This patch converts the wrapper scalbln (which set errno directly
rather than doing anything with __kernel_standard) to use the
type-generic template machinery, in the same way that has been done
for ldexp.
Tested for powerpc64le, s390, and x86_64.
Information about whether the ABI of long double is the same as that
of double is split between bits/mathdef.h and bits/wordsize.h.
When the ABIs are the same, bits/mathdef.h defines
__NO_LONG_DOUBLE_MATH. In addition, in the case where the same glibc
binary supports both -mlong-double-64 and -mlong-double-128,
bits/wordsize.h defines __LONG_DOUBLE_MATH_OPTIONAL, along with
__NO_LONG_DOUBLE_MATH if this particular compilation is with
-mlong-double-64.
As part of the refactoring I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>, this
patch puts all that information in a single header,
bits/long-double.h. It is included from sys/cdefs.h alongside the
include of bits/wordsize.h, so other headers generally do not need to
include bits/long-double.h directly.
Previously, various bits/mathdef.h headers and bits/wordsize.h headers
had this long double information (including implicitly in some
bits/mathdef.h headers through not having the defines present in the
default version). After the patch, it's all in six bits/long-double.h
headers. Furthermore, most of those new headers are not
architecture-specific. Architectures with optional long double all
use the ldbl-opt sysdeps directory, either in the order (ldbl-64-128,
ldbl-opt, ldbl-128) or (ldbl-128ibm, ldbl-opt). Thus a generic header
for the case where long double = double, and headers in ldbl-128,
ldbl-96 and ldbl-opt, suffices to cover every architecture except for
cases where long double properties vary between different ABIs sharing
a set of installed headers; fortunately all the ldbl-opt cases share a
single compiler-predefined macro __LONG_DOUBLE_128__ that can be used
to tell whether this compilation is -mlong-double-64 or
-mlong-double-128.
The two cases where a set of headers is shared between ABIs with
different long double properties, MIPS (o32 has long double = double,
other ABIs use ldbl-128) and SPARC (32-bit has optional long double,
64-bit has required long double), need their own bits/long-double.h
headers.
As with bits/wordsize.h, multiple-include protection for this header
is generally implicit through the include guards on sys/cdefs.h, and
multiple inclusion is harmless in any case. There is one subtlety:
the header must not define __LONG_DOUBLE_MATH_OPTIONAL if
__NO_LONG_DOUBLE_MATH was defined before its inclusion, because doing
so breaks how sysdeps/ieee754/ldbl-opt/nldbl-compat.h defines
__NO_LONG_DOUBLE_MATH itself before including system headers. Subject
to keeping that working, it would be reasonable to move these macros
from defined/undefined #ifdef to always-defined 1/0 #if semantics, but
this patch does not attempt to do so, just rearranges where the macros
are defined.
After this patch, the only use of bits/mathdef.h is the alpha one for
modifying complex function ABIs for old GCC. Thus, all versions of
the header other than the default and alpha versions are removed, as
is the include from math.h.
Tested for x86_64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/long-double.h: New file.
* sysdeps/ieee754/ldbl-128/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-96/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-opt/bits/long-double.h: Likewise.
* sysdeps/mips/bits/long-double.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/long-double.h: Likewise.
* math/Makefile (headers): Add bits/long-double.h.
* misc/sys/cdefs.h: Include <bits/long-double.h>.
* stdlib/strtold.c: Include <bits/long-double.h> instead of
<bits/wordsize.h>.
* bits/mathdef.h [!_COMPLEX_H]: Do not allow inclusion.
[!__NO_LONG_DOUBLE_MATH]: Remove conditional code.
* math/math.h: Do not include <bits/mathdef.h>.
* sysdeps/aarch64/bits/mathdef.h: Remove file.
* sysdeps/alpha/bits/mathdef.h [!_COMPLEX_H]: Do not allow
inclusion.
* sysdeps/ia64/bits/mathdef.h: Remove file.
* sysdeps/m68k/m680x0/bits/mathdef.h: Likewise.
* sysdeps/mips/bits/mathdef.h: Likewise.
* sysdeps/powerpc/bits/mathdef.h: Likewise.
* sysdeps/s390/bits/mathdef.h: Likewise.
* sysdeps/sparc/bits/mathdef.h: Likewise.
* sysdeps/x86/bits/mathdef.h: Likewise.
* sysdeps/s390/s390-32/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]: Remove
conditional code.
* sysdeps/s390/s390-64/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
This patch converts the wrapper log1p (which set errno directly rather
than doing anything with __kernel_standard) to use the type-generic
template machinery, in the same way that has been done for ilogb.
Tested for powerpc64le, s390, and x86_64.
TS 18661-1 generally defines libm functions taking sNaN arguments to
return qNaN and raise "invalid", even for the cases where a
corresponding qNaN argument would not result in a qNaN return. This
includes hypot with one argument being an infinity and the other being
an sNaN. This patch duly fixes hypot implementatations in glibc
(generic and powerpc) to ensure qNaN, computed by arithmetic on the
arguments, is returned in that case.
Various implementations do their checks for infinities and NaNs inline
by manipulating the representations of the arguments. For simplicity,
this patch just uses issignaling to check for sNaN arguments. This
could be inlined like the existing code (with due care about reversed
quiet NaN conventions, for implementations where that is relevant),
but given that all these checks are in cases where it's already known
at least one argument is not finite, which should be the uncommon
case, that doesn't seem worthwhile unless performance issues are
observed in practice.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20940]
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Do not
return Inf for arguments Inf and sNaN.
* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Likewise.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (TEST_INF_NAN): Do not return Inf
for arguments Inf and sNaN. When returning a NaN, compute it by
arithmetic on the arguments.
* sysdeps/powerpc/fpu/e_hypotf.c (TEST_INF_NAN): Likewise.
* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
Various pow function implementations mishandle sNaN arguments in
various ways. This includes returning sNaN instead of qNaN for sNaN
arguments. For arguments (1, sNaN) and (sNaN, 0), TS 18661-1
semantics are also that the result should be qNaN, whereas with a qNaN
argument there the result should be 1, but for the dbl-64
implementation of pow there are issues with sNaN arguments beyond not
implementing the TS 18661-1 semantics in those special cases.
This patch makes the implementations in sysdeps/ieee754 follow the TS
18661-1 semantics consistently. Because x86 / x86_64 implementations
still need fixing, testcases are not included with this patch; they
will be included with the fix for the x86 / x86_64 versions.
Tested for x86_64, x86, mips64 and powerpc (with such testcases, which
pass in the mips64 and powerpc cases).
[BZ #20916]
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Do not return 1
for arguments (sNaN, 0) or (1, sNaN). Do arithmetic on NaN
arguments to compute result.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Do not return
1 for arguments (sNaN, 0) or (1, sNaN).
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
The dbl-64 implementation of __ieee754_pow returns a NaN for pow
(qNaN, 0) when it should return 1. Normally this is covered up by the
wrappers ending up calling __kernel_standard which fixes up the result
for this case, but for -lieee the wrappers are bypassed and the bad
result gets through as a return value.
Now, the wrappers fixing this are dealing with variant error handling
that wants a result of NaN for pow (qNaN, 0), and only ever call
__kernel_standard for this case if NaN resulted from __ieee754_pow.
This leads to a question of whether the dbl-64 code might be
deliberately returning NaN in order to use those code paths. However,
I can find no sign that this is deliberate. If it were deliberate one
would expect other implementations to do the same, and would expect
the return of NaN to be very old, but it appears it came in by
accident when the present e_pow.c implementation replaced an fdlibm
implementation in 2001. So it appears to be unintended that this path
through the pow wrapper could be used at all.
So this patch fixes the implementation to return 1 in this case as
expected. This is consistent with all the other implementations. The
relevant path through the wrappers is now unreachable, so is removed
(which is the main motivation of this patch: to avoid that path
becoming accidentally reachable when implementing TS 18661-1 semantics
that pow (sNaN, 0) should return qNaN with "invalid" raised). Another
path that would require __ieee754_pow (0, 0) to return 0 is also
unreachable (as all implementations return 1, in accordance with C99
semantics), so is removed as well.
Note: we don't have anything set up to test -lieee, which in any case
is obsolescent (at some point we should remove the ability for new
programs to access _LIB_VERSION or define matherr and have it called
by glibc). So testing will be implicit through sNaN tests added when
making sNaN inputs work correctly for pow functions.
Tested for x86_64 and x86.
[BZ #20919]
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Do not return
NaN first argument when raised to power 0.
* math/w_pow.c (__pow): Do not check for NaN or zero results from
raising to power zero.
* math/w_powf.c (__powf): Likewise.
* math/w_powl.c (__powl): Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Do not handle
pow (0, 0) or pow (NaN, 0).
TS 18661-1 defines llogb functions that are like ilogb except that
they return long int instead of int. Corresponding FP_LLOGB* macros
are defined, whose values are required to have the obvious
correspondence to those of the FP_ILOGB* macros.
This patch implements these functions and macros for glibc. llogb
uses the type-generic infrastructure, with an implementation similar
to the wrapper for ilogb but with additional conversion from FP_ILOGB*
to FP_LLOGB*; this approach avoids needing to modify or duplicate any
of the architecture-specific ilogb implementations. Tests are also
based on those for ilogb.
Ideally the llogb functions would alias the ilogb ones when long is
32-bit, but such aliasing requires the associated header declarations
of the different-type alias to be hidden, typically by defining macros
before including the header (see e.g. how
sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c defines lround to
__hidden_lround before including <math.h>). The infrastructure for
type-generic function implementations does not support defining such
macros at present (since C code can't define a macro whose name is
determined by other macros). So this patch leaves them as separate
functions (similar to e.g. scalbln and scalbn being separate in such a
case as well), but with the remapping of FP_ILOGB* to FP_LLOGB*
conditioned out in the case where it would be the identity map.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (llogb):
New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (llogb): New
macro.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (__FP_LONG_MAX):
New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_LLOGB0): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_LLOGBNAN): Likewise.
* math/Versions (llogb): New libm symbol at version GLIBC_2.25.
(llogbf): Likewise.
(llogbl): Likewise.
* math/Makefile (gen-libm-calls): Add w_llogbF.
(tests): Add test-fp-llogb-constants.
* math/w_llogb_template.c: New file. Based on
math/w_ilogb_template.c.
* math/libm-test.inc (llogb_test_data): New array.
(llogb_test): New function.
(main): Call llogb_test.
* math/test-fp-llogb-constants.c: New file. Based on
math/test-fp-ilogb-constants.c.
* math/test-tgmath-ret.c (llogb): New CHECK_RET_CONST call.
(do_test): Call check_return_llogb.
* math/test-tgmath.c (NCALLS): Increase to 126.
(F(compile_test)): Call llogb.
(F(llogb)): New function.
* manual/math.texi (Exponents and Logarithms): Document llogb,
llogbf, llogbl, FP_LLOGB0 and FP_LLOGBNAN.
* manual/libm-err-tab.pl (@all_functions): Add llogb.
* sysdeps/ieee754/ldbl-opt/nldbl-llogb.c: New file.
* sysdeps/ieee754/ldbl-opt/w_llogbl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add llogb.
(CFLAGS-nldbl-llogb.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
When I added the getpayload and setpayload functions I failed to make
the ldbl-128 functions use the _Float128 type name like most other
ldbl-128 functions do in preparation for being used to implement *f128
functions. This patch fixes them to use that name.
Tested for mips64.
* sysdeps/ieee754/ldbl-128/s_getpayloadl.c (getpayloadl): Use
_Float128 instead of long double.
* sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c (FUNC): Likewise.
This patch converts the ilogb wrappers (which set errno directly
rather than doing anything with __kernel_standard) to use the
type-generic template machinery. This is intended as preparation for
adding llogb.
Tested for x86_64 and x86, and tested compile for other architectures
with build-many-glibcs.py.
* math/w_ilogb_template.c: New file. Based on math/w_ilogb.c.
* math/w_ilogb.c: Remove.
* math/w_ilogbf.c: Likewise.
* math/w_ilogbl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_ilogb.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_ilogbl.c: Likewise.
* math/Makefile (gen-libm-calls): Add w_ilogbF.
(libm-calls): Remove w_ilogbF.
* sysdeps/ieee754/ldbl-opt/math-type-macros-double.h
(LDOUBLE_ilogbl_libm_version): New macro.
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayloadsig functions for glibc; these are
like the setpayload functions, but produce a signaling NaN instead of
a quiet NaN.
The substance of the implementation was included with the setpayload
implementation, so the new files here just need to wrap the main files
with different defines to build the new functions.
Because the functions store a signaling NaN via a pointer and the
libm-test macros choose a suitable initial value for the variable in
such a case by comparing with the expected value, the relevant macro
needs to clear exceptions after FE_INVALID may have been raised by
that comparison.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayloadsig): New declaration.
* math/Versions (setpayloadsig): New libm symbol at version
GLIBC_2.25.
(setpayloadsigf): Likewise.
(setpayloadsigl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadsigF.
* math/libm-test.inc (RUN_TEST_Ff_b1): Call feclearexcept
(FE_ALL_EXCEPT) after initializing EXTRA_VAR.
(setpayloadsig_test_data): New array.
(setpayloadsig_test): New function.
(main): Call setpayloadsig_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayloadsig,
setpayloadsigf and setpayloadsigl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayloadsig.c: New file.
* sysdeps/ieee754/flt-32/s_setpayloadsigf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayloadsig.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayloadsig.
(CFLAGS-nldbl-setpayloadsig.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayload functions for glibc; these set a
number (pointed to by a function argument) to a quiet NaN with the
given payload, or to +0 if the given payload is not valid. The
implementations are structured to allow the substance of the
implementation to be shared with the setpayloadsig functions when
those are added.
The semantics in the TS are not entirely clear in the case where the
payload passed to the function is zero (see discussion on the WG14
reflector last month). This patch implements what seems the most
sensible interpretation, that -0 is never valid to give as the
payload, but +0 is valid in the case where the kind of NaN being
generated has its high mantissa bit set so payload 0 is actually
possible in such a NaN.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayload): New declaration.
* math/Versions (setpayload): New libm symbol at version
GLIBC_2.25.
(setpayloadf): Likewise.
(setpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadF.
* math/libm-test.inc (struct test_Ffp_b1_data): Rename to struct
test_Ff_b1_data.
(RUN_TEST_Ff_b1): New macro.
(RUN_TEST_LOOP_Ff_b1): Likewise.
(canonicalize_test_data): Update type.
(setpayload_test_data): New array.
(setpayload_test): New function.
(main): Call setpayload_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayload,
setpayloadf and setpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayload.c: New file.
* sysdeps/ieee754/dbl-64/s_setpayload_main.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_setpayload_main.c:
Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf.c: Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf_main.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayload.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayload.
(CFLAGS-nldbl-setpayload.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch refactors some type-generic libm macros, in both math.h and
math_private.h, to be based on a common __MATH_TG macro rather than
all replicating similar logic to choose a function to call based on
the type of the argument.
This should serve to illustrate what I think float128 support for such
macros should look like: common macros such as __MATH_TG may need
different definitions depending on whether float128 is supported in
glibc, so that the individual macros themselves do not need
conditionals on float128 support.
Tested for x86_64, x86, mips64 and powerpc.
* math/math.h (__MATH_TG): New macro.
[__USE_ISOC99] (fpclassify): Define using __MATH_TG.
[__USE_ISOC99] (signbit): Likewise.
[__USE_ISOC99] (isfinite): Likewise.
[__USE_ISOC99] (isnan): Likewise.
[__USE_ISOC99] (isinf): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (issignaling): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__MATH_EVAL_FMT2): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): Define using
__MATH_TG and __MATH_EVAL_FMT2.
* sysdeps/generic/math_private.h (fabs_tg): Define using
__MATH_TG.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h
[!__NO_LONG_DOUBLE_MATH] (__iscanonicalf): New macro.
[!__NO_LONG_DOUBLE_MATH] (__iscanonical): Likewise.
[!__NO_LONG_DOUBLE_MATH] (iscanonical): Define using __MATH_TG.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h (__iscanonicalf): New
macro.
(__iscanonical): Likewise.
(iscanonical): Define using __MATH_TG.
TS 18661-1 defines canonicalize functions to produce a canonical
version of a floating-point representation. This patch implements
these functions for glibc.
As with the iscanonical macro, these functions are oriented to the
decimal floating-point case, where some values have both canonical and
noncanonical representations. However, the functions have a return
value that says whether they succeeded in storing a canonical result;
thus, they can fail for the case of an invalid representation (while
still not making any particular choice from among multiple equally
canonical valid representations of the same value). Since no
floating-point formats in glibc actually have noncanonical valid
representations, a type-generic implementation of these functions can
be used that expects iscanonical to return 0 only for invalid
representations. Now that iscanonical is used within libm.so,
libm_hidden_proto / libm_hidden_def are added for __iscanonicall.
The definition of these functions is intended to correspond to a
convertFormat operation to the same floating-point format. Thus, they
convert signaling NaNs to quiet NaNs, raising the "invalid" exception.
Such a conversion "should" produce "the canonical version of that
signaling NaN made quiet".
libm-test.inc is made to check NaN payloads for the output of these
functions, a new feature (at some point manipulation functions such as
fabs and copysign should have tests added that verify payload
preservation for them). As however some architectures may not follow
the recommended practice of preserving NaN payloads when converting a
signaling NaN to quiet, a new math-tests.h macro
SNAN_TESTS_PRESERVE_PAYLOAD is added, and defined to 0 for non-NAN2008
MIPS; any other architectures seeing test failures for lack of payload
preservation in this case should also define this macro to 0. (If any
cases arise where the sign isn't preserved either, those should have a
similar macro added.)
The ldbl-96 and ldbl-128ibm tests of iscanonical are renamed and
adapted to test canonicalizel as well on the same representations.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(canonicalize): New declaration.
* math/Versions (canonicalize): New libm symbol at version
GLIBC_2.25.
(canonicalizef): Likewise.
(canonicalizel): Likewise.
* math/Makefile (gen-libm-calls): Add s_canonicalizeF.
* math/s_canonicalize_template.c: New file.
* math/libm-test.inc: Update comment on functions tested and
testing of NaN payloads.
(TEST_NAN_PAYLOAD): New macro.
(NO_TEST_INLINE): Update value.
(XFAIL_TEST): Likewise.
(ERRNO_UNCHANGED): Likewise.
(ERRNO_EDOM): Likewise.
(ERRNO_ERANGE): Likewise.
(IGNORE_RESULT): Likewise.
(NON_FINITE): Likewise.
(TEST_SNAN): Likewise.
(NO_TEST_MATHVEC): Likewise.
(TEST_NAN_PAYLOAD_CANONICALIZE): New macro.
(check_float_internal): Check NaN payloads if TEST_NAN_PAYLOAD.
(struct test_Ffp_b1_data): New type.
(RUN_TEST_Ffp_b1): New macro.
(RUN_TEST_LOOP_Ffp_b1): Likewise.
(canonicalize_test_data): New array.
(canonicalize_test): New function.
(main): Call canonicalize_test.
* manual/arith.texi (FP Bit Twiddling): Document canonicalize,
canonicalizef and canonicalizel.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-opt/nldbl-canonicalize.c: New file.
* sysdeps/ieee754/ldbl-opt/s_canonicalizel.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
canonicalize.
(CFLAGS-nldbl-canonicalize.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c: Move
to ...
* sysdeps/ieee754/ldbl-128ibm/test-canonical-ldbl-128ibm.c:
... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Change
test-iscanonical-ldbl-128ibm to test-canonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-128ibm/include/bits/iscanonical.h: New
file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c (__iscanonicall):
Use libm_hidden_def.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Move to ...
* sysdeps/ieee754/ldbl-96/test-canonical-ldbl-96.c: ... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-96/Makefile (tests): Change
test-iscanonical-ldbl-96 to test-canonical-ldbl-96.
* sysdeps/ieee754/ldbl-96/include/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c (__iscanonicall): Use
libm_hidden_def.
* sysdeps/generic/math-tests.h (SNAN_TESTS_PRESERVE_PAYLOAD): New
macro.
* sysdeps/mips/math-tests.h [__mips_hard_float && !__mips_nan2008]
(SNAN_TESTS_PRESERVE_PAYLOAD): Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch adds getpayloadl to libnldbl, missed in my patch that
originally implemented getpayload functions.
Tested for powerpc.
* sysdeps/ieee754/ldbl-opt/nldbl-getpayload.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
getpayload.
(CFLAGS-nldbl-getpayload.c): New variable.
ISO/IEC TS 18661-1 adds several functions in the strfrom family to stdlib.
This patch adds strfromd, strfromf, and strfroml. This is being done in
preparation for the new floating-point type, float128. The added functions
convert a floating-point value into a string, with configurable format.
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the getpayload functions for glibc; these
extract the NaN payload (from an argument passed as a pointer, for
which corresponding libm-test support is added) and return it in the
same floating-point type. The return value of these functions is
unspecified for non-NaN arguments; the patch does the simplest thing
to implement, which is that the functions do not check whether the
argument is a NaN and just treat the relevant bits of the
representation as a payload regardless. A conversion from integer to
floating-point is used to produce the required return value, except in
the ldbl-128 case; as 128-bit integers are not supported for all
configurations using ldbl-128, the code constructs the required
floating-point representation of the return value directly instead.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(getpayload): New declaration.
* math/Versions (getpayload): New libm symbol at version
GLIBC_2.25.
(getpayloadf): Likewise.
(getpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_getpayloadF.
* math/libm-test.inc: Include <nan-high-order-bit.h>.
(struct test_f_f_data): Add comment.
(RUN_TEST_fp_f): New macro.
(RUN_TEST_LOOP_fp_f): Likewise.
(getpayload_test_data): New array.
(getpayload_test): New function.
(main): Call getpayload_test.
* math/gen-libm-test.pl (parse_args): Handle 'p' in argument
descriptor.
* manual/arith.texi (FP Bit Twiddling): Document getpayload,
getpayloadf and getpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_getpayload.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Likewise.
* sysdeps/ieee754/flt-32/s_getpayloadf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_getpayloadl.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch moves the HIGH_ORDER_BIT_IS_SET_FOR_SNAN macro from being
defined or undefined to the preferred convention of always being
defined, to either 0 or 1, so allowing typo-proof tests with #if.
The macro is moved from math_private.h to a new header
nan-high-order-bit.h to make it easy for all architectures to define,
either through the sysdeps/generic version of the header or through
providing their own version of the header, without needing #ifndef in
the generic math_private.h to give a default definition. The move
also allows the macro to be used without needing math_private.h to be
included; the immediate motivation of this patch is to allow tests to
access this information (to know what kinds of NaNs 0 is a valid
payload for) without needing to include math_private.h. Existing
C level rather than preprocessor conditionals at all, but this patch
does not make such a change).
Tested for x86_64 and x86 (testsuite); also verified for x86_64, x86,
mips64 and powerpc that installed stripped shared libraries are
unchanged by the patch.
* sysdeps/generic/nan-high-order-bit.h: New file.
* sysdeps/hppa/nan-high-order-bit.h: Likewise.
* sysdeps/mips/nan-high-order-bit.h: Likewise.
* sysdeps/hppa/math_private.h: Remove file.
* sysdeps/mips/math_private.h (HIGH_ORDER_BIT_IS_SET_FOR_SNAN): Do
not define here.
* sysdeps/ieee754/dbl-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_issignalingf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
TS 18661-1 defines totalorder functions implementing the totalOrder
comparison operation from IEEE 754-2008. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
(The totalordermag functions will be added in a separate patch.)
The description of the totalOrder operation is complicated. However,
for IEEE interchange binary formats and the preferred quiet NaN
convention, what that complicated description means is that you
interpret the representation as a sign-magnitude integer (with -0
coming before +0) and do a <= comparison on that interpretation. For
finite values and infinities the ordering of the sign-magnitude
integers is just the same as the ordering of floating-point values, so
this extends that to all representations. (Different representations
of the same floating-point value - which includes same quantum in the
decimal case - must still be considered equal by this operation, but
that issue doesn't arise for IEEE interchange binary formats.) So the
complications are:
* When MIPS quiet NaN conventions are in use, the representation of
NaNs needs adjusting before making such an integer comparison. This
patch does this adjustment only when both arguments are NaNs, as
there's no need for it if only one is a NaN, and as long as both are
NaNs you can just flip the relevant bits without any problems from
this turning a NaN into an infinity.
* For the m68k version of ldbl-96, where the high mantissa bit is
"don't care" for infinities and NaNs, representations where it
differs must compare the same. Note: although the testcase for this
compiles, I have not actually tested on m68k.
* For ldbl-128ibm, the low part must be ignored when the high part is
NaN, and low parts of +0 and -0 must be considered the same whatever
the high part.
The new tests in libm-test.inc are the first tests there specifying
particular payloads for input NaNs. Separate tests are also added for
the ldbl-96 and ldbl-128ibm special cases where there are different
representations of the same value that must compare equal (which can't
be covered in libm-test.inc as that only specifies values, not
representations).
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalorder): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder):
New macro.
