i386 add_n.S and sub_n.S use a trick to implment jump tables with LEA.
We can't use conditional branches nor normal jump tables since jump
table entries use EFLAGS set by jump table index. This patch adds
_CET_ENDBR to indirect jump targets and adjust destination for
_CET_ENDBR.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/add_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_add_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
* sysdeps/i386/i686/add_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_add_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
* sysdeps/i386/sub_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_sub_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
Add _CET_ENDBR to STRCMP_SSE42, which is called indirectly, to support
IBT.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/x86_64/multiarch/strcmp-sse42.S (STRCMP_SSE42): Add
_CET_ENDBR.
Add _CET_ENDBR to functions in crti.S, which are called indirectly, to
support IBT.
Tested on i686 and x86-64.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/crti.S (_init): Add _CET_ENDBR.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Likewise.
(_fini): Likewise.
Always include <dl-cet.h> and cet-tunables.h> when CET is enabled.
Otherwise, configure glibc with --enable-cet --disable-tunables will
fail to build.
* sysdeps/x86/cpu-features.c: Always include <dl-cet.h> and
cet-tunables.h> when CET is enabled.
Intel Control-flow Enforcement Technology (CET) instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en
forcement-technology-preview.pdf
includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK).
GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to
indicate that all executable sections are compatible with IBT when
ENDBR instruction starts each valid target where an indirect branch
instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on
output only if it is set on all relocatable inputs.
On an IBT capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable IBT and
lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable.
2. When loading an executable with an interpreter, enable IBT if
GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable,
disable IBT.
b. Lock IBT.
3. If IBT is enabled, when loading a shared object without
GNU_PROPERTY_X86_FEATURE_1_IBT:
a. If legacy interwork is allowed, then mark all pages in executable
PT_LOAD segments in legacy code page bitmap. Failure of legacy code
page bitmap allocation causes an error.
b. If legacy interwork isn't allowed, it causes an error.
GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to
indicate that all executable sections are compatible with SHSTK where
return address popped from shadow stack always matches return address
popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK
on output only if it is set on all relocatable inputs.
On a SHSTK capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable.
2. When loading an executable with an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable
or any shared objects loaded via the DT_NEEDED tag, disable SHSTK.
b. Otherwise lock SHSTK.
3. After SHSTK is enabled, it is an error to load a shared object
without GNU_PROPERTY_X86_FEATURE_1_SHSTK.
To enable CET support in glibc, --enable-cet is required to configure
glibc. When CET is enabled, both compiler and assembler must support
CET. Otherwise, it is a configure-time error.
To support CET run-time control,
1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate
if IBT or SHSTK are enabled at run-time. It should be initialized by
init_cpu_features.
2. For dynamic executables:
a. A l_cet field is added to struct link_map to indicate if IBT or
SHSTK is enabled in an ELF module. _dl_process_pt_note or
_rtld_process_pt_note is called to process PT_NOTE segment for
GNU program property and set l_cet.
b. _dl_open_check is added to check IBT and SHSTK compatibilty when
dlopening a shared object.
3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with
_dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if
SHSTK is enabled.
CET run-time control can be changed via GLIBC_TUNABLES with
$ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off]
$ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off]
1. permissive: SHSTK is disabled when dlopening a legacy ELF module.
2. on: IBT or SHSTK are always enabled, regardless if there are IBT or
SHSTK bits in GNU program property.
3. off: IBT or SHSTK are always disabled, regardless if there are IBT or
SHSTK bits in GNU program property.
<cet.h> from CET-enabled GCC is automatically included by assembly codes
to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK
to GNU program property. _CET_ENDBR is added at the entrance of all
assembly functions whose address may be taken. _CET_NOTRACK is used to
insert NOTRACK prefix with indirect jump table to support IBT. It is
defined as notrack when _CET_NOTRACK is defined in <cet.h>.
[BZ #21598]
* configure.ac: Add --enable-cet.
* configure: Regenerated.
* elf/Makefille (all-built-dso): Add a comment.
* elf/dl-load.c (filebuf): Moved before "dynamic-link.h".
Include <dl-prop.h>.
(_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE
segment.
* elf/dl-open.c: Include <dl-prop.h>.
(dl_open_worker): Call _dl_open_check.
* elf/rtld.c: Include <dl-prop.h>.
(dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call
_rtld_main_check.
* sysdeps/generic/dl-prop.h: New file.
* sysdeps/i386/dl-cet.c: Likewise.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise.
* sysdeps/x86/cet-tunables.h: Likewise.
* sysdeps/x86/check-cet.awk: Likewise.
* sysdeps/x86/configure: Likewise.
* sysdeps/x86/configure.ac: Likewise.
* sysdeps/x86/dl-cet.c: Likewise.
* sysdeps/x86/dl-procruntime.c: Likewise.
* sysdeps/x86/dl-prop.h: Likewise.
* sysdeps/x86/libc-start.h: Likewise.
* sysdeps/x86/link_map.h: Likewise.
* sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
(_dl_runtime_resolve_shstk): New.
(_dl_runtime_profile_shstk): Likewise.
* sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet
if CET is enabled.
(CFLAGS-.o): Add -fcf-protection if CET is enabled.
(CFLAGS-.os): Likewise.
(CFLAGS-.op): Likewise.
(CFLAGS-.oS): Likewise.
(asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET
is enabled.
(tests-special): Add $(objpfx)check-cet.out.
(cet-built-dso): New.
(+$(cet-built-dso:=.note)): Likewise.
(common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note).
($(objpfx)check-cet.out): New.
(generated): Add check-cet.out.
* sysdeps/x86/cpu-features.c: Include <dl-cet.h> and
<cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New prototype.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
(init_cpu_features): Call get_cet_status to check CET status
and update dl_x86_feature_1 with CET status. Call
TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK
(set_x86_shstk). Disable and lock CET in libc.a.
* sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New function.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
* sysdeps/x86/sysdep.h (_CET_NOTRACK): New.
(_CET_ENDBR): Define if not defined.
(ENTRY): Add _CET_ENDBR.
* sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and
x86_shstk.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
This patch changes longjmp to always restore the TOC pointer (r2 register)
to the caller frame on powerpc64 and powerpc64le. This is related to bug
21895 that reports a situation where you have a static longjmp to a
shared object file.
[BZ #21895]
* sysdeps/powerpc/powerpc64/__longