Without this commit, if the XfbStride was explicitly set, the
decoration was added twice on the shader.
v2 (changes after Jonh Kessenich first review)
* Simplified by just removing the firs assignment
* Removed assert
including SPV generation using SPV_EXT_fragment_invocation_density.
This is an alias of the functionality in SPV_NV_shading_rate, and thus in some
cases we can only have one set of the tokens present (switch statements), so
we have picked the EXT version. This required updating the expected test
results for SPV_NV_shading_rate.
Also updated the known-good for spirv-headers so that the validator in
spirv-tools knows about the new extension.
Consider the following code:
layout(constant_id=0) const int Y = 1;
layout(constant_id=1) const int Z = 2;
layout(constant_id=3) const int X = Y + Z;
Previously, it would produce SPIR-V decorations like this:
Decorate 21(Y) SpecId 1
Decorate 22 SpecId 3
Decorate 33(Z) SpecId 0
This seems inaccurate, since the spec constant `X` that is dependent on
the two others did not get a name in the SPIR-V decorations. This behavior
may potentially negatively affect shader introspection capabilities.
This change alters the behavior to always add a name, which results in the code
above producing the following decorations:
Decorate 21(Y) SpecId 1
Decorate 22(X) SpecId 3
Decorate 33(Z) SpecId 0
UniformAndStorageBuffer8BitAccess capability.
When using the 8-bit storage extension it basically always used the
`UniformAndStorageBuffer8BitAccess` capability, even in cases where it
wasn't required. For instance if we are targeting Vulkan 1.1 (SPIR-V 1.3
or higher), and we are only using 8-bit types in an SSBO, we only need
the `StorageBuffer8BitAccess` capability.
I fixed this by enabling storage buffer use in Vulkan 1.1 / SPIR-V 1.3
or higher, and then changing the logic to match.
I also added some tests that will output different capabilities when run
on Vulkan 1.0 and 1.1, thus they are added twice to the test list (one
for each version).
Fixes#1539
- Emit relevant capability/extension for use of perprimitiveNV in fragment shader
- Remove redundant checks for mesh shader qualifiers in glslang.y
- Add profile version check for use of extension GL_NV_mesh_shader
- Add a new gtest for use of perprimitiveNV in fragment shader
This CL adds the necessary configuration to build glslang inside a
Chromium checkout. Two build warnings were fixed in the process to
make things compile.