* math/Versions (totalorder): New libm symbol at version
GLIBC_2.25.
(totalorderf): Likewise.
(totalorderl): Likewise.
* math/Makefile (libm-calls): Add s_totalorderF.
* math/gen-libm-test.pl (parse_args): Escape quotes in test name
string.
* math/libm-test.inc (PAYLOAD_DIG): New macro.
(qnan_value_pl): Likewise.
(snan_value_pl): Likewise.
(qnan_value): Define using qnan_value_pl.
(snan_value): Define using snan_value_pl.
(struct test_ff_i_data): Add comment about which tests use this
structure.
(RUN_TEST_ff_b): New macro.
(RUN_TEST_LOOP_ff_b): Likewise.
(totalorder_test_data): New array.
(totalorder_test): New function.
(main): Call totalorder_test.
* math/test-tgmath.c (NCALLS): Increase to 122.
(F(compile_test)): Call totalorder.
(F(totalorder)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalorder, totalorderf and totalorderl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalorder.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalorder.
(CFLAGS-nldbl-totalorder.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-totalorderl-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c: New file.
* sysdeps/ieee754/ldbl-96/Makefile [$(subdir) = math] (tests): Add
test-totalorderl-ldbl-96.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Like the previous change, make the quadrant shift a boolean to make it
clearer that we will do at most a single rotation of the quadrants to
compute the cosine from the sine function.
This does not affect codegen.
For k1 in 1 and 3, n can only have values of 0 and 2, so checking k1 &
2 is equivalent to checking n & 2. We prefer the latter so that we
don't use k1 for anything other than selecting the quadrant in
do_sincos_1, thus dropping it completely.
The previous logic was:
"Compute sine for the value and based on the new rotated quadrant
(k1) negate the value if we're in the fourth quadrant."
With this change, the logic now is:
"Compute sine for the value and negate it if we were either (1) in
the fourth quadrant or (2) we actually wanted the cosine and were
in the third quadrant."
* sysdeps/ieee754/dbl-64/s_sin.c (do_sincos_1): Check N
instead of K1.
The do_sincos_* functions are helpers to compute sin/cos, where they
get cosine by computing sine for the next quadrant. This is decided
with the value of K passed to it, which is the amount by which to
shift the quadrant. Since we will only need the shift to be 0 or 1,
we make K a bool to make that explicit.
* sysdeps/ieee754/dbl-64/s_sin.c (do_sincos_1): Rename K to
SHIFT_QUADRANT and make it bool.
(do_sincos_2): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(__sin): Adjust calls to do_sincos_1 and do_sincos_2.
(__cos): Likewise.
sysdeps/ieee754/dbl-64/dla.h can use a macro DLA_FMS for more
efficient double-width operations when fused multiply-subtract is
supported. However, this macro is only defined for x86_64,
conditional on architecture-specific __FMA4__. This patch makes the
code use __builtin_fma conditional on __FP_FAST_FMA, as used elsewhere
in glibc.
Tested for x86_64, x86 and powerpc. On powerpc (where this is causing
fused operations to be used where they weren't previously) I see an
increase from 1ulp to 2ulp in the imaginary part of clog10:
testing double (without inline functions)
Failure: Test: Imaginary part of: clog10 (0x1.7a858p+0 - 0x6.d940dp-4 i)
Result:
is: -1.2237865208199886e-01 -0x1.f5435146bb61ap-4
should be: -1.2237865208199888e-01 -0x1.f5435146bb61cp-4
difference: 2.7755575615628914e-17 0x1.0000000000000p-55
ulp : 2.0000
max.ulp : 1.0000
Maximal error of real part of: clog10
is : 3 ulp
accepted: 3 ulp
Maximal error of imaginary part of: clog10
is : 2 ulp
accepted: 1 ulp
This is actually resulting from atan2 becoming *more* accurate (atan2
(-0x6.d940dp-4, 0x1.7a858p+0) should ideally be -0x1.208cd6e841554p-2
but was -0x1.208cd6e841555p-2 from a powerpc libm built before this
change, and is -0x1.208cd6e841554p-2 from a powerpc libm built after
this change). Since these functions are not expected to be correctly
rounding by glibc's accuracy goals, neither result is a problem, but
this does imply that some of this code, although designed to be
correctly rounding, is not in fact correctly rounding (possibly
because of GCC creating fused operations where the code does not
expect it, something we've only disabled for specific functions where
it was found to cause large errors). (Of course as previously
discussed I think we should remove the slow cases where an error
analysis shows this wouldn't increase the errors much above 0.5ulp;
it's only functions such as cratan2 that are expected to be correctly
rounding, not atan2.)
* sysdeps/ieee754/dbl-64/dla.h [__FP_FAST_FMA] (DLA_FMS): Define
macro to use __builtin_fma.
* sysdeps/x86_64/fpu/dla.h: Remove file.
This patch fixes the ldbl-128ibm version of the iscanonical macro not
to use __iscanonicall when long double = double (-mlong-double-64).
Tested for powerpc.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h
[__NO_LONG_DOUBLE_MATH] (__iscanonicall): Do not declare.
[__NO_LONG_DOUBLE_MATH] (iscanonical): Define to evaluate to 1.
TS 18661-1 adds an iscanonical classification macro to <math.h>.
The motivation for this is decimal floating-point, where some values
have both canonical and noncanonical encodings. For IEEE binary
interchange formats, all encodings are canonical. For x86/m68k
ldbl-96, and for ldbl-128ibm, there are encodings that do not
represent any valid value of the type; although formally iscanonical
does not need to handle trap representations (and so could just always
return 1), it seems useful, and in line with the description in the TS
of "representations that are extraneous to the floating-point model"
as being non-canonical (as well as "redundant representations of some
or all of its values"), for it to detect those representations and
return 0 for them.
This patch adds iscanonical to glibc. It goes in a header
<bits/iscanonical.h>, included under appropriate conditions in
<math.h>. The default header version just evaluates the argument
(converted to its semantic type, though current GCC will probably
discard that conversion and any exceptions resulting from it) and
returns 1. ldbl-96 and ldbl-128ibm then have versions of the header
that call a function __iscanonicall for long double (the sizeof-based
tests will of course need updating for float128 support, like other
such type-generic macro implementations). The ldbl-96 version of
__iscanonicall has appropriate conditionals to reflect the differences
in the m68k version of that format (where the high mantissa bit may be
either 0 or 1 when the exponent is 0 or 0x7fff). Corresponding tests
for those formats are added as well. Other architectures do not have
any new functions added because just returning 1 is correct for all
their floating-point formats.
Tested for x86_64, x86, mips64 (to test the default macro version) and
powerpc.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)]: Include
<bits/iscanonical.h>.
* bits/iscanonical.h: New file.
* math/s_iscanonicall.c: Likewise.
* math/Versions (__iscanonicall): New libm symbol at version
GLIBC_2.25.
* math/libm-test.inc (iscanonical_test_data): New array.
(iscanonical_test): New function.
(main): Call iscanonical_test.
* math/Makefile (headers): Add bits/iscanonical.h.
(type-ldouble-routines): Add s_iscanonicall.
* manual/arith.texi (Floating Point Classes): Document
iscanonical.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c:
Likewise.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Add
test-iscanonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Likewise.
* sysdeps/ieee754/ldbl-96/Makefile: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
These are remaining cases where we can deduce and conclude that the
sign of the result should be the same as the sign of the input being
checked. For example, for sin(x), the sign of the result is the same
as the result itself for x < pi. Likewise, for sine values where x
after range reduction falls into this range and its sign is preserved.
* sysdeps/ieee754/dbl-64/s_sin.c (do_sincos_1): Use copysign
instead of ternary condition.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(bsloww): Likewise.
(bsloww1): Likewise.
This is the first very simple substitution of ternary conditions for
correction adjustments with __copysign for positive constants.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos_slow): use copysign
instead of ternary condition.
(do_sin_slow): Likewise.
(do_sincos_1): Likewise.
(do_sincos_2): Likewise.
(__cos): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
Simplify the code a bit by consolidating sign checks in slow1 and
slow2 into __sin at the higher level.
* sysdeps/ieee754/dbl-64/s_sin.c (slow1): Consolidate sign
check from here...
(slow2): ... and here...
(__sin): ... to here.
This requires adding a macro to synthesize the call
to __strto*_nan. Since this is likely to be the only
usage ever for strto* functions in generated libm
calls, a dedicated macro is defined for it.
This one is a little more tricky since it is built both for
libm and libc, and exports multiple aliases.
To simplify aliasing, a new macro is introduced which handles
aliasing to two symbols. By default, it just applies
declare_mgen_alias to both target symbols.
Likewise, the makefile is tweaked a little to generate
templates for shared files too, and a new rule is added
to build m_*.c objects from the objpfx directory.
Verified there are no symbol or code changes using a script
to diff the *_ldexp* object files on s390x, aarch64, arm,
x86_64, and ppc64.
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.
Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.
Likewise, -L(x) is transformed into L(-x).
Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch. Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
The support functions for sin and cos have a lot of identical
functionality, so inlining them gives a pretty decent jump in
functionality: ~19% in the sincos function. On SPEC2006 this
translates to about 2.1% in the tonto test.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Mark as inline.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(slow): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
The only code looks slightly different from do_sin but on closer
examination, should give exactly the same result. Drop it in favour
of the do_sin function call.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Use do_sin.
All calls to do_cos are preceded by code that partitions x into a
larger double that gives an offset into the sincos table and a smaller
double that is used in a polynomial computation. Consolidate all of
them into do_cos and do_sin to reduce code duplication.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Accept X and DX as input
arguments. Consolidate input partitioning from callers here.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(do_sincos_1): Remove the no longer necessary input partitioning.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
With the exception of those machines using the ldbl-opt in
an Implies file, this is a trivial transformation.
nextdownl is not subject to the non-trivial versioning rules
of the other generated functions, so to keep things simple,
it is handled as a one-off case in ldbl-opt to preserve the
existing behavior.
The only difference is the usage of math_narrow_eval when
building s_fdiml.c. This should be harmless for long double,
but I did observe some code generation changes on m68k, but
lack the resources to test it.
Likewise, to more easily support overriding symbol generation,
the aliasing macros are always conditionally defined on their
absence to reduce boilerplate.
I also ran builds for i486, ppc64, sparcv9, aarch64,
s390x and observed no changes to s_fdim* objects.
Add a layer of macro indirection for long double files
which need to be built using another typename. Likewise,
add the L(num) macro used in a later patch to override
real constants.
These macros are only defined through the ldbl-128
math_ldbl.h header, thereby implicitly restricting
these macros to machines which back long double
with an IEEE binary128 format.
Likewise, appropriate changes are made for the few
files which indirectly include such ldbl-128 files.
These changes produce identical binaries for s390x,
aarch64, and ppc64.
The sin and cos code is inconsistent about its use of fabs to get the
absolute value of X where in some places it conditionalizes the code
while in others it uses fabs. fabs seems to be a better candidate in
most cases because it avoids a branch. Similarly there is an attempt
to make it easier for the compiler to emit conditional assignment
instructions (like fcsel on aarch64) where it can, by isolating
conditional assignment constructs from the rest of the expression.
A further benefit of this change is to identify common constructs
across functions and consolidate them in future patches.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos_slow): Use ternary
instead of if/else.
(do_sin_slow): Likewise.
(do_sincos_1): Use fabs instead of if/else.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow2): Likewise.
(sloww): Likewise.
(sloww1): Likewise. Drop argument M.
(sloww2): Use fabs instead of if/else.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
This patch reshuffles the reduce_and_compute code so that the
structure matches other code structures of the same type elsewhere in
s_sin.c and s_sincos.c. This is the beginning of an attempt to
consolidate and reduce code duplication in functions in s_sin.c to
make it easier to read and possibly also easier for the compiler to
optimize.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_and_compute):
Consolidate switch cases 0 and 2.
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions
into generated templates. Note, ldbl-opt still retains
s_clog10l.c as the aliasing rules are non-trivial.
A number of files share identical code for the
mul_split function.
This moves the duplicated function mul_split into its
own header, and refactors the fma usage into a single
selection macro. Likewise, mul_split when used by a
long double implementation is renamed mul_splitl for
clarity.
On s390x I get the following werror when build with gcc 6.1 (or current gcc head) and -O3:
../sysdeps/ieee754/dbl-64/k_rem_pio2.c: In function ‘__kernel_rem_pio2’:
../sysdeps/ieee754/dbl-64/k_rem_pio2.c:254:18: error: array subscript is below array bounds [-Werror=array-bounds]
for (k = 1; iq[jk - k] == 0; k++)
~~^~~~~~~~
I get the same error with sysdeps/ieee754/flt-32/k_rem_pio2f.c.
