OpenSubdiv/opensubdiv/osd/mesh.h

618 lines
21 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef OPENSUBDIV3_OSD_MESH_H
#define OPENSUBDIV3_OSD_MESH_H
#include "../version.h"
#include <bitset>
#include <cassert>
#include <cstring>
#include <vector>
#include "../far/topologyRefiner.h"
#include "../far/patchTableFactory.h"
#include "../far/stencilTable.h"
#include "../far/stencilTableFactory.h"
#include "../osd/vertexDescriptor.h"
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
struct ID3D11DeviceContext;
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Osd {
enum MeshBits {
MeshAdaptive = 0,
MeshInterleaveVarying = 1,
MeshFVarData = 2,
MeshUseSingleCreasePatch = 3,
MeshEndCapBSplineBasis = 4, // exclusive
MeshEndCapGregoryBasis = 5, // exclusive
MeshEndCapLegacyGregory = 6, // exclusive
NUM_MESH_BITS = 7,
};
typedef std::bitset<NUM_MESH_BITS> MeshBitset;
2012-06-09 18:12:34 +00:00
// ---------------------------------------------------------------------------
template <class PATCH_TABLE>
class MeshInterface {
public:
typedef PATCH_TABLE PatchTable;
typedef typename PatchTable::VertexBufferBinding VertexBufferBinding;
public:
MeshInterface() { }
virtual ~MeshInterface() { }
2012-06-09 18:12:34 +00:00
virtual int GetNumVertices() const = 0;
virtual int GetMaxValence() const = 0;
virtual void UpdateVertexBuffer(float const *vertexData,
int startVertex, int numVerts) = 0;
2012-06-09 18:12:34 +00:00
virtual void UpdateVaryingBuffer(float const *varyingData,
int startVertex, int numVerts) = 0;
virtual void Refine() = 0;
virtual void Synchronize() = 0;
2012-06-09 18:12:34 +00:00
virtual PatchTable * GetPatchTable() const = 0;
virtual Far::PatchTable const *GetFarPatchTable() const = 0;
virtual VertexBufferBinding BindVertexBuffer() = 0;
virtual VertexBufferBinding BindVaryingBuffer() = 0;
protected:
static inline void refineMesh(Far::TopologyRefiner & refiner,
int level, bool adaptive,
bool singleCreasePatch) {
if (adaptive) {
Far::TopologyRefiner::AdaptiveOptions options(level);
options.useSingleCreasePatch = singleCreasePatch;
refiner.RefineAdaptive(options);
} else {
// This dependency on FVar channels should not be necessary
bool fullTopologyInLastLevel = refiner.GetNumFVarChannels()>0;
Far::TopologyRefiner::UniformOptions options(level);
options.fullTopologyInLastLevel = fullTopologyInLastLevel;
refiner.RefineUniform(options);
}
}
};
// ---------------------------------------------------------------------------
template <typename STENCIL_TABLE, typename SRC_STENCIL_TABLE,
typename DEVICE_CONTEXT>
STENCIL_TABLE const *
convertToCompatibleStencilTable(
SRC_STENCIL_TABLE const *table, DEVICE_CONTEXT *context) {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
if (not table) return NULL;
return STENCIL_TABLE::Create(table, context);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
}
template <>
Far::StencilTable const *
convertToCompatibleStencilTable<Far::StencilTable, Far::StencilTable, void>(
Far::StencilTable const *table, void * /*context*/) {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
// no need for conversion
// XXX: We don't want to even copy.
if (not table) return NULL;
return new Far::StencilTable(*table);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
}
template <>
Far::LimitStencilTable const *
convertToCompatibleStencilTable<Far::LimitStencilTable, Far::LimitStencilTable, void>(
Far::LimitStencilTable const *table, void * /*context*/) {
// no need for conversion
// XXX: We don't want to even copy.
if (not table) return NULL;
return new Far::LimitStencilTable(*table);
}
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
template <>
Far::StencilTable const *
convertToCompatibleStencilTable<Far::StencilTable, Far::StencilTable, ID3D11DeviceContext>(
Far::StencilTable const *table, ID3D11DeviceContext * /*context*/) {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
// no need for conversion
// XXX: We don't want to even copy.
if (not table) return NULL;
return new Far::StencilTable(*table);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
}
// ---------------------------------------------------------------------------
// Osd evaluator cache: for the GPU backends require compiled instance
// (GLXFB, GLCompue, CL)
//
// note: this is just an example usage and client applications are supposed
// to implement their own structure for Evaluator instance.
//
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
template <typename EVALUATOR>
class EvaluatorCacheT {
public:
~EvaluatorCacheT() {
for(typename Evaluators::iterator it = _evaluators.begin();
it != _evaluators.end(); ++it) {
delete it->evaluator;
}
}
// XXX: FIXME, linear search
struct Entry {
Entry(VertexBufferDescriptor const &srcDesc,
VertexBufferDescriptor const &dstDesc,
VertexBufferDescriptor const &duDesc,
VertexBufferDescriptor const &dvDesc,
EVALUATOR *e) : srcDesc(srcDesc), dstDesc(dstDesc),
duDesc(duDesc), dvDesc(dvDesc), evaluator(e) {}
VertexBufferDescriptor srcDesc, dstDesc, duDesc, dvDesc;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
EVALUATOR *evaluator;
};
typedef std::vector<Entry> Evaluators;
template <typename DEVICE_CONTEXT>
EVALUATOR *GetEvaluator(VertexBufferDescriptor const &srcDesc,
VertexBufferDescriptor const &dstDesc,
DEVICE_CONTEXT *deviceContext) {
return GetEvaluator(srcDesc, dstDesc,
VertexBufferDescriptor(),
VertexBufferDescriptor(),
deviceContext);
}
template <typename DEVICE_CONTEXT>
EVALUATOR *GetEvaluator(VertexBufferDescriptor const &srcDesc,
VertexBufferDescriptor const &dstDesc,
VertexBufferDescriptor const &duDesc,
VertexBufferDescriptor const &dvDesc,
DEVICE_CONTEXT *deviceContext) {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
for(typename Evaluators::iterator it = _evaluators.begin();
it != _evaluators.end(); ++it) {
if (isEqual(srcDesc, it->srcDesc) &&
isEqual(dstDesc, it->dstDesc) &&
isEqual(duDesc, it->duDesc) &&
isEqual(dvDesc, it->dvDesc)) {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
return it->evaluator;
}
}
EVALUATOR *e = EVALUATOR::Create(srcDesc, dstDesc,
duDesc, dvDesc,
deviceContext);
_evaluators.push_back(Entry(srcDesc, dstDesc, duDesc, dvDesc, e));
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
return e;
}
private:
static bool isEqual(VertexBufferDescriptor const &a,
VertexBufferDescriptor const &b) {
int offsetA = a.stride ? (a.offset % a.stride) : 0;
int offsetB = b.stride ? (b.offset % b.stride) : 0;
// Note: XFB kernel needs to be configured with the local offset
// of the dstDesc to skip preceding primvars.
return (offsetA == offsetB &&
a.length == b.length &&
a.stride == b.stride);
}
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
Evaluators _evaluators;
};
// template helpers to see if the evaluator is instantiatable or not.
