This patch adds S/390 versions of fegetmode and fesetmode. Untested.
* sysdeps/s390/fpu/fegetmode.c: New file.
* sysdeps/s390/fpu/fesetmode.c: Likewise.
This patch adds M68K versions of fegetmode and fesetmode. Untested.
* sysdeps/m68k/fpu/fegetmode.c: New file.
* sysdeps/m69k/fpu/fesetmode.c: Likewise.
This patch adds IA64 versions of fegetmode and fesetmode. Untested.
* sysdeps/ia64/fpu/fegetmode.c: New file.
* sysdeps/ia64/fpu/fesetmode.c: Likewise.
This patch adds HPPA versions of fegetmode and fesetmode. Untested.
* sysdeps/hppa/fpu/fegetmode.c: New file.
* sysdeps/hppa/fpu/fesetmode.c: Likewise.
This patch adds Alpha versions of fegetmode and fesetmode. Untested.
* sysdeps/alpha/fpu/fegetmode.c: New file.
* sysdeps/alpha/fpu/fesetmode.c: Likewise.
This patch adds AArch64 versions of fegetmode and fesetmode.
Untested.
* sysdeps/aarch64/fpu/fegetmode.c: New file.
* sysdeps/aarch64/fpu/fesetmode.c: Likewise.
TS 18661-1 defines a type femode_t to represent the set of dynamic
floating-point control modes (such as the rounding mode and trap
enablement modes), and functions fegetmode and fesetmode to manipulate
those modes (without affecting other state such as the raised
exception flags) and a corresponding macro FE_DFL_MODE.
This patch series implements those interfaces for glibc. This first
patch adds the architecture-independent pieces, the x86 and x86_64
implementations, and the <bits/fenv.h> and ABI baseline updates for
all architectures so glibc keeps building and passing the ABI tests on
all architectures. Subsequent patches add the fegetmode and fesetmode
implementations for other architectures.
femode_t is generally an integer type - the same type as fenv_t, or as
the single element of fenv_t where fenv_t is a structure containing a
single integer (or the single relevant element, where it has elements
for both status and control registers) - except where architecture
properties or consistency with the fenv_t implementation indicate
otherwise. FE_DFL_MODE follows FE_DFL_ENV in whether it's a magic
pointer value (-1 cast to const femode_t *), a value that can be
distinguished from valid pointers by its high bits but otherwise
contains a representation of the desired register contents, or a
pointer to a constant variable (the powerpc case; __fe_dfl_mode is
added as an exported constant object, an alias to __fe_dfl_env).
Note that where architectures (that share a register between control
and status bits) gain definitions of new floating-point control or
status bits in future, the implementations of fesetmode for those
architectures may need updating (depending on whether the new bits are
control or status bits and what the implementation does with
previously unknown bits), just like existing implementations of
<fenv.h> functions that take care not to touch reserved bits may need
updating when the set of reserved bits changes. (As any new bits are
outside the scope of ISO C, that's just a quality-of-implementation
issue for supporting them, not a conformance issue.)
As with fenv_t, femode_t should properly include any software DFP
rounding mode (and for both fenv_t and femode_t I'd consider that
fragment of DFP support appropriate for inclusion in glibc even in the
absence of the rest of libdfp; hardware DFP rounding modes should
already be included if the definitions of which bits are status /
control bits are correct).
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500). Other architecture versions are untested.
* math/fegetmode.c: New file.
* math/fesetmode.c: Likewise.
* sysdeps/i386/fpu/fegetmode.c: Likewise.
* sysdeps/i386/fpu/fesetmode.c: Likewise.
* sysdeps/x86_64/fpu/fegetmode.c: Likewise.
* sysdeps/x86_64/fpu/fesetmode.c: Likewise.
* math/fenv.h: Update comment on inclusion of <bits/fenv.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fegetmode): New function
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetmode): Likewise.
* bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (femode_t): New
typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/aarch64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/alpha/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/arm/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/hppa/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/ia64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/m68k/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/microblaze/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/mips/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/nios2/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/powerpc/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__fe_dfl_mode): New variable
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/s390/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sh/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sparc/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/tile/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/x86/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* manual/arith.texi (FE_DFL_MODE): Document macro.