This patch adds DIAG_* macros around it.
ChangeLog:
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Use DIAG_*_NEEDS_COMMENT macro to get rid of array-bounds warning.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
This defines a new classes of libm objects. The
<func>_template.c file which is used in conjunction
with the new makefile hooks to derive variants for
each type supported by the target machine.
The headers math-type-macros-TYPE.h are used to supply
macros to a common implementation of a function in
a file named FUNC_template.c and glued togethor via
a generated file matching existing naming in the
build directory.
This has the properties of preserving the existing
override mechanism and not requiring any arcane
build system twiddling. Likewise, it enables machines
to override these files without any additional work.
I have verified the built objects for ppc64, x86_64,
alpha, arm, and m68k do not change in any meaningful
way with these changes using the Fedora cross toolchains.
I have verified the x86_64 and ppc64 changes still run.
There is quiet truncation to double arithmetic in several
files. I noticed them when building ldbl-128 in a
soft-fp context. This did not change any test results.
sparc64 passes floating point values in the floating point registers.
As the the generic ceil, floor and trunc functions use integer
instructions, it makes sense to provide a VIS3 version consisting in
the the generic version compiled with -mvis3. GCC will then use
movdtox, movxtod, movwtos and movstow instructions.
sparc32 passes the floating point values in the integer registers, so it
doesn't make sense to do the same.
Changelog:
* sysdeps/ieee754/dbl-64/s_trunc.c: Avoid alias renamed.
* sysdeps/ieee754/dbl-64/wordsize-64/s_trunc.c: Likewise.
* sysdeps/ieee754/flt-32/s_truncf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/Makefile
[$(subdir) = math && $(have-as-vis3) = yes] (libm-sysdep_routines):
Add s_ceilf-vis3, s_ceil-vis3, s_floorf-vis3, s_floor-vis3,
s_truncf-vis3, s_trunc-vis3.
(CFLAGS-s_ceilf-vis3.c): New. Set to -Wa,-Av9d -mvis3.
(CFLAGS-s_ceil-vis3.c): Likewise.
(CFLAGS-s_floorf-vis3.c): Likewise.
(CFLAGS-s_floor-vis3.c): Likewise.
(CFLAGS-s_truncf-vis3.c): Likewise.
(CFLAGS-s_trunc-vis3.c): Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil-vis3.c: New file.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf.c: Likewise.
During the sincos consolidation I made two mistakes, one was a logical
error due to which cos(0x1.8475e5afd4481p+0) returned
sin(0x1.8475e5afd4481p+0) instead.
The second issue was an error in negating inputs for the correct
quadrants for sine. I could not find a suitable test case for this
despite running a program to search for such an input for a couple of
hours.
Following patch fixes both issues. Tested on x86_64. Thanks to Matt
Clay for identifying the issue.
[BZ #20357]
* sysdeps/ieee754/dbl-64/s_sin.c (sloww): Fix up condition
to call __mpsin/__mpcos and to negate values.
* math/auto-libm-test-in: Add test.
* math/auto-libm-test-out: Regenerate.
TS 18661 adds nextup and nextdown functions alongside nextafter to provide
support for float128 equivalent to it. This patch adds nextupl, nextup,
nextupf, nextdownl, nextdown and nextdownf to libm before float128 support.
The nextup functions return the next representable value in the direction of
positive infinity and the nextdown functions return the next representable
value in the direction of negative infinity. These are currently enabled
as GNU extensions.
The dbl-64 implementation of atan2, passed arguments (sNaN, qNaN),
fails to raise the "invalid" exception. This patch fixes it to add
both arguments, rather than just adding the second argument to itself,
in the case where the second argument is a NaN (which is checked for
before checking for the first argument being a NaN). sNaN tests for
atan2 are added, along with some qNaN tests I noticed were missing but
should have been there by analogy with other tests present.
Tested for x86_64 and x86.
[BZ #20252]
* sysdeps/ieee754/dbl-64/e_atan2.c (__ieee754_atan2): Add both
arguments when second argument is a NaN.
* math/libm-test.inc (atan2_test_data): Add sNaN tests and more
qNaN tests.
Various implementations of frexp functions return sNaN for sNaN
input. This patch fixes them to add such arguments to themselves so
that qNaN is returned.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20250]
* sysdeps/i386/fpu/s_frexpl.S (__frexpl): Add non-finite input to
itself.
* sysdeps/ieee754/dbl-64/s_frexp.c (__frexp): Add non-finite or
zero input to itself.
* sysdeps/ieee754/dbl-64/wordsize-64/s_frexp.c (__frexp):
Likewise.
* sysdeps/ieee754/flt-32/s_frexpf.c (__frexpf): Likewise.
* sysdeps/ieee754/ldbl-128/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-96/s_frexpl.c (__frexpl): Likewise.
* math/libm-test.inc (frexp_test_data): Add sNaN tests.
The ldbl-128ibm version of log1pl returns sNaN for sNaN input. This
patch fixes it to add such inputs to themselves so that qNaN is
returned in this case.
Tested for powerpc.
[BZ #20234]
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Add positive
infinity or NaN input to itself.
The ldbl-128ibm version of expm1l returns sNaN for sNaN input. This
patch fixes it to add such inputs to themselves so that qNaN is
returned in this case.
Tested for powerpc.
[BZ #20233]
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Add NaN input
to itself.
The ldbl-128 version of expm1l returns sNaN for sNaN input. This
patch fixes it to add such inputs to themselves so that qNaN is
returned in this case.
Tested for mips64.
[BZ #20232]
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Add NaN input to
itself.
The dbl-64 version of asin returns sNaN for sNaN arguments. This
patch fixes it to add NaN arguments to themselves so that qNaN is
returned in this case.
Tested for x86_64 and x86.
[BZ #20213]
* sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Add NaN
argument to itself.
* math/libm-test.inc (asin_test_data): Add sNaN tests.
The dbl-64 version of acos returns sNaN for sNaN arguments. This
patch fixes it to add NaN arguments to themselves so that qNaN is
returned in this case.
Tested for x86_64 and x86.
[BZ #20212]
* sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_acos): Add NaN
argument to itself.
* math/libm-test.inc (acos_test_data): Add sNaN tests.
The ldbl-128ibm implementations of ceill, floorl, roundl, truncl,
rintl and nearbyintl wrongly return an sNaN when given an sNaN
argument. This patch fixes them to add such an argument to itself to
turn it into a quiet NaN. (The code structure means this "else" case
applies to any argument which is zero or not finite; it's OK to do
this in all such cases.)
Tested for powerpc.
[BZ #20156]
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c (__ceill): Add high part
to itself when zero or not finite.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c (__floorl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c (__rintl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c (__roundl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
The ldbl-128ibm implementation of sqrtl wrongly returns an sNaN for
signaling NaN arguments. This patch fixes it to quiet its argument,
using the same x * x + x return for infinities and NaNs as the dbl-64
implementation uses to ensure that +Inf maps to +Inf while -Inf and
NaN map to NaN.
Tested for powerpc.
[BZ #20153]
* sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c (__ieee754_sqrtl): Return
x * x + x for infinities and NaNs.
The ldbl-128 implementations of j0l, j1l, y0l, y1l (also used for
ldbl-128ibm) return an sNaN argument unchanged. This patch fixes them
to add a NaN argument to itself to quiet it before return.
Tested for mips64.
[BZ #20151]
* sysdeps/ieee754/ldbl-128/e_j0l.c (__ieee754_j0l): Add NaN
argument to itself before returning result.
(__ieee754_y0l): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Likewise.
(__ieee754_y1l).
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for round
functions to align them with TS 18661-1 in this regard. The tests
*are* updated by this patch; there are fewer architecture-specific
versions than for ceil and floor, and I fixed the powerpc ones some
time ago. If any others still have the issue, as shown by tests for
round failing with spurious exceptions, they can be fixed separately
by architecture maintainers or others.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_round.c (huge): Remove variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c (huge): Remove
variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_roundf.c (huge): Remove variable.
(__roundf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-96/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* math/libm-test.inc (round_test_data): Do not allow spurious
"inexact" exceptions.
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for floor
functions to align them with TS 18661-1 in this regard. Note that
some architecture-specific versions may still raise "inexact", so the
tests are not updated and the bug is not yet fixed.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_floor.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floor): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Do not mention
"inexact" exception in comment.
(huge): Remove variable.
(__floor): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_floorf.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floorf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_floorl.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floorl): Do not force "inexact" exception.
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for ceil
functions to align them with TS 18661-1 in this regard. Note that
some architecture-specific versions may still raise "inexact", so the
tests are not updated and the bug is not yet fixed.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_ceil.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__ceil): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_ceil.c: Do not mention
"inexact" exception in comment.
(huge): Remove variable.
(__ceil): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_ceilf.c (huge): Remove variable.
(__ceilf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_ceill.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__ceill): Do not force "inexact" exception.
ldbl-128ibm had an implementation of fmal that just did (x * y) + z in
most cases, with no attempt at actually being a fused operation.
This patch replaces it with a genuine fused operation. It is not
necessarily correctly rounding, but should produce a result at least
as accurate as the long double arithmetic operations in libgcc, which
I think is all that can reasonably be expected for such a non-IEEE
format where arithmetic is approximate rather than rounded according
to any particular rule for determining the exact result. Like the
libgcc arithmetic, it may produce spurious overflow and underflow
results, and it falls back to the libgcc multiplication in the case of
(finite, finite, zero).
This concludes the fixes for bug 13304; any subsequently found fma
issues should go in separate Bugzilla bugs. Various other pieces of
bug 13304 were fixed in past releases over the past several years.
Tested for powerpc.
[BZ #13304]
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>,
<float.h>, <math_private.h> and <stdlib.h>.
(add_split): New function.
(mul_split): Likewise.
(ext_val): New typedef.
(store_ext_val): New function.
(mul_ext_val): New function.
(compare): New function.
(add_split_ext): New function.
(__fmal): After checking for Inf, NaN and zero, compute result as
an exact sum of scaled double values in round-to-nearest before
adding those up and adjusting for other rounding modes.
* math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from
tests of fma.
* math/auto-libm-test-out: Regenerated.
When the signs differ, the precision of the conversion sometimes
drops below 106 bits. This strategy is identical to the
hexadecimal variant.
I've refactored tst-sprintf3 to enable testing a value with more
than 30 significant digits in order to demonstrate this failure
and its solution.
Additionally, this implicitly fixes a typo in the shift
quantities when subtracting from the high mantissa to compute
the difference.
The ldbl-128ibm implementation of nearbyintl uses logic that only
works in round-to-nearest mode. This contrasts with rintl, which
works in all rounding modes.
Now, arguably nearbyintl could simply be aliased to rintl, given that
spurious "inexact" is generally allowed for ldbl-128ibm, even for the
underlying arithmetic operations. But given that the only point of
nearbyintl is to avoid "inexact", this patch follows the more
conservative approach of adding conditionals to the rintl
implementation to make it suitable for use to implement nearbyintl,
then builds it for nearbyintl with USE_AS_NEARBYINTL defined. The
test test-nearbyint-except-2 shows up issues when traps on "inexact"
are enabled, which turn out to be problems with the powerpc
fenv_private.h implementation (two functions that should disable
exception traps potentially failing to do so in some cases); this
patch duly fixes that as well (I don't see any other existing cases
where this would be user-visible; there isn't much use of *_NOEX,
*hold* etc. in libm that requires exceptions to be discarded and not
trapped on).
Tested for powerpc.
[BZ #19790]
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c [USE_AS_NEARBYINTL]
(rintl): Define as macro.
[USE_AS_NEARBYINTL] (__rintl): Likewise.
(__rintl) [USE_AS_NEARBYINTL]: Use SET_RESTORE_ROUND_NOEX instead
of fesetround. Ensure results are evaluated before end of scope.
* sysdeps/ieee754/ldbl-128ibm/s_nearbyintl.c: Define
USE_AS_NEARBYINTL and include s_rintl.c.
* sysdeps/powerpc/fpu/fenv_private.h (libc_feholdsetround_ppc):
Disable exception traps in new environment.
(libc_feholdsetround_ppc_ctx): Likewise.
The ldbl-128ibm implementation of remainderl has logic resulting in
incorrect tests for equality of the absolute values of the arguments
in the case of zero low parts. If the low parts are both zero but
with different signs, this can wrongly cause equal arguments to be
treated as different, resulting in turn in incorrect signs of zero
result in nondefault rounding modes arising from the subtractions done
when the arguments are not equal.