template <typename EVALUATOR>
struct instantiatable
{
typedef char yes[1];
typedef char no[2];
template <typename C> static yes &chk(typename C::Instantiatable *t=0);
template <typename C> static no &chk(...);
static bool const value = sizeof(chk<EVALUATOR>(0)) == sizeof(yes);
};
template <bool C, typename T=void>
struct enable_if { typedef T type; };
template <typename T>
struct enable_if<false, T> { };
// extract a kernel from cache if available
template <typename EVALUATOR, typename DEVICE_CONTEXT>
static EVALUATOR *GetEvaluator(
EvaluatorCacheT<EVALUATOR> *cache,
VertexBufferDescriptor const &srcDesc,
VertexBufferDescriptor const &dstDesc,
VertexBufferDescriptor const &duDesc,
VertexBufferDescriptor const &dvDesc,
DEVICE_CONTEXT deviceContext,
typename enable_if<instantiatable<EVALUATOR>::value, void>::type*t=0) {
(void)t;
if (cache == NULL) return NULL;
return cache->GetEvaluator(srcDesc, dstDesc, duDesc, dvDesc, deviceContext);
}
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
template <typename EVALUATOR, typename DEVICE_CONTEXT>
static EVALUATOR *GetEvaluator(
EvaluatorCacheT<EVALUATOR> *cache,
VertexBufferDescriptor const &srcDesc,
VertexBufferDescriptor const &dstDesc,
DEVICE_CONTEXT deviceContext,
typename enable_if<instantiatable<EVALUATOR>::value, void>::type*t=0) {
(void)t;
if (cache == NULL) return NULL;
return cache->GetEvaluator(srcDesc, dstDesc,
VertexBufferDescriptor(),
VertexBufferDescriptor(),
deviceContext);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
}
// fallback
template <typename EVALUATOR, typename DEVICE_CONTEXT>
static EVALUATOR *GetEvaluator(
EvaluatorCacheT<EVALUATOR> *,
VertexBufferDescriptor const &,
VertexBufferDescriptor const &,
VertexBufferDescriptor const &,
VertexBufferDescriptor const &,
DEVICE_CONTEXT,
typename enable_if<!instantiatable<EVALUATOR>::value, void>::type*t=0) {
(void)t;
return NULL;
}
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
template <typename EVALUATOR, typename DEVICE_CONTEXT>
static EVALUATOR *GetEvaluator(
EvaluatorCacheT<EVALUATOR> *,
VertexBufferDescriptor const &,
VertexBufferDescriptor const &,
DEVICE_CONTEXT,
typename enable_if<!instantiatable<EVALUATOR>::value, void>::type*t=0) {
(void)t;
return NULL;
}
// ---------------------------------------------------------------------------
template <typename VERTEX_BUFFER,
typename STENCIL_TABLE,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
typename EVALUATOR,
typename PATCH_TABLE,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
typename DEVICE_CONTEXT = void>
class Mesh : public MeshInterface<PATCH_TABLE> {
public:
typedef VERTEX_BUFFER VertexBuffer;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
typedef EVALUATOR Evaluator;
typedef STENCIL_TABLE StencilTable;
typedef PATCH_TABLE PatchTable;
typedef DEVICE_CONTEXT DeviceContext;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
typedef EvaluatorCacheT<Evaluator> EvaluatorCache;
typedef typename PatchTable::VertexBufferBinding VertexBufferBinding;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
Mesh(Far::TopologyRefiner * refiner,
int numVertexElements,
int numVaryingElements,
int level,
MeshBitset bits = MeshBitset(),
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
EvaluatorCache * evaluatorCache = NULL,
DeviceContext * deviceContext = NULL) :
_refiner(refiner),
_farPatchTable(NULL),
_numVertices(0),
_maxValence(0),
_vertexBuffer(NULL),
_varyingBuffer(NULL),
_vertexStencilTable(NULL),
_varyingStencilTable(NULL),
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
_evaluatorCache(evaluatorCache),
_patchTable(NULL),
_deviceContext(deviceContext) {
assert(_refiner);
MeshInterface<PATCH_TABLE>::refineMesh(
*_refiner, level,
bits.test(MeshAdaptive),
bits.test(MeshUseSingleCreasePatch));
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
int vertexBufferStride = numVertexElements +
(bits.test(MeshInterleaveVarying) ? numVaryingElements : 0);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
int varyingBufferStride =
(bits.test(MeshInterleaveVarying) ? 0 : numVaryingElements);
initializeContext(numVertexElements,
numVaryingElements,
level, bits);
initializeVertexBuffers(_numVertices,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
vertexBufferStride,
varyingBufferStride);
// configure vertex buffer descriptor
_vertexDesc = VertexBufferDescriptor(0,
numVertexElements,
vertexBufferStride);
if (bits.test(MeshInterleaveVarying)) {
_varyingDesc = VertexBufferDescriptor(numVertexElements,
numVaryingElements,
vertexBufferStride);
} else {
_varyingDesc = VertexBufferDescriptor(0,
numVaryingElements,
varyingBufferStride);
}
}
virtual ~Mesh() {
delete _refiner;
delete _farPatchTable;
delete _vertexBuffer;
delete _varyingBuffer;
delete _vertexStencilTable;
delete _varyingStencilTable;
delete _patchTable;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
// deviceContext and evaluatorCache are not owned by this class.