(fegetmode): Document function.
(fesetmode): Likewise.
* math/Versions (fegetmode): New libm symbol at version
GLIBC_2.25.
(fesetmode): Likewise.
* math/Makefile (libm-support): Add fegetmode and fesetmode.
(tests): Add test-femode and test-femode-traps.
* math/test-femode-traps.c: New file.
* math/test-femode.c: Likewise.
* sysdeps/powerpc/fpu/fenv_const.c (__fe_dfl_mode): Declare as
alias for __fe_dfl_env.
* sysdeps/powerpc/nofpu/fenv_const.c (__fe_dfl_mode): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fenv_const.c
(__fe_dfl_mode): Likewise.
* sysdeps/powerpc/Versions (__fe_dfl_mode): New libm symbol at
version GLIBC_2.25.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
There is transition penalty when SSE instructions are mixed with 256-bit
AVX or 512-bit AVX512 load instructions. Since _dl_runtime_resolve_avx
and _dl_runtime_profile_avx512 save/restore 256-bit YMM/512-bit ZMM
registers, there is transition penalty when SSE instructions are used
with lazy binding on AVX and AVX512 processors.
To avoid SSE transition penalty, if only the lower 128 bits of the first
8 vector registers are non-zero, we can preserve %xmm0 - %xmm7 registers
with the zero upper bits.
For AVX and AVX512 processors which support XGETBV with ECX == 1, we can
use XGETBV with ECX == 1 to check if the upper 128 bits of YMM registers
or the upper 256 bits of ZMM registers are zero. We can restore only the
non-zero portion of vector registers with AVX/AVX512 load instructions
which will zero-extend upper bits of vector registers.
This patch adds _dl_runtime_resolve_sse_vex which saves and restores
XMM registers with 128-bit AVX store/load instructions. It is used to
preserve YMM/ZMM registers when only the lower 128 bits are non-zero.
_dl_runtime_resolve_avx_opt and _dl_runtime_resolve_avx512_opt are added
and used on AVX/AVX512 processors supporting XGETBV with ECX == 1 so
that we store and load only the non-zero portion of vector registers.
This avoids SSE transition penalty caused by _dl_runtime_resolve_avx and
_dl_runtime_profile_avx512 when only the lower 128 bits of vector
registers are used.
_dl_runtime_resolve_avx_slow is added and used for AVX processors which
don't support XGETBV with ECX == 1. Since there is no SSE transition
penalty on AVX512 processors which don't support XGETBV with ECX == 1,
_dl_runtime_resolve_avx512_slow isn't provided.
[BZ #20495]
[BZ #20508]
* sysdeps/x86/cpu-features.c (init_cpu_features): For Intel
processors, set Use_dl_runtime_resolve_slow and set
Use_dl_runtime_resolve_opt if XGETBV suports ECX == 1.
* sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt):
New.
(bit_arch_Use_dl_runtime_resolve_slow): Likewise.
(index_arch_Use_dl_runtime_resolve_opt): Likewise.
(index_arch_Use_dl_runtime_resolve_slow): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Use
_dl_runtime_resolve_avx512_opt and _dl_runtime_resolve_avx_opt
if Use_dl_runtime_resolve_opt is set. Use
_dl_runtime_resolve_slow if Use_dl_runtime_resolve_slow is set.
* sysdeps/x86_64/dl-trampoline.S: Include <cpu-features.h>.
(_dl_runtime_resolve_opt): New. Defined for AVX and AVX512.
(_dl_runtime_resolve): Add one for _dl_runtime_resolve_sse_vex.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx_slow):
New.
(_dl_runtime_resolve_opt): Likewise.
(_dl_runtime_profile): Define only if _dl_runtime_profile is
defined.
on s390x the test elf/check-localplt is failing after recent commits:
"elf: Do not use memalign for TCB/TLS blocks allocation [BZ #17730]"
"elf: Avoid using memalign for TLS allocations [BZ #17730]"
"elf: dl-minimal malloc needs to respect fundamental alignment"
due to "Missing required PLT reference: ld.so: __libc_memalign".