This patch fixes the logic to convert -0 low parts into +0 before the
comparison (remquo already has separate logic to deal with signs of
zero results, so doesn't need such a change). Tests are added for
remainderl and remquol similar to that for fmodl, and based on a
refactoring of it, since the bug depends on low parts which should not
be relied upon in tests not setting the representation explicitly
(although in fact the bug shows up in test-ldouble with current GCC).
Tested for powerpc.
[BZ #19677]
* sysdeps/ieee754/ldbl-128ibm/e_remainderl.c
(__ieee754_remainderl): Put zero low parts in canonical form.
* sysdeps/ieee754/ldbl-128ibm/test-fmodrem-ldbl-128ibm.c: New
file. Based on
sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c.
* sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: Replace
with wrapper round test-fmodrem-ldbl-128ibm.c.
* sysdeps/ieee754/ldbl-128ibm/test-remainderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/test-remquol-ldbl-128ibm.c:
Likewise.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Add
test-remainderl-ldbl-128ibm and test-remquol-ldbl-128ibm.
The ldbl-128ibm implementation of nextafterl / nexttowardl returns -0
in FE_DOWNWARD mode when taking the next value below the least
positive subnormal, when it should return +0. This patch fixes it to
check explicitly for this case.
Tested for powerpc.
[BZ #19678]
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl):
Ensure +0.0 is returned when taking the next value below the least
positive value.
The ldbl-128ibm implementation of powl has some problems in the case
of overflow or underflow, which are mainly visible in non-default
rounding modes.
* When overflow or underflow is detected early, the correct sign of an
overflowing or underflowing result is not allowed for. This is
mostly hidden in the default rounding mode by the errno-setting
wrappers recomputing the result (except in non-default
error-handling modes such as -lieee), but visible in other rounding
modes where a result that is not zero or infinity causes the
wrappers not to do the recomputation.
* The final scaling is done before the sign is incorporated in the
result, but should be done afterwards for correct overflowing and
underflowing results in directed rounding modes.
This patch fixes those problems. Tested for powerpc.
[BZ #19674]
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Include
sign in overflowing and underflowing results when overflow or
underflow is detected early. Include sign in result before rather
than after scaling.
The ldbl-128ibm implementations of remainderl and remquol have logic
resulting in incorrect tests for equality of the absolute values of
the arguments. Equality is tested based on the integer
representations of the high and low parts, with the sign bit masked
off the high part - but when this changes the sign of the high part,
the sign of the low part needs to be changed as well, and failure to
do this means arguments are wrongly treated as equal when they are
not.
This patch fixes the logic to adjust signs of low parts as needed.
Tested for powerpc.
[BZ #19603]
* sysdeps/ieee754/ldbl-128ibm/e_remainderl.c
(__ieee754_remainderl): Adjust sign of integer version of low part
when taking absolute value of high part.
* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
* math/libm-test.inc (remainder_test_data): Add another test.
(remquo_test_data): Likewise.
The ldbl-128ibm implementation of fmodl has logic to detect when the
first argument has absolute value less than or equal to the second.
This logic is only correct for nonzero low parts; if the high parts
are equal and the low parts are zero, then the signs of the low parts
(which have no semantic effect on the value of the long double number)
can result in equal values being wrongly treated as unequal, and an
incorrect result being returned from fmodl. This patch fixes this by
checking for the case of zero low parts.
Although this does show up in tests from libm-test.inc (both tests of
fmodl, and, indirectly, of remainderl / dreml), the dependence on
non-semantic zero low parts means that test shouldn't be expected to
reproduce it reliably; thus, this patch adds a standalone test that
sets up affected values using unions.
Tested for powerpc.
[BZ #19602]
* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Handle
equal high parts and both low parts zero specially.
* sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: New test.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-fmodl-ldbl-128ibm.
The ldbl-128ibm implementation of fmodl has completely bogus logic for
subnormal results (in this context, that means results for which the
result is in the subnormal range for double, not results with absolute
value below LDBL_MIN), based on code used for ldbl-128 that is correct
in that case but incorrect in the ldbl-128ibm use. This patch fixes
it to convert the mantissa into the correct form expected by
ldbl_insert_mantissa, removing the other cases of the code that were
incorrect and in one case unreachable for ldbl-128ibm. A correct
exponent value is then passed to ldbl_insert_mantissa to reflect the
shifted result.
Tested for powerpc.
[BZ #19595]
* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Use
common logic for all cases of shifting subnormal results. Do not
insert sign bit in shifted mantissa. Always pass -1023 as biased
exponent to ldbl_insert_mantissa in subnormal case.
The ldbl-128ibm implementation of roundl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). This patch reimplements it along
the lines used for floorl, ceill and truncl, using __round on the high
part, and on the low part if the high part is an integer, and then
adjusting in the cases where this is incorrect.
Tested for powerpc.
[BZ #19594]
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c (__roundl): Use __round
on high and low parts then adjust result and use
ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of truncl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of trunc, when it seems more
natural to take the truncation of the high part (__trunc optimized
inline versions can be used), and the floor or ceiling of the low part
(depending on the sign of the high part) if the high part is an
integer, as was done for floorl and ceill. This patch makes it use
that simpler approach.
Tested for powerpc.
[BZ #19593]
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Use __trunc
on high part and __floor or __ceil on low part then use
ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of ceill is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of ceil, when it seems more
natural to take the ceiling of the high part (__ceil optimized inline
versions can be used), and that of the low part if the high part is an
integer, as was done for floorl. This patch makes it use that simpler
approach.
Tested for powerpc.
[BZ #19592]
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c (__ceill): Use __ceil on
high and low parts then use ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of floorl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases going beyond the incorrect signs of
zero results noted in bug 17899). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of floor, when it seems more
natural to take the floor of the high part (__floor optimized inline
versions can be used), and that of the low part if the high part is an
integer. This patch makes it use that simpler approach, with a
canonicalization that works in all rounding modes (given that the only
way the result can be noncanonical is if taking the floor of a
negative noninteger low part increased its exponent).
Tested for powerpc, where over a thousand failures are removed from
test-ldouble.out (floorl problems affect many powl tests).
[BZ #17899]
* sysdeps/ieee754/ldbl-128ibm/math_ldbl.h (ldbl_canonicalize_int):
New function.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c (__floorl): Use __floor
on high and low parts then use ldbl_canonicalize_int if needed.
The changes to restrict implementation-namespace symbol aliases such
as __finitel to compat symbols used code for __finitel in libm
analogous to that for __finitel in libc. However, the versions for
the two symbols are actually different, GLIBC_2.0 in libc and
GLIBC_2.1 in libm. This patch fixes the handling of the libm compat
symbol.
Tested for mips (o32), where it fixes an ABI test failure.
* sysdeps/ieee754/dbl-64/s_finite.c
[NO_LONG_DOUBLE && LDBL_CLASSIFY_COMPAT] (__finitel): Define
compat symbol at version GLIBC_2_1 and use GLIBC_2_1 in
SHLIB_COMPAT condition for libm, not GLIBC_2_0.
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c
[NO_LONG_DOUBLE && LDBL_CLASSIFY_COMPAT] (__finitel): Likewise.
I get some math test-failures on s390 for float/double/ldouble for
various lrint/lround functions like:
lrint (0x1p64): Exception "Inexact" set
lrint (-0x1p64): Exception "Inexact" set
lround (0x1p64): Exception "Inexact" set
lround (-0x1p64): Exception "Inexact" set
...
GCC emits "convert to fixed" instructions for casting floating point
values to integer values. These instructions raise invalid and inexact
exceptions if the floating point value exceeds the integer type ranges.
This patch enables the various FIX_DBL_LONG_CONVERT_OVERFLOW macros in
order to avoid a cast from floating point to integer type and raise the
invalid exception with feraiseexcept.
The ldbl-128 rint/round functions are now using the same logic.
ChangeLog:
[BZ #19486]
* sysdeps/s390/fix-fp-int-convert-overflow.h: New File.
* sysdeps/generic/fix-fp-int-convert-overflow.h
(FIX_LDBL_LONG_CONVERT_OVERFLOW,
FIX_LDBL_LLONG_CONVERT_OVERFLOW): New define.
* sysdeps/arm/fix-fp-int-convert-overflow.h: Likewise.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h:
Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl):
Avoid conversions to long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl):
Avoid conversions to long long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_llroundl.c (__llroundl):
Likewise.
When looking at the code generated for pow() on ppc64 I noticed quite
a few sign extensions. Making the array indices unsigned reduces the
number of sign extensions from 24 to 7.
Tested for powerpc64le and x86_64.
Like the previous change, exploit the fact that computation for sin
and cos is identical except that it is apart by a quadrant. Also
remove csloww, csloww1 and csloww2 since they can easily be expressed
in terms of sloww, sloww1 and sloww2.
The sin and cos computation for this range of input is identical
except for a difference in quadrants by 1. Exploit that fact and the
common argument reduction to reduce computations for sincos.
Range reduction needs to be done only once for sin and cos, so copy
over all of the relevant functions (__sin, __cos, reduce_and_compute)
and consolidate common code.
The ldbl-128ibm implementation of logl is inaccurate for arguments
near 1, because when deciding whether to bypass a series expansion for
log(1+z), where z = x-1, it compares the square of z rather than z
itself with an epsilon value. This patch fixes that comparison, so
eliminating the test failures for inaccuracy of logl in such cases.
Tested for powerpc.
[BZ #19351]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): When
expanding log(1+z), compare z rather than its square with epsilon
to determine when to avoid evaluating the expansion.
The ldbl-128ibm implementation of sinhl uses a slightly too small
overflow threshold (similar to bug 16407 for coshl). This patch fixes
it to use a safe threshold (so that values whose high part is above
the value compared with definitely result in an overflow in all
rounding modes).
Tested for powerpc.
[BZ #19350]
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl):
Increase overflow threshold.
The ldbl-128ibm implementation of tanhl is inaccurate for small
arguments, because it returns x*(1+x) (maybe in an attempt to raise
"inexact") when x itself would be the accurate return value but
multiplying by 1+x introduces large errors. This patch fixes it to
return x in that case (when the mathematical result is x plus a
negligible remainder on the order of x^3) to avoid those errors.
Tested for powerpc.
[BZ #19349]
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Return argument
when small.
If a platform does not define "long-double-fcts = yes" in its
Makefiles and it does define __NO_LONG_DOUBLE_MATH in its installed
headers, it will currently create exported symbols for __finitel,
__isinfl, and __isnanl that can't be reached from userspace by
correct use of the finite(), isinf(), or isnan() macros in <math.h>.
To avoid this situation, by default for such platforms we now no
longer export these symbols, thus causing appropriate link-time
errors. However, for platforms that previously exported these
symbols, we continue to do so as compat symbols; this is enabled
by adding LDBL_CLASSIFY_COMPAT to math_private.h for the platform.
For tile, remove the now-unnecessary exports of those functions from
libc and libm.
Various sysdeps/ieee754/dbl-64 functions use double constants defined
using a union between a double and two ints, with separate big-endian
and little-endian definitions of the constants.
With modern C, this is unnecessary complication; hex float constants
(or __builtin_inf etc.) suffice to specify the exact value desired,
and so can avoid separate versions for each endianness. Having this
complication also complicates cleanups such as removing slow paths
from these library functions, as they need to make sure to remove both
copies of variables that are no longer used after such a cleanup (and
in at least one case, proper removal of a slow path will also involve
removing slow-path-only values from the middle of an array - an array
with both big-endian and little-endian copies - and adjusting other
references to that array).
So it makes sense to clean up the code to define these constants using
hex floats and so eliminate the endianness conditional. This patch
does so in the case of sqrt, where the two constants are such that it
makes sense just to put them directly in the code using them and
eliminate the names for them altogether.
Tested for arm (the code generated for sqrt does change, though not in
any significant way).
* sysdeps/ieee754/dbl-64/e_sqrt.c: Do not include uroot.h.
(__ieee754_sqrt): Use hex float constants instead of tm256.x and
t512.x.
* sysdeps/ieee754/dbl-64/uroot.h: Remove file.
The nan* functions handle their string argument by constructing a
NAN(...) string on the stack as a VLA and passing it to strtod
functions.
This approach has problems discussed in bug 16961 and bug 16962: the
stack usage is unbounded, and it gives incorrect results in certain
cases where the argument is not a valid n-char-sequence.
The natural fix for both issues is to refactor the NaN payload parsing
out of strtod into a separate function that the nan* functions can
call directly, so that no temporary string needs constructing on the
stack at all. This patch does that refactoring in preparation for
fixing those bugs (but without actually using the new functions from
nan* - which will also require exporting them from libc at version
GLIBC_PRIVATE). This patch is not intended to change any user-visible
behavior, so no tests are added (fixes for the above bugs will of
course add tests for them).
