This commit adds the basic infrastructure for paths.
The public APIs consists of GskPath, GskPathPoint and
GskPathBuilder.
GskPath is a data structure for paths that consists
of contours, which in turn might contain Bézier curves.
The Bezier data structure is inspired by Skia, with separate
arrays for points and operations. One advantage of this
arrangement is that start and end points are shared
between adjacent curves.
A GskPathPoint represents a point on a path, which can
be queried for various properties.
GskPathBuilder is an auxiliary builder object for paths.
graphene_rect_t is not well-suited for this purpose,
since you end up with floating-point precision problems
at the upper bound (x + width, y + height).
Instead of scale and whatnot, pass:
1. The image size
2. The viewport to map to that image size
and compute everything else from there.
In particular, we set the Vulkan viewport to the image dimensions
instead of the viewport size.
All of this makes things a lot simpler while keeping the required
functionality.
We need them for mask-only textures.
For tiffs, we convert the formats to RGBA (the idea that tiff can save
everything needs to be buried I guess) as tiffs can't do alpha-only.
Add a bunch of inline functions for graphene_rectangle_t.
We use those quite extensively in tight loops so making them as fast as
possible via inlining has massive benefits.
The current render-heavy benchmark I am playing (th paris-30k in node-editor)
went from 49fps to 85fps on my AMD.
When a GdkMemoryFormat is not supported natively and there's
postprocessing required, add a way to mark a VulkanImage as such via the
new postprocess flags.
Also allow texting such iamges only with new_for_upload() and detect
when that is the case and then run a postprocessing step that converts
that image to a suitable format.
This is done with a new "convert" shader/op.
This now supports all formats natively, no conversions happen on the CPU
anymore (unless the GPU is old).
Add an explicit begin() and an end() op. For now, this looks like
overkill, but it allows doing renderpasses with custom ops that are not
meant to render a rendernode.
Examples for this are pre/postprocessing passes or 2-pass blur.
The API was using regions because it always had. But all the code ever
did was get the extents of the region.
So simplify everything by using rectangles everywhere.
These days, we can query it with gsk_vulkan_render_get_context().
Makes quite a few functions require one less argument.
And it also makes the GskVulkanRenderPass empty. Gotta figure out what
to do with it.
Instead, build-depnd on glslc to build them.
glslc is available in all important distros for a while:
Fedora >= 28
Ubuntu >= 23.04
Debian >= 12
Arch
Opensuse >= 15.2
msys2
are the ones I checked.
So we can depend on it and avoid having to deal with keeping spirv files
up-to-date in all commits.
It's also 700kB of data, and not updating it helps.
We now store all the relevant state of the image inside the VulkanImage
struct, so we can delay barriers for as long as possible.
Whenever we want to use an image, we call the new
gsk_vulkan_image_transition() and it will add a barrier to the desired
state if one is necessary.
... and all the remaining functions still using it.
It's all unused and has been replaced by upload and download ops.
With this change, all GPU operations now go via GskVulkanOp.command()
and no more side channels exist.
This op queues a download of an image. The image will only be available
once the commands finished executing, so it requires waiting for the
render to finish, which makes the API a bit awkward.
Included is also a download_png_op() useful for debugging.
The render pass ops were not updating the image's layout to the final
layout when a render pass ends.
Fix that.
Also make the layouts explicit arguments to the render pass op.
Split out the function that uploads using a buffer, so that it can be
used with an area to only update parts of the image.
That feature is not used yet, but will be in future commits.
If a command takes too long to execute, Vulkan drivers will think they
are inflooping and abort what they were doing.
For the simple color shader with smallish nodes, this happens around
10M instances, as tested with the output of
./tests/rendernode-create-tests 10000000 colors.node
So just limit it to way lower, so that we barely never hit it, ut still
pick a big number so this optimization stays noticable.