After the commits __libc_memalign is only called in elf/dl-minimal.c in
malloc() function in ld.so and gcc -O2/-O3 leads to R_390_GLOB_DAT
instead of R_390_JMP_SLOT. __libc_memalign is called via
function-pointer loaded from GOT instead of calling via a plt-stub. In
this case there is the R_390_GLOB_DAT relocation in section .rela.dyn
instead of R_390_JMP_SLOT in .rela.plt.
This patch marks ld.so: __libc_memalign with R_390_GLOB_DAT in
localplt.data to allow both relocations.
If build with -fno-optimize-sibling-calls or on s390(31bit) a
R_390_JMP_SLOT is generated.
ChangeLog:
* sysdeps/unix/sysv/linux/s390/localplt.data: Mark
ld.so: __libc_memalign with "+ RELA R_390_GLOB_DAT".
Historically perl includes the current directory in the module search
path. Over the time this has been considered as a security issue and
the recent vulnerabilities [1] made people to reconsider this behaviour.
It is almost sure that this will be removed in the future [2], possibly
for the 5.26 release, although this is not yet firmly decided.
Debian has decided to backport the patches [3], so the perl binary in
unstable do not have '.' in @INC anymore.
This behaviour is used in the conform perl scripts to include the
GlibcConform module. This patch fixes that by calling perl with '-I.'.
This is not a security issue in this case as make ensures that the
current directory is $(srcdir)/conform/ when the scripts are called.
Passing the full path would do exactly the same.
[1] CVE-2016-1238 CVE-2016-6185
[2] https://rt.perl.org/Public/Bug/Display.html?id=127810
[3] https://lists.debian.org/debian-devel-announce/2016/08/msg00013.html
Changelog:
* conform/Makefile (conformtest-header-tests): Pass -I. to $(PERL).
(linknamespace-symlists-tests): Likewise.
(linknamespace-header-tests): Likewise.
The commit b632bdd3 moved the setting of the DF_1_NODELETE flag earlier
in the dl_open_worker function. However when calling dlopen with both
RTLD_NODELETE and RTLD_NOLOAD, the pointer returned by _dl_map_object is
NULL. This condition is checked just after setting the flag, while it
should be done before. Fix that.
Changelog:
[BZ #19810]
* elf/dl-open.c (dl_open_worker): Set DF_1_NODELETE flag later.
* elf/tst-noload.c: New test case.
* elf/Makefile (tests): Add tst-noload.
The support functions for sin and cos have a lot of identical
functionality, so inlining them gives a pretty decent jump in
functionality: ~19% in the sincos function. On SPEC2006 this
translates to about 2.1% in the tonto test.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Mark as inline.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(slow): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
The only code looks slightly different from do_sin but on closer
examination, should give exactly the same result. Drop it in favour
of the do_sin function call.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Use do_sin.
All calls to do_cos are preceded by code that partitions x into a
larger double that gives an offset into the sincos table and a smaller
double that is used in a polynomial computation. Consolidate all of
them into do_cos and do_sin to reduce code duplication.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Accept X and DX as input
arguments. Consolidate input partitioning from callers here.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(do_sincos_1): Remove the no longer necessary input partitioning.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
This avoids a race condition if the process-global locale is changed
while vfscanf is running. MB_LEN_MAX is always larger than MB_CUR_MAX,
so we might realloc earlier than necessary (but even MB_CUR_MAX could
be larger than the minimum required space).
The existing length was a bit questionable because str + MB_LEN_MAX
might point past the end of the buffer.
This is only used for the float and double variants.
Instead, just add it to the type specific list of files,
and remove all stubs, and remove the declaration from
math_private.h.
I verified x86_64, i486, ia64, m68k, and ppc64 build.
With the exception of those machines using the ldbl-opt in
an Implies file, this is a trivial transformation.
nextdownl is not subject to the non-trivial versioning rules
of the other generated functions, so to keep things simple,
it is handled as a one-off case in ldbl-opt to preserve the
existing behavior.
The only difference is the usage of math_narrow_eval when
building s_fdiml.c. This should be harmless for long double,
but I did observe some code generation changes on m68k, but
lack the resources to test it.