}
virtual void UpdateVertexBuffer(float const *vertexData,
int startVertex, int numVerts) {
_vertexBuffer->UpdateData(vertexData, startVertex, numVerts,
_deviceContext);
}
virtual void UpdateVaryingBuffer(float const *varyingData,
int startVertex, int numVerts) {
_varyingBuffer->UpdateData(varyingData, startVertex, numVerts,
_deviceContext);
}
virtual void Refine() {
int numControlVertices = _refiner->GetLevel(0).GetNumVertices();
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
VertexBufferDescriptor srcDesc = _vertexDesc;
VertexBufferDescriptor dstDesc(srcDesc);
dstDesc.offset += numControlVertices * dstDesc.stride;
// note that the _evaluatorCache can be NULL and thus
// the evaluatorInstance can be NULL
// (for uninstantiatable kernels CPU,TBB etc)
Evaluator const *instance = GetEvaluator<Evaluator>(
_evaluatorCache, srcDesc, dstDesc,
_deviceContext);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
Evaluator::EvalStencils(_vertexBuffer, srcDesc,
_vertexBuffer, dstDesc,
_vertexStencilTable,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
instance, _deviceContext);
if (_varyingDesc.length > 0) {
VertexBufferDescriptor srcDesc = _varyingDesc;
VertexBufferDescriptor dstDesc(srcDesc);
dstDesc.offset += numControlVertices * dstDesc.stride;
instance = GetEvaluator<Evaluator>(
_evaluatorCache, srcDesc, dstDesc,
_deviceContext);
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
if (_varyingBuffer) {
// non-interleaved
Evaluator::EvalStencils(_varyingBuffer, srcDesc,
_varyingBuffer, dstDesc,
_varyingStencilTable,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
instance, _deviceContext);
} else {
// interleaved
Evaluator::EvalStencils(_vertexBuffer, srcDesc,
_vertexBuffer, dstDesc,
_varyingStencilTable,
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
instance, _deviceContext);
}
}
}
virtual void Synchronize() {
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
Evaluator::Synchronize(_deviceContext);
}
virtual PatchTable * GetPatchTable() const {
return _patchTable;
}
virtual Far::PatchTable const *GetFarPatchTable() const {
return _farPatchTable;
}
virtual int GetNumVertices() const { return _numVertices; }
virtual int GetMaxValence() const { return _maxValence; }
virtual VertexBufferBinding BindVertexBuffer() {
return _vertexBuffer->BindVBO(_deviceContext);
}
virtual VertexBufferBinding BindVaryingBuffer() {
return _varyingBuffer->BindVBO(_deviceContext);
}
virtual VertexBuffer * GetVertexBuffer() {
return _vertexBuffer;
}
virtual VertexBuffer * GetVaryingBuffer() {
return _varyingBuffer;
}
virtual Far::TopologyRefiner const * GetTopologyRefiner() const {
return _refiner;
}
private:
void initializeContext(int numVertexElements,
int numVaryingElements,
int level, MeshBitset bits) {
assert(_refiner);
Far::StencilTableFactory::Options options;
options.generateOffsets = true;
options.generateIntermediateLevels =
_refiner->IsUniform() ? false : true;
Far::StencilTable const * vertexStencils = NULL;
Far::StencilTable const * varyingStencils = NULL;
if (numVertexElements>0) {
vertexStencils = Far::StencilTableFactory::Create(*_refiner,
options);
}
if (numVaryingElements>0) {
options.interpolationMode =
Far::StencilTableFactory::INTERPOLATE_VARYING;
varyingStencils = Far::StencilTableFactory::Create(*_refiner,
options);
}
Far::PatchTableFactory::Options poptions(level);
poptions.generateFVarTables = bits.test(MeshFVarData);
poptions.useSingleCreasePatch = bits.test(MeshUseSingleCreasePatch);
if (bits.test(MeshEndCapBSplineBasis)) {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_BSPLINE_BASIS);
} else if (bits.test(MeshEndCapGregoryBasis)) {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS);
// points on gregory basis endcap boundary can be shared among
// adjacent patches to save some stencils.
