is not supported so that the layout of performance
critical code is unchanged across configurations.
The GNU property notes are only added when there is support for
BTI in the toolchain, because old binutils does not handle the
notes right. (Does not know how to merge them nor to put them in
PT_GNU_PROPERTY segment instead of PT_NOTE, and some versions
of binutils emit warnings about the unknown GNU property. In
such cases the produced libc binaries would not have valid
ELF marking so BTI would not be enabled.)
Note: functions using ENTRY or ENTRY_ALIGN now start with an
additional BTI c, so alignment of the following code changes,
but ENTRY_ALIGN_AND_PAD was fixed so there is no change to the
existing code layout. Some string functions may need to be
tuned for optimal performance after this commit.
Co-authored-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Falkor's memcpy and memmove share some implementation details,
therefore, the two routines are moved to a single source file
for code reuse.
The two routines now share code for small and medium copies
(up to and including 128 bytes). Large copies in memcpy do not
handle overlap correctly, consequently, the loops for
moving/copying more than 128 bytes stay separate for memcpy
and memmove.
To increase code reuse a number of small modifications were made:
1. The old implementation of memcpy copied the first 16-bytes as
soon as the size of data was determined to be greater than 32 bytes.
For memcpy code to also work when copying small/medium overlapping
data, the first load and store was moved to the large copy case.
2. Medium memcpy case no longer assumes that 16 bytes were already
copied and uses 8 registers to copy up to 128 bytes.
3. Small case for memmove was enlarged to that of memcpy, which is
less than or equal to 32 bytes.
4. Medium case for memmove was enlarged to that of memcpy, which is
less than or equal to 128 bytes.
Other changes include:
1. Improve alignment of existing loop bodies.
2. 'Delouse' memmove and memcpy input arguments. Make sure that
upper 32-bits of input registers are zeroed if unused.
3. Do one more iteration in memmove loops and reduce the number of
copies made from the start/end of the buffer, depending on
the direction of the memmove loop.
Benchmarking:
Looking at the results from bench-memcpy-random.out, we can see that
now memmove_falkor is about 5% faster than memcpy_falkor_old, while
memmove_falkor_old was more than 15% slower. The memcpy implementation
remained largely unmodified, so there is no significant performance
change.
The reason for such a significant memmove performance gain is the
increase of the upper bound on the small copy case to 32 bytes and
the increase of the upper bound on the medium copy case to 128 bytes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the branch prediction issue of Kunpeng processor, we found
memset_generic has poor performance on middle sizes setting, and so
we reconstructed the logic, expanded the loop by 4 times in set_long
to solve the problem, even when setting below 1K sizes have benefit.
Another change is that DZ_ZVA seems no work when setting zero, so we
discarded it and used set_long to set zero instead. Fewer branches and
predictions also make the zero case have slightly improvement.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Optimize the strlen implementation by using vector operations and
loop unrolling in main loop.Compared to __strlen_generic,it reduces
latency of cases in bench-strlen by 7%~18% when the length of src
is greater than 128 bytes, with gains throughout the benchmark.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
* sysdeps/aarch64/multiarch/memset_base64.S (DC_ZVA_THRESHOLD):
Disable DC ZVA code if this macro is defined as zero.
* sysdeps/aarch64/multiarch/memset_emag.S (DC_ZVA_THRESHOLD):
Change to zero to disable using DC ZVA.
The performance improvement is about 20%-30% for
larger cases and about 1%-5% for smaller cases.
Used SIMD load/store instead of GPR for large
overlapping forward moves.
Reused existing memcpy implementation for smaller
or overlapping backward moves.
Fixed the existing memcpy implementation to allow it
to deal with the overlapping case.
Simplified loop tails in the memcpy implementation -
use branchless overlapping sequence of fixed length
load/stores instead of branching depending on the
size.
A cleanup/optimization converting str's to stp's.
Added __memmove_thunderx2 to the list of the
available implementations.
Here is the updated patch for improving the long unaligned
code path (the one using "ext" instruction).
1. Always taken conditional branch at the beginning is
removed.
2. Epilogue code is placed after the end of the loop to
reduce the number of branches.
3. The redundant "mov" instructions inside the loop are
gone due to the changed order of the registers in the "ext"
instructions inside the loop, the prologue has additional
"ext" instruction.
4.Updating count in the prologue was hoisted out as
it is the same update for each prologue.