Likewise, to more easily support overriding symbol generation,
the aliasing macros are always conditionally defined on their
absence to reduce boilerplate.
I also ran builds for i486, ppc64, sparcv9, aarch64,
s390x and observed no changes to s_fdim* objects.
Macros which are also defined in <linux/quota.h> are removed, and
<linux/quota.h> is included instead.
This commit cleans up the definition of fs_to_dq_blocks and struct
dqblock and struct dqinfo, too.
Add a layer of macro indirection for long double files
which need to be built using another typename. Likewise,
add the L(num) macro used in a later patch to override
real constants.
These macros are only defined through the ldbl-128
math_ldbl.h header, thereby implicitly restricting
these macros to machines which back long double
with an IEEE binary128 format.
Likewise, appropriate changes are made for the few
files which indirectly include such ldbl-128 files.
These changes produce identical binaries for s390x,
aarch64, and ppc64.
On s390 feraiseexcept (FE_OVERFLOW|FE_UNDERFLOW) sets FE_INEXACT, too.
This patch uses z196 zarch load rounded instruction which can suppress
FE_INEXACT exception if gcc has z196 support in used configuration.
Otherwise FE_INEXACT flag is set as before. The gcc support is tested
in a new configure-check.
A comment in fsetexcptflg.c is corrected as new exceptions are not
executed with the next floating-point instruction if fpc is set with
_FPU_SETCW macro. It seems the comment was copied e.g. from
sysdeps/x86_64/fpu/fsetexcptflg.c file.
ChangeLog:
* config.h.in (HAVE_S390_MIN_Z196_ZARCH_ASM_SUPPORT):
New undefine.
* sysdeps/s390/configure.ac: Add test for z196 zarch support.
* sysdeps/s390/configure: Regenerated.
* sysdeps/s390/fpu/fraiseexcpt.c (__feraiseexcept): Use ledbra
instruction for raising over-/underflow if z196 zarch is supported
by default.
* sysdeps/s390/fpu/fsetexcptflg.c (fesetexceptflag):
Correct comment.
The sin and cos code is inconsistent about its use of fabs to get the
absolute value of X where in some places it conditionalizes the code
while in others it uses fabs. fabs seems to be a better candidate in
most cases because it avoids a branch. Similarly there is an attempt
to make it easier for the compiler to emit conditional assignment
instructions (like fcsel on aarch64) where it can, by isolating
conditional assignment constructs from the rest of the expression.
A further benefit of this change is to identify common constructs
across functions and consolidate them in future patches.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos_slow): Use ternary
instead of if/else.
(do_sin_slow): Likewise.
(do_sincos_1): Use fabs instead of if/else.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow2): Likewise.
(sloww): Likewise.
(sloww1): Likewise. Drop argument M.
(sloww2): Use fabs instead of if/else.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
This patch reshuffles the reduce_and_compute code so that the
structure matches other code structures of the same type elsewhere in
s_sin.c and s_sincos.c. This is the beginning of an attempt to
consolidate and reduce code duplication in functions in s_sin.c to
make it easier to read and possibly also easier for the compiler to
optimize.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_and_compute):
Consolidate switch cases 0 and 2.
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions
into generated templates. Note, ldbl-opt still retains
s_clog10l.c as the aliasing rules are non-trivial.
This patch has no function changes, except to
ensure the git history correctly tracks the
changes to convert the double version of these
functions into a templated version.
TS 18661-1 defines an fetestexceptflag function to test the exception
state saved in an fexcept_t object by fegetexceptflag.
This patch implements this function for glibc. Almost all
architectures save exception state in such a way that it can be
directly ANDed with exception flag bits, so rather than having lots of
fetestexceptflag implementations that all do the same thing, the math/
implementation is made to use this generic logic (which is also OK in
the fallback case where FE_ALL_EXCEPT is zero). The only architecture
that seems to need anything different is s390.
(fegetexceptflag and fesetexceptflag use abbreviated filenames
fgetexcptflg.c and fsetexcptflg.c. Because we are no longer concerned
by 14-character filename limits, fetestexceptflag uses the obvious
filename fetestexceptflag.c.)