This patch builds on my recent fixes for strtol and strtod issues in
Turkish locales. Given those fixes, the parsing of NaN payloads is
locale-independent; thus, the new functions do not need to take a
locale_t argument.
Tested for x86_64, x86, mips64 and powerpc.
* stdlib/strtod_nan.c: New file.
* stdlib/strtod_nan_double.h: Likewise.
* stdlib/strtod_nan_float.h: Likewise.
* stdlib/strtod_nan_main.c: Likewise.
* stdlib/strtod_nan_narrow.h: Likewise.
* stdlib/strtod_nan_wide.h: Likewise.
* stdlib/strtof_nan.c: Likewise.
* stdlib/strtold_nan.c: Likewise.
* sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-128ibm/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-96/strtod_nan_ldouble.h: Likewise.
* wcsmbs/wcstod_nan.c: Likewise.
* wcsmbs/wcstof_nan.c: Likewise.
* wcsmbs/wcstold_nan.c: Likewise.
* stdlib/Makefile (routines): Add strtof_nan, strtod_nan and
strtold_nan.
* wcsmbs/Makefile (routines): Add wcstod_nan, wcstold_nan and
wcstof_nan.
* include/stdlib.h (__strtof_nan): Declare and use
libc_hidden_proto.
(__strtod_nan): Likewise.
(__strtold_nan): Likewise.
(__wcstof_nan): Likewise.
(__wcstod_nan): Likewise.
(__wcstold_nan): Likewise.
* include/wchar.h (____wcstoull_l_internal): Declare.
* stdlib/strtod_l.c: Do not include <ieee754.h>.
(____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
(STRTOULL): Likewise.
(____STRTOF_INTERNAL): Use STRTOF_NAN to parse NaN payload.
* stdlib/strtof_l.c (____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128ibm/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-64-128/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-96/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* wcsmbs/wcstod_l.c (____wcstoull_l_internal): Remove declaration.
* wcsmbs/wcstof_l.c (____wcstoull_l_internal): Likewise.
* wcsmbs/wcstold_l.c (____wcstoull_l_internal): Likewise.
The lgamma (and likewise lgammaf, lgammal) function wrongly sets the
signgam variable even when building for strict ISO C conformance
(-std=c99 / -std=c11), although the user may define such a variable
and it's only in the implementation namespace for POSIX with XSI
extensions enabled.
Following discussions starting at
<https://sourceware.org/ml/libc-alpha/2013-04/msg00767.html> and
<https://sourceware.org/ml/libc-alpha/2015-10/msg00844.html>, it seems
that the safest approach for fixing this particular issue is for
signgam to become a weak alias for a newly exported symbol __signgam,
with the library functions only setting __signgam, at which point
static linker magic will preserve the alias for newly linked binaries
that refer to the library's signgam rather than defining their own,
while breaking the alias for programs that define their own signgam,
with new symbol versions for lgamma functions and with compat symbols
for existing binaries that set both signgam and __signgam.
This patch implements that approach for the fix. signgam is made into
a weak alias. The four symbols __signgam, lgamma, lgammaf, lgammal
get new symbol versions at version GLIBC_2.23, with the existing
versions of lgamma, lgammaf and lgammal becoming compat symbols.
When the compat versions are built, gamma, gammaf and gammal are
aliases for the compat versions (i.e. always set signgam); this is OK
as they are not ISO C functions, and avoids adding new symbol versions
for them unnecessarily. When the compat versions are not built
(i.e. for static linking and for future glibc ports), gamma, gammaf
and gammal are aliases for the new versions that set __signgam. The
ldbl-opt versions are updated accordingly.
The lgamma wrappers are adjusted so that the same source files,
included from different files with different definitions of
USE_AS_COMPAT, can build either the new versions or the compat
versions. Similar changes are made to the ia64 versions (untested).
Tests are added that the lgamma functions do not interfere with a user
variable called signgam for ISO C, with various choices for the size
of that variable, whether it is initialized, and for static and
dynamic linking. The conformtest whitelist entry is removed as well.
Tested for x86_64, x86, mips64 and powerpc, including looking at
objdump --dynamic-syms output to make sure the expected sets of
symbols were aliases. Also spot-tested that a binary built with old
glibc works properly (i.e. gets signgam set) when run with new glibc.
[BZ #15421]
* sysdeps/ieee754/s_signgam.c (signgam): Rename to __signgam,
initialize with 0 and define as weak alias of __signgam.
* include/math.h [!_ISOMAC] (__signgam): Declare.
* math/Makefile (libm-calls): Add w_lgamma_compat.
(tests): Add test-signgam-uchar, test-signgam-uchar-init,
test-signgam-uint, test-signgam-uint-init, test-signgam-ullong and
test-signgam-ullong-init.
(tests-static): Add test-signgam-uchar-static,
test-signgam-uchar-init-static, test-signgam-uint-static,
test-signgam-uint-init-static, test-signgam-ullong-static and
test-signgam-ullong-init-static.
(CFLAGS-test-signgam-uchar.c): New variable.
(CFLAGS-test-signgam-uchar-init.c): Likewise.
(CFLAGS-test-signgam-uchar-static.c): Likewise.
(CFLAGS-test-signgam-uchar-init-static.c): Likewise.
(CFLAGS-test-signgam-uint.c): Likewise.
(CFLAGS-test-signgam-uint-init.c): Likewise.
(CFLAGS-test-signgam-uint-static.c): Likewise.
(CFLAGS-test-signgam-uint-init-static.c): Likewise.
(CFLAGS-test-signgam-ullong.c): Likewise.
(CFLAGS-test-signgam-ullong-init.c): Likewise.
(CFLAGS-test-signgam-ullong-static.c): Likewise.
(CFLAGS-test-signgam-ullong-init-static.c): Likewise.
* math/Versions (libm): Add GLIBC_2.23.
* math/lgamma-compat.h: New file.
* math/test-signgam-main.c: Likewise.
* math/test-signgam-uchar-init-static.c: Likewise.
* math/test-signgam-uchar-init.c: Likewise.
* math/test-signgam-uchar-static.c: Likewise.
* math/test-signgam-uchar.c: Likewise.
* math/test-signgam-uint-init-static.c: Likewise.
* math/test-signgam-uint-init.c: Likewise.
* math/test-signgam-uint-static.c: Likewise.
* math/test-signgam-uint.c: Likewise.
* math/test-signgam-ullong-init-static.c: Likewise.
* math/test-signgam-ullong-init.c: Likewise.
* math/test-signgam-ullong-static.c: Likewise.
* math/test-signgam-ullong.c: Likewise.
* math/w_lgamma.c: Rename to w_lgamma_main.c and replace by
wrapper of w_lgamma_main.c.
* math/w_lgamma_compat.c: New file.
* math/w_lgamma_compatf.c: Likewise.
* math/w_lgamma_compatl.c: Likewise.
* math/w_lgamma_main.c: New file. Based on w_lgamma.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgamma): Change to LGFUNC (__lgamma). Use CALL_LGAMMA.
* math/w_lgammaf.c: Rename to w_lgammaf_main.c and replace by
wrapper of w_lgammaf_main.c.
* math/w_lgammaf_main.c: New file. Based on w_lgammaf.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammaf): Change to LGFUNC (__lgammaf). Use CALL_LGAMMA.
* math/w_lgammal.c: Rename to w_lgammal_main.c and replace by
wrapper of w_lgammal_main.c.
* math/w_lgammal_main.c: New file. Based on w_lgammal.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammal): Change to LGFUNC (__lgammal). Use CALL_LGAMMA.
* sysdeps/ia64/fpu/lgamma-compat.h: New file.
* sysdeps/ia64/fpu/w_lgamma.c: Move to ....
* sysdeps/ia64/fpu/w_lgamma_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgamma): Change to LGFUNC (lgamma). Use CALL_LGAMMA.
(__ieee754_gamma): Define as alias.
* sysdeps/ia64/fpu/w_lgammaf.c: Move to ....
* sysdeps/ia64/fpu/w_lgammaf_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammaf): Change to LGFUNC (lgammaf). Use CALL_LGAMMA.
(__ieee754_gammaf): Define as alias.
* sysdeps/ia64/fpu/w_lgammal.c: Move to ....
* sysdeps/ia64/fpu/w_lgammal_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammal): Change to LGFUNC (lgammal). Use CALL_LGAMMA.
(__ieee754_gammal): Define as alias.
* sysdeps/ieee754/ldbl-opt/w_lgamma.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compat.c: ...here. Include
<math/w_lgamma_compat.c>.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__lgammal_dbl_compat):
Define as alias of __lgamma_compat and use in defining lgammal.
* sysdeps/ieee754/ldbl-opt/w_lgammal.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compatl.c: ...here. Include
<math/lgamma-compat.h> and <math/w_lgamma_compatl.c>.
(USE_AS_COMPAT): New macro.
(LGAMMA_OLD_VER): Undefine and redefine.
(lgammal): Do not define here.
(gammal): Only define here if [GAMMA_ALIAS].
* conform/linknamespace.pl (@whitelist): Remove signgam.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Kind of hokey, but errno.h drags in misc/sys/param.h which
defines MIN/MAX causing an error. Include system headers
first to grab MIN/MAX definition in param.h, and define
HAVE_ALLOCA to preserve existing behavior.
* sysdeps/ieee754/ldbl-128ibm/mpn2ldl.c: Include gmp headers
after system headers to prevent MIN/MAX redefinition. Define
HAVE_ALLOCA to preserve builtin alloca usage.
Include the __sin and __cos functions as local static copies to allow
deper optimization of the functions. This change shows an improvement
of about 17% in the min case and 12.5% in the mean case for the sincos
microbenchmark on x86_64.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin)[IN_SINCOS]: Mark function
static and don't set or restore rounding.
(__cos)[IN_SINCOS]: Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c: Include s_sin.c.
(__sincos): Set and restore rounding mode. Remove check for infinite
or NaN input.
For ldbl-128ibm, if the result of strtold overflows in the final
conversion from MPN to IBM long double (because the exponent for a
106-bit IEEE result is 1023 but the high part would end up as
0x1p1024, which overflows), that conversion code fails to handle this
and produces an invalid long double value (high part infinite, low
part not zero) without raising exceptions or setting errno. This
patch adds an explicit check for this case to ensure an appropriate
result is returned in a way that ensures the right exceptions are
raised, with errno set.
Tested for powerpc.
[BZ #14551]
* sysdeps/ieee754/ldbl-128ibm/mpn2ldbl.c: Include <errno.h>.
(__mpn_construct_long_double): If high part overflows to infinity,
set errno and recompute overflowed result of the correct sign.
* sysdeps/ieee754/ldbl-128ibm/Makefile
[$(subdir) = stdlib] (tests): Add tst-strtold-ldbl-128ibm.
[$(subdir) = stdlib] ($(objpfx)tst-strtold-ldbl-128ibm): Depend on
$(libm).
* sysdeps/ieee754/ldbl-128ibm/tst-strtold-ldbl-128ibm.c: New file.
For some large arguments, the dbl-64 implementation of remainder gives
zero results with the wrong sign, resulting from a subtraction that is
mathematically correct but does not guarantee that a zero result has
the sign of the first argument to remainder. This patch adds an
appropriate check for this case, similar to other implementations of
remainder in the case of equality, and adds tests of remainder on
inputs already used to test remquo.
Tested for x86_64 and x86.
[BZ #19201]
* sysdeps/ieee754/dbl-64/e_remainder.c (__ieee754_remainder):
Check for zero remainder in case of large exponents and ensure
correct sign of result in that case.
* math/libm-test.inc (remainder_test_data): Add more tests.
nextafter and nexttoward fail to set errno on overflow and underflow.
This patch makes them do so in cases that should include all the cases
where such errno setting is required by glibc's goals for when to set
errno (but not all cases of underflow where the result is nonzero and
so glibc's goals do not require errno setting).
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6799]
* math/s_nextafter.c: Include <errno.h>.
(__nextafter): Set errno on overflow and underflow.
* math/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Include <errno.h>.
(__nextafterf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Include <errno.h>.
(__nldbl_nexttowardf): Set errno on overflow and underflow.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* math/libm-test.inc (nextafter_test_data): Do not allow errno
setting to be missing on overflow. Add more tests.
(nexttoward_test_data): Likewise.
The ldbl-128 version of log1pl raises a spurious "invalid" exception
for a -qNaN argument. This patch fixes this by making the initial
check for infinities and NaNs handle arguments of both signs in such a
way that NaNs result in a NaN being returned (quietly if the input NaN
was quiet) while +Inf results in +Inf being returned and -Inf results
in a qNaN being returned with "invalid" exception raised.