poptions.shareEndCapPatchPoints = true;
} else if (bits.test(MeshEndCapLegacyGregory)) {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_LEGACY_GREGORY);
}
_farPatchTable = Far::PatchTableFactory::Create(*_refiner, poptions);
// if there's endcap stencils, merge it into regular stencils.
if (_farPatchTable->GetEndCapVertexStencilTable()) {
// append stencils
if (Far::StencilTable const *vertexStencilsWithEndCap =
Far::StencilTableFactory::AppendEndCapStencilTable(
*_refiner,
vertexStencils,
_farPatchTable->GetEndCapVertexStencilTable())) {
delete vertexStencils;
vertexStencils = vertexStencilsWithEndCap;
}
if (varyingStencils) {
if (Far::StencilTable const *varyingStencilsWithEndCap =
Far::StencilTableFactory::AppendEndCapStencilTable(
*_refiner,
varyingStencils,
_farPatchTable->GetEndCapVaryingStencilTable())) {
delete varyingStencils;
varyingStencils = varyingStencilsWithEndCap;
}
}
}
_maxValence = _farPatchTable->GetMaxValence();
_patchTable = PatchTable::Create(_farPatchTable, _deviceContext);
// numvertices = coarse verts + refined verts + gregory basis verts
_numVertices = vertexStencils->GetNumControlVertices()
+ vertexStencils->GetNumStencils();
// convert to device stenciltable if necessary.
_vertexStencilTable =
convertToCompatibleStencilTable<StencilTable>(
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
vertexStencils, _deviceContext);
_varyingStencilTable =
convertToCompatibleStencilTable<StencilTable>(
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
varyingStencils, _deviceContext);
// FIXME: we do extra copyings for Far::Stencils.
delete vertexStencils;
delete varyingStencils;
}
void initializeVertexBuffers(int numVertices,
int numVertexElements,
int numVaryingElements) {
if (numVertexElements) {
_vertexBuffer = VertexBuffer::Create(numVertexElements,
numVertices, _deviceContext);
}
if (numVaryingElements) {
_varyingBuffer = VertexBuffer::Create(numVaryingElements,
numVertices, _deviceContext);
}
}
Far::TopologyRefiner * _refiner;
Far::PatchTable * _farPatchTable;
int _numVertices;
int _maxValence;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
VertexBuffer * _vertexBuffer;
VertexBuffer * _varyingBuffer;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
VertexBufferDescriptor _vertexDesc;
VertexBufferDescriptor _varyingDesc;
StencilTable const * _vertexStencilTable;
StencilTable const * _varyingStencilTable;
Refurbish osd layer API. In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
2015-05-09 00:31:26 +00:00
EvaluatorCache * _evaluatorCache;
PatchTable *_patchTable;
DeviceContext *_deviceContext;
};
} // end namespace Osd
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif // OPENSUBDIV3_OSD_MESH_H