The NEWS entry is intended to be expanded along the lines given in
<https://sourceware.org/ml/libc-alpha/2016-08/msg00356.html> when
fegetmode and fesetmode are added.
Tested for x86_64, x86, mips64 and powerpc.
* math/fetestexceptflag.c: New file.
* sysdeps/s390/fpu/fetestexceptflag.c: Likewise. Comment by
Stefan Liebler.
* math/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(fetestexceptflag): New function declaration.
* manual/arith.texi (fetestexceptflag): Document function.
* math/Versions (fetestexceptflag): New libm symbol at version
GLIBC_2.25.
* math/Makefile (libm-support): Add fetestexceptflag.
(tests): Add test-fetestexceptflag.
* math/test-fetestexceptflag.c: New file.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Existing interposed mallocs do not define the glibc-internal
fork callbacks (and they should not), so statically interposed
mallocs lead to link failures because the strong reference from
fork pulls in glibc's malloc, resulting in multiple definitions
of malloc-related symbols.
ISO C forbids empty initializer braces (6.7.9 initializer-list must
contain at least one initializer). However GCC allows it, generating
a warning depending of the version.
With GCC 4.8 on ARM I noticed tst-initializers1.c fails to build with:
In file included from tst-initializers1.c:60:0:
../test-skeleton.c: In function 'delayed_exit_thread':
../test-skeleton.c:687:10: error: missing initializer for field 'tv_sec' of 'struct timespec' [-Werror=missing-field-initializers]
struct timespec remaining = {}
While with GCC 5.1 the same warning is just spilled with -pedantic.
To be safe this patch just zero initialize the struct as expected.
Tested on armhf.
* test-skeleton.c (delayed_exit_thread): Add initializer on struct
timespec C99 designated initialization.
Before this change, several tests did not detect early deadlocks
because they used SIGALRM as the expected signal, and they ran
for the full default TIMEOUT seconds.
This commit adds a new delayed_exit function to the test skeleton,
along with several error-checking wrappers to pthread functions.
Additional error checking is introduced into several tests.
When stack is re-aligned in _dl_runtime_resolve, there is no need to
adjust CFA when allocating register save area on stack.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Don't
adjust CFA when allocating register save area on re-aligned
stack.
A tsearch red-black tree node contains 3 pointers (key, left, right)
and 1 bit to hold the red-black flag. When allocating new nodes
this 1 bit is expanded to a full word. Causing the overhead per node
to be 3 times the key size.
We can reduce this overhead to just 2 times the key size.
malloc returns naturally aligned memory. All nodes are internally
allocated with malloc and the left/right node pointers are used
as implementation details. So we can use the low bits of the
left/right node pointers to store extra information.
Replace all direct accesses of the struct node_t node pointers and
red-black value with defines that take care of the red-black flag in
the low bit of the (left) node pointer. This reduces the size of the
nodes on 32-bit systems from 16 to 12 bytes and on 64-bit systems
from 32 to 24 bytes.
Also fix a call to CHECK_TREE so the code can be build (and tested)
with DEBUGGING defined again.
V2 changes:
- Add assert after malloc to catch any odd pointers from bad
interposed mallocs.
- Rename implementation flag to USE_MALLOC_LOW_BIT.
ChangeLog:
* misc/tsearch.c (struct node_t): Reduce to 3 pointers if
USE_MALLOC_LOW_BIT. Define pointer/value accessors.
(check_tree_recurse): Use newly defined accessors.
(check_tree): Likewise.
(maybe_split_for_insert): Likewise.
(__tfind): Likewise.
(__tdelete): Likewise.
(trecurse): Likewise.
(tdestroy_recurse): Likewise.
(__tsearch): Likewise. And add asserts for malloc alignment.
(__twalk): Cast root to node in case CHECK_TREE is defined.
The standard currently in effect (LST ISO 8601:1997) mandates the use
of hyphens (as opposed to full stops, currently) in date formats. It
also matches current CLDR data (v29), Wikipedia's & Wikia's settings,
and Microsoft's Lithuanian Style Guide.