Tested for mips64.
[BZ #19189]
* sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Make check for
non-finite argument handle arguments with negative sign.
The libm drem functions just call the corresponding __remainder
functions. This patch removes the unnecessary wrappers by making them
into weak aliases at the ELF level.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16171]
* math/w_remainder.c (drem): Define as weak alias of __remainder.
[NO_LONG_DOUBLE] (dreml): Define as weak alias of __remainder.
* math/w_remainderf.c (dremf): Define as weak alias of
__remainderf.
* math/w_remainderl.c (dreml): Define as weak alias of
__remainderl.
* sysdeps/ia64/fpu/e_remainder.S (drem): Define as weak alias of
__remainder.
* sysdeps/ia64/fpu/e_remainderf.S (dremf): Define as weak alias of
__remainderf.
* sysdeps/ia64/fpu/e_remainderl.S (dreml): Define as weak alias of
__remainderl.
* sysdeps/ieee754/ldbl-opt/nldbl-remainder.c (dreml): Define as
weak alias of remainderl.
* sysdeps/ieee754/ldbl-opt/w_remainder.c
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__drem): Define as strong
alias of __remainder.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (dreml): Use compat_symbol.
* sysdeps/ieee754/ldbl-opt/w_remainderl.c (__dreml): Define as
strong alias of __remainderl.
(dreml): Use long_double_symbol.
* math/Makefile (libm-calls): Remove w_drem.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove drem.
(CFLAGS-nldbl-drem.c): Remove variable.
(CFLAGS-nldbl-remainder.c): Add -fno-builtin-dreml.
* math/w_drem.c: Remove file.
* math/w_dremf.c: Likewise.
* math/w_dreml.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_dreml.c: Likewise.
C11 defines standard <float.h> macros *_TRUE_MIN for the least
positive subnormal value of a type. Now that we build with
-std=gnu11, we can use these macros in glibc. This patch replaces
previous uses of the GCC predefines __*_DENORM_MIN__ (used in
<float.h> to define *_TRUE_MIN), as well as *_DENORM_MIN references in
comments.
Tested for x86_64 and x86 (testsuite, and that installed shared
libraries are unchanged by the patch). Also tested for powerpc that
installed stripped shared libraries are unchanged by the patch.
* math/libm-test.inc (min_subnorm_value): Use LDBL_TRUE_MIN,
DBL_TRUE_MIN and FLT_TRUE_MIN instead of __LDBL_DENORM_MIN__,
__DBL_DENORM_MIN__ and __FLT_DENORM_MIN__.
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Refer to DBL_TRUE_MIN
instead of DBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <float.h>.
(__nextafterl): Use LDBL_TRUE_MIN instead of __LDBL_DENORM_MIN__.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
One common case of __GNUC_PREREQ (4, 7) conditionals is use of
diagnostic control pragmas for -Wmaybe-uninitialized, an option
introduced in GCC 4.7 where older GCC needed -Wuninitialized to be
controlled instead if the warning appeared with older GCC. This patch
removes such conditionals.
(There remain several older uses of -Wno-uninitialized in makefiles
that still need to be converted to diagnostic control pragmas if the
issue is still present with current sources and supported GCC
versions, and it's likely that in most cases those pragmas also will
end up controlling -Wmaybe-uninitialized.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch, except for libresolv
since res_send.c contains assertions whose line numbers are changed by
the patch).
* resolv/res_send.c (send_vc) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
* soft-fp/fmadf4.c [__GNUC_PREREQ (4, 7)]: Likewise.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmasf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmatf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* stdlib/setenv.c
[((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7)]: Make
code unconditional.
[!(((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7))]:
Remove conditional code.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
(__ieee754_lgamma_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgamma_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
(__ieee754_lgammaf_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammaf_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-128/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
(__ieee754_lgammal_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammal_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-96/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
My recent addition of more tests for j0 showed up that the ldbl-128
implementation of j0l produces spurious underflow exceptions for
arguments close to 0 (when the result is very close to 1). This patch
fixes this by just returning the argument in that case.
Tested for mips64 (where it fixes the recently-added tests that were
previously failing).
[BZ #19156]
* sysdeps/ieee754/ldbl-128/e_j0l.c (__ieee754_j0l): Return 1 for
arguments very close to 0.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
The dbl-64 implementation of lrint produces incorrect results for some
arguments with 64-bit long because a 32-bit (unsigned) low part of the
mantissa is shifted left, losing high bits in the process. This patch
fixes this by casting to long int before shifting, as in lround (as
this case only applies for 64-bit long, there are no issues with
sign-extension).
Tested for mips64 (n64).
[BZ #19095]
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Cast low part of
mantissa to long int before shifting left.
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
The ldbl-128 implementations of lrintl and lroundl miss "invalid"
exceptions on systems with 32-bit long for arguments that overflow
long but have exponent below 48. This patch fixes this by rearranging
the sequence of tests in the code so the exponent < 48 case is only
used for exponents that don't overflow long.
Tested for mips64 (n32 and n64).
[BZ #19085]
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Move test for
exponent below 48 inside case for non-overflowing exponent.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl): Likewise.
This patch enables use of sysdeps/ieee754/dbl-64/wordsize-64 for
MIPS64 (both n64 and n32), removing a #error in one case now that case
has been tested and found to work.
Tested for mips64 (n64 and n32).
* sysdeps/mips/mips64/Implies: Use ieee754/dbl-64/wordsize-64.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c
(__issignaling) [HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Remove #error.
The implementation of lround in dbl-64/wordsize-64 as an alias or
wrapper for llround is always incorrect when long is not 64-bit,
because it misses required exceptions in overflow cases, as shown by
my recently added tests. This patch removes that alias / wrapper in
the non-LP64 case, together with the REGISTER_CAST_INT32_TO_INT64
macro, restoring the previous version of lround for dbl-64/wordsize-64
(newly conditioned on !_LP64).
Tested for x86_64, and for mips64 with use of dbl-64/wordsize-64
enabled.
[BZ #19079]
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Restore previous
file, conditioned on [!_LP64].
* sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c
[!_LP64] (__lround): Do not define as function or alias.
[!_LP64] (lround): Likewise.
[!_LP64] (__lroundl): Likewise.
[!_LP64] (lroundl): Likewise.
* sysdeps/tile/sysdep.h (REGISTER_CAST_INT32_TO_INT64): Remove
macro.
* sysdeps/x86_64/x32/sysdep.h (REGISTER_CAST_INT32_TO_INT64):
Likewise.
The ldbl-128ibm expl wrapper checks the argument to determine when to
call __kernel_standard_l, thereby overriding overflowing results from
__ieee754_expl that could otherwise (given appropriately patched
libgcc) be correct for the rounding mode. This patch changes it to
check the result of __ieee754_expl instead, as other versions of this
wrapper do.
Tested for powerpc.
[BZ #19078]
* sysdeps/ieee754/ldbl-128ibm/w_expl.c (o_thres): Remove variable.
(u_thres): Likewise.
(__expl): Determine whether to call __kernel_standard_l based on
value of result, not argument.
The ldbl-128ibm implementation of logl produces a zero with the wrong
sign for logl (1) in FE_DOWNWARD mode. This patch makes it explicitly
return 0.0L in that case, as in e.g. the ldbl-128 implementation.
Tested for powerpc.
[BZ #19077]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Return
0.0L for argument 1.0L.
The ldbl-128ibm implementation of log1pl produces an infinity with the
wrong sign for log1pl (-1) in FE_DOWNWARD mode. This patch fixes this
by changing a division (-1.0L / (x - x)) (incorrect in FE_DOWNWARD
mode) to (-1.0L / 0.0L) (correct in all rounding modes).
Tested for powerpc.
[BZ #19076]
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Divide by
constant 0.0L when computing infinite result.
The ldbl-96 version of lroundl is incorrect for systems with 64-bit
long when the argument's absolute value is just below a power of 2,
2^32 or more, and rounds up to the next integer; in such cases, it
returns 0. The problem is incrementing the high part of the mantissa
loses the high bit of the value (which is not an issue for any other
floating-point format, and is handled specially in lround when the bit
corresponding to 0.5 was in the high part rather than the low part).
This patch fixes this in a similar way to that used in llroundl:
storing the high part in an unsigned long variable before incrementing
it, so problems cannot occur in the case when this code is reachable.
I improved test coverage for both lround and llround by making them
use the same test inputs (appropriately conditioned on the size of
long in the lround case) - complete with the same comments, to make
comparison as easy as possible. (This test coverage improvement was
how I found the lroundl bug.)
Tested for x86_64 and x86.
[BZ #19071]
* sysdeps/ieee754/ldbl-96/s_lroundl.c (__lroundl): Use unsigned
long int variable to store possibly incremented high part of
mantissa.
* math/libm-test.inc (lround_test_data): Add tests used for
llround. Use [LONG_MAX > 0x7fffffff] consistently as condition
for tests requiring 64-bit long. Do not condition tests on
[TEST_FLOAT] unnecessarily.
(llround_test_data): Add tests used for lround. Add another
expectation for the "inexact" exception. Do not condition tests
on [TEST_FLOAT] unnecessarily.
On powerpc32 hard-float, older processors (ones where fcfid is not
available for 32-bit code), GCC generates conversions from integers to
floating point that wrongly convert integer 0 to -0 instead of +0 in
FE_DOWNWARD mode. This in turn results in logb and a few other
functions wrongly returning -0 when they should return +0.
This patch works around this issue in glibc as I proposed in
<https://sourceware.org/ml/libc-alpha/2015-09/msg00728.html>, so that
the affected functions can be correct and the affected tests pass in
the absence of a GCC fix for this longstanding issue (GCC bug 67771 -
if fixed, of course we can put in GCC version conditionals, and
eventually phase out the workarounds). A new macro
FIX_INT_FP_CONVERT_ZERO is added in a new sysdeps header
fix-int-fp-convert-zero.h, and the powerpc32/fpu version of that
header defines the macro based on the results of a configure test for
whether such conversions use the fcfid instruction.
Tested for x86_64 (that installed stripped shared libraries are
unchanged by the patch) and powerpc (that HAVE_PPC_FCFID comes out to
0 as expected and that the relevant tests are fixed). Also tested a
build with GCC configured for -mcpu=power4 and verified that
HAVE_PPC_FCFID comes out to 1 in that case.
There are still some other issues to fix to get test-float and
test-double passing cleanly for older powerpc32 processors (apart from
the need for an ulps regeneration for powerpc). (test-ldouble will be
harder to get passing cleanly, but with a combination of selected
fixes to ldbl-128ibm code that don't involve significant performance
issues, allowing spurious underflow and inexact exceptions for that
format, and lots of XFAILing for the default case of unpatched libgcc,
it should be doable.)
[BZ #887]
[BZ #19049]
[BZ #19050]
* sysdeps/generic/fix-int-fp-convert-zero.h: New file.
* sysdeps/ieee754/dbl-64/e_log10.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/e_log2.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_erf.c: Include
<fix-int-fp-convert-zero.h>.
(__erfc): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_logb.c: Include
<fix-int-fp-convert-zero.h>.
(__logb): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log10f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log2f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_erff.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_logbf.c: Include
<fix-int-fp-convert-zero.h>.
(__logbf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_logbl.c: Include
<fix-int-fp-convert-zero.h>.
(__logbl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/powerpc/powerpc32/fpu/configure.ac: New file.
* sysdeps/powerpc/powerpc32/fpu/configure: New generated file.
* sysdeps/powerpc/powerpc32/fpu/fix-int-fp-convert-zero.h: New
file.
* config.h.in [_LIBC] (HAVE_PPC_FCFID): New macro.
ISO C requires overflowing results from nexttoward to be the
appropriate infinity independent of the rounding mode, but some
implementations use a rounding-mode-dependent result (this is the same
issue as was fixed for nextafter in bug 16677). This patch fixes the
problem by making the nexttoward implementations discard the result
from the floating-point computation that forced an overflow exception
and then return the infinity previously computed with integer
arithmetic.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #19059]
* math/s_nexttowardf.c (__nexttowardf): Do not return value from
overflowing computation.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
* math/libm-test.inc (nexttoward_test_data): Add more tests.
The ldbl-128 / ldbl-128ibm implementation of lgamma has problems with
its handling of large arguments. It has an overflow threshold that is
correct only for ldbl-128, despite being used for both types - with
diagnostic control macros as a temporary measure to disable warnings
about that constant overflowing for ldbl-128ibm - and it has a
calculation that's roughly x * log(x) - x, resulting in overflows for
arguments that are roughly at most a factor 1/log(threshold) below the
overflow threshold.
This patch fixes both issues, using an overflow threshold appropriate
for the type in question and adding another case for large arguments
that avoids the possible intermediate overflow.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16347]
[BZ #19046]
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c: Do not include
<libc-internal.h>.
(MAXLGM): Do not use diagnostic control macros.
[LDBL_MANT_DIG == 106] (MAXLGM): Change value to overflow
threshold for ldbl-128ibm.
(__ieee754_lgammal_r): For large arguments, multiply by log - 1
instead of multiplying by log then subtracting.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
The ldbl-128ibm implementation of exp10l uses a version of log(10)
split into high and low parts - but the low part is negative, so
causing spurious overflows from __ieee754_expl (exp_high) in cases
close to the overflow threshold (I added relevant tests close to the
overflow threshold to the testsuite earlier today). The same issue
applies close to the underflow threshold as well (except that spurious
underflows in IBM long double arithmetic are harder to fix than the
other deficiencies, so we might end up permitting those for IBM long
double in the libm testsuite, as permitted by ISO C).
This patch fixes it to use a low part rounded downward to 48 bits
instead. (The choice of 48 instead of 53 bits is to make it more
obviously safe even when the low part of the argument is negative.)
Tested for powerpc. (Note that because of libgcc bugs with
multiplication very close to LDBL_MAX, libgcc also needs patching for
all the problem cases to be fixed, but this patch is still safe and
correct in the absence of such libgcc fixes.)
[BZ #16620]
* sysdeps/ieee754/ldbl-128ibm/e_exp10l.c (log10_high): Use value
of log (10) rounded downward to 48 bits.
(log10_low): Use corresponding low part of log (10).
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The flt-32 version of powf can be inaccurate because of bugs in the
extra-precision calculation of (x-1)/(x+1) or (x-1.5)/(x+1.5) as part
of calculating log(x) with extra precision: a constant used (as part
of adding 1 or 1.5 through integer arithmetic) is incorrect, and then
the code fails to mask a computed high part before using it in
arithmetic that relies on s_h*t_h being exactly representable. This
patch fixes these bugs.
Tested for x86_64 and x86. x86_64 ulps for powf removed and
regenerated to reflect reduced ulps from the increased accuracy for
existing tests.
[BZ #18956]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Add 0x00400000
not 0x0040000 for high bit of mantissa. Mask with 0xfffff000 when
extracting high part.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero. This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18825]
* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
New macro.
(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
DBL_NARROW_EVAL, reloading the PIC register as needed.
* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
FLT_NARROW_EVAL. Use separate return path for case when first
argument is NaN.
* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
PIC register.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
underflow for subnormal result.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
math_check_force_underflow_nonneg.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
math_check_force_underflow.
* sysdeps/x86_64/fpu/x86_64-math-asm.h
(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, hypot functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down (or, in the i386 case, converted from a wider evaluation format)
are zero. This patch forces the exception in a similar way to
previous fixes.
Note that this issue cannot arise for implementations of hypotf using
double (or wider) for intermediate evaluation (if hypotf should
underflow, that means the double square root is being computed of some
number of the form N*2^-298, for 0 < N < 2^46, which is exactly
represented as a double, and whatever the rounding mode such a square
root cannot have a mantissa with all zeroes after the initial 23
bits). Thus no changes are made to hypotf implementations in this
patch, only to hypot and hypotl.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18803]
* sysdeps/i386/fpu/e_hypot.S: Use DEFINE_DBL_MIN.
(MO): New macro.
(__ieee754_hypot) [PIC]: Load PIC register.
(__ieee754_hypot): Use DBL_NARROW_EVAL_UFLOW_NONNEG instead of
DBL_NARROW_EVAL.
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Use
math_check_force_underflow_nonneg in case where result might be
tiny.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (__ieee754_hypot): Likewise.
* math/auto-libm-test-in: Add more tests of hypot.
* math/auto-libm-test-out: Regenerated.
sysdeps/ieee754/flt-32/e_exp2f.c declares two variable as "static
const volatile float". Maybe this use of "volatile" was originally
intended to inhibit optimization of underflowing / overflowing
operations such as TWOM100 * TWOM100; in any case, it's not currently
needed, as given -frounding-math constant folding of such expressions
is properly disabled when it would be unsafe. This patch removes the
unnecessary use of "volatile".
Tested for x86_64.
* sysdeps/ieee754/flt-32/e_exp2f.c (TWOM100): Remove volatile.
(TWO127): Likewise.
Where glibc code needs to avoid excess range and precision in
floating-point arithmetic, code variously uses either asms or volatile
to force the results of that arithmetic to memory; mostly this is
conditional on FLT_EVAL_METHOD, but in the case of lrint / llrint
functions some use of volatile is unconditional (and is present
unnecessarily in versions for long double). This patch make such code
use the recently-added math_narrow_eval macro consistently, removing
the unnecessary uses of volatile in long double lrint / llrint
implementations completely.
Tested for x86_64, x86, mips64 and powerpc.
* math/s_nexttowardf.c (__nexttowardf): Use math_narrow_eval.
* stdlib/strtod_l.c: Include <math_private.h>.
(overflow_value): Use math_narrow_eval.
(underflow_value): Likewise.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Likewise.
(__ieee754_gamma_r): Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c (__gamma_productf):
Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c (__erfc): Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c (__llrint): Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
(__ieee754_gammaf_r): Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c (__llrintf): Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c (__lrintf): Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c (__gamma_product):
Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-96/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
Various i386 libm functions return values with excess range and
precision; Wilco Dijkstra's patches to make isfinite etc. expand
inline cause this pre-existing issue to result in test failures (when
e.g. a result that overflows float but not long double gets counted as
overflowing for some purposes but not others).
This patch addresses those cases arising from functions defined in C,
adding a math_narrow_eval macro that forces values to memory to
eliminate excess precision if FLT_EVAL_METHOD indicates this is
needed, and is a no-op otherwise. I'll convert existing uses of
volatile and asm for this purpose to use the new macro later, once
i386 has clean test results again (which requires fixes for .S files
as well).
Tested for x86_64 and x86. Committed.
[BZ #18980]
* sysdeps/generic/math_private.h: Include <float.h>.
(math_narrow_eval): New macro.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c (__ieee754_cosh): Use
math_narrow_eval on overflowing return value.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r):
Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c (__ieee754_coshf): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r):
Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise.
Bug 15384 notes that in __finite, two different constants are used
that could be the same constant (the result only depends on the
exponent of the floating-point representation), and that using the
same constant is better for architectures where constants need loading
from a constant pool. This patch implements that change.
Tested for x86_64, mips64 and powerpc.
[BZ #15384]
* sysdeps/ieee754/dbl-64/s_finite.c (FINITE): Use same constant as
bit-mask as in subtraction.
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c (__finite):
Likewise.
* sysdeps/ieee754/flt-32/s_finitef.c (FINITEF): Likewise.
* sysdeps/ieee754/ldbl-128/s_finitel.c (__finitel): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_finitel.c (__finitel): Likewise.
Similar to various other bugs in this area, tgamma functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down are zero. This patch forces the exception in a similar way to
previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18951]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r): Force
underflow exception for small results.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
As noted in bug 6803, scalbn fails to set errno on overflow and
underflow. This patch fixes this by making scalbn an alias of ldexp,
which has exactly the same semantics (for floating-point types with
radix 2) and already has wrappers that deal with setting errno,
instead of an alias of the internal __scalbn (which ldexp calls).
Notes:
* Where compat symbols were defined for scalbn functions, I didn't
change what they point to (to keep the patch minimal), so such
compat symbols continue to go directly to the non-errno-setting
functions.
* Mike, I didn't do anything with the IA64 versions of these
functions, where I think both the ldexp and scalbn functions already
deal with setting errno. As a cleanup (not needed to fix this bug)
however you might want to make those functions into aliases for
IA64; there is no need for them to be separate function
implementations at all.
* This concludes the fix for bug 6803 since the scalb and scalbln
cases of that bug were fixed some time ago.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6803]
* math/s_ldexp.c (scalbn): Define as weak alias of __ldexp.
[NO_LONG_DOUBLE] (scalbnl): Define as weak alias of __ldexp.
* math/s_ldexpf.c (scalbnf): Define as weak alias of __ldexpf.
* math/s_ldexpl.c (scalbnl): Define as weak alias of __ldexpl.
* sysdeps/i386/fpu/s_scalbn.S (scalbn): Remove alias.
* sysdeps/i386/fpu/s_scalbnf.S (scalbnf): Likewise.
* sysdeps/i386/fpu/s_scalbnl.S (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/s_scalbn.c (scalbn): Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_scalbn.c (scalbn):
Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/flt-32/s_scalbnf.c (scalbnf): Likewise.
* sysdeps/ieee754/ldbl-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (scalbnl): Remove
long_double_symbol calls.
* sysdeps/ieee754/ldbl-64-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-opt/s_ldexpl.c (__ldexpl_2): Define as
strong alias of __ldexpl.
(scalbnl): Define using long_double_symbol.
* sysdeps/m68k/m680x0/fpu/s_scalbn.c (__CONCATX(scalbn,suffix)):
Remove alias.
* sysdeps/sparc/sparc64/soft-fp/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/x86_64/fpu/s_scalbnl.S (scalbnl): Likewise.
* math/libm-test.inc (scalbn_test_data): Add errno expectations.
(scalbln_test_data): Add more errno expectations.
The ldbl-128 and ldbl-128ibm expm1l implementations have code to
handle +Inf and finite arguments above an overflow threshold. Since
they now use __expl for large positive arguments to fix other
problems, this code is unreachable; this patch removes it.
Tested for mips64 and powerpc.
[BZ #16415]
* sysdeps/ieee754/ldbl-128/s_expm1l.c (maxlog): Remove variable.
(__expm1l): Remove code to handle positive infinity and overflow.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (maxlog): Remove
variable.
(__expm1l): Remove code to handle positive infinity and overflow.
The ldbl-128ibm implementation of nearbyintl wrongly uses signaling
comparisons such as "if (fabs (u.d[0].d) < TWO52)" on arguments that
might be NaNs, when "invalid" exceptions should not be raised. (For
hard float, this issue may be hidden by
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58684>, powerpc GCC
wrongly only using unordered comparison instructions.) This patch
fixes this by just returning the argument if it is not finite (because
of the arbitrary value of the low part of a NaN in IBM long double,
there are quite a lot of comparisons that could end up involving a NaN
when the argument to nearbyintl is a NaN, so excluding NaN arguments
at the start is the simplest and safest fix).
Tested for powerpc-nofpu, where it removes failures for spurious
"invalid" exceptions from nearbyintl.
[BZ #18857]
* sysdeps/ieee754/ldbl-128ibm/s_nearbyintl.c (__nearbyintl): Just
return non-finite argument without doing ordered comparisons on
it.
Bug 15918 points out that the handling of infinities in hypotf can be
simplified: it's enough to return the absolute value of the infinite
argument without first comparing it to the other argument and possibly
returning that other argument's absolute value. This patch makes that
cleanup (which should not change how hypotf behaves on any input).
Tested for x86_64.
[BZ #15918]
* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Simplify
handling of cases where one argument is an infinity.
Various exp2 implementations in glibc can miss underflow exceptions
when the scaling down part of the calculation is exact (or, in the x86
case, when the conversion from extended precision to the target
precision is exact). This patch forces the exception in a similar way
to previous fixes.
The x86 exp2f changes may in fact not be needed for this purpose -
it's likely to be the case that no argument of type float has an exp2
result so close to an exact subnormal float value that it equals that
value when rounded to 64 bits (even taking account of variation
between different x86 implementations). However, they are included
for consistency with the changes to exp2 and so as to fix the exp2f
part of bug 18875 by ensuring that excess range and precision is
removed from underflowing return values.
Tested for x86_64, x86 and mips64.
[BZ #16521]
[BZ #18875]
* math/e_exp2l.c (__ieee754_exp2l): Force underflow exception for
small results.
* sysdeps/i386/fpu/e_exp2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_exp2): For small results, force underflow exception and
remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_exp2f): For small results, force underflow exception
and remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* sysdeps/x86_64/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* math/auto-libm-test-in: Add more tests or exp2.
* math/auto-libm-test-out: Regenerated.
The ldbl-128 / ldbl-128ibm implementation of lgammal converts (the
floor of minus) non-integer negative arguments to int to determine the
value of signgam. When those values are outside the range of int,
this produces spurious "invalid" exceptions and incorrect values of
signgam. This patch fixes this by instead determining signgam through
comparing half the integer in question to floor of half the integer.
Tested for mips64, x86_64 and x86.
[BZ #18952]
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r): Do
not convert non-integer negative arguments to int to determine the
value of signgam.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.