5. Invariant code of the loop epilogue was hoisted out.
6. As the current size of the ext chunk is exactly 16
instructions long "nop" was added at the beginning
of the code sequence so that the loop entry for all the
chunks be aligned.
* sysdeps/aarch64/multiarch/memcpy_thunderx2.S: Cleanup branching
and remove redundant code.
This version uses general register based memory instruction to load
data, because vector register based is slightly slower in emag.
Character-matching is performed on 16-byte (both size and alignment)
memory block in parallel each iteration.
* sysdeps/aarch64/memchr.S (__memchr): Rename to MEMCHR.
[!MEMCHR](MEMCHR): Set to __memchr.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memchr_generic and memchr_nosimd.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add memchr ifuncs.
* sysdeps/aarch64/multiarch/memchr.c: New file.
* sysdeps/aarch64/multiarch/memchr_generic.S: Likewise.
* sysdeps/aarch64/multiarch/memchr_nosimd.S: Likewise.
This version uses general register based memory store instead of
vector register based, for the former is faster than the latter
in emag.
The fact that DC ZVA size in emag is 64-byte, is used by IFUNC
dispatch to select this memset, so that cost of runtime-check on
DC ZVA size can be saved.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memset_emag.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add __memset_emag to memset ifunc.
* sysdeps/aarch64/multiarch/memset.c (libc_ifunc):
Add IS_EMAG check for ifunc dispatch.
* sysdeps/aarch64/multiarch/memset_base64.S: New file.
* sysdeps/aarch64/multiarch/memset_emag.S: New file.
Add Ares to the midr_el0 list and support ifunc dispatch. Since Ares
supports 2 128-bit loads/stores, use Neon registers for memcpy by
selecting __memcpy_falkor by default (we should rename this to
__memcpy_simd or similar).
* manual/tunables.texi (glibc.cpu.name): Add ares tunable.
* sysdeps/aarch64/multiarch/memcpy.c (__libc_memcpy): Use
__memcpy_falkor for ares.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_ARES):
Add new define.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add ares cpu.
Since aligned loads and stores are huge performance
advantage the implementation always tries to do aligned
access. Among the cases when src and dst addresses are
aligned or unaligned evenly there are cases of not evenly
unaligned src and dst. For such cases (if the length is
big enough) ext instruction is used to merge-and-shift
two memory chunks loaded from two adjacent aligned
locations and then the adjusted chunk gets stored to
aligned address.
Performance gain against the current T2 implementation:
memcpy-large: 65K-32M: +40% - +10%
memcpy-walk: 128-32M: +20% - +2%
This variant of strlen uses vector loads and operations to reduce the
size of the code and also eliminate the non-ascii fallback. This
works very well for falkor because of its two vector units and
efficient vector ops. In the best case it reduces latency of cases in
bench-strlen by 48%, with gains throughout the benchmark.
strlen-walk also sees uniform gains in the 5%-15% range.
Overall the routine appears to work better than the stock one for falkor
regardless of the benchmark, length of string or cache state.
The same cannot be said of a53 and a72 though. a53 performance was
greatly reduced and for a72 it was a bit of a mixed bag, slightly on the
negative side but I reckon it might be fast in some situations.
* sysdeps/aarch64/strlen.S (__strlen): Rename to STRLEN.
[!STRLEN](STRLEN): Set to __strlen.
* sysdeps/aarch64/multiarch/strlen.c: New file.
* sysdeps/aarch64/multiarch/strlen_generic.S: Likewise.
* sysdeps/aarch64/multiarch/strlen_asimd.S: Likewise.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add strlen.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines): Add
strlen_generic and strlen_asimd.
Reviewed-By: szabolcs.nagy@arm.com
CC: pinskia@gmail.com
Vector registers perform better than scalar register pairs for copying
data so prefer them instead. This results in a time reduction of over
50% (i.e. 2x speed improvemnet) for some smaller sizes for memcpy-walk.
Larger sizes show improvements of around 1% to 2%. memcpy-random shows
a very small improvement, in the range of 1-2%.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use vector registers.
Vector registers perform much better for moves compared to pairs of
registers on falkor, so use them instead. This results in a time
reduction of up to 50% (i.e. 2x improvement) for a lot of the smaller
sizes, i.e. up to 1K in memmove-walk. Improvements for larger sizes are
smaller, at about 1%-2%.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memcpy_falkor): Use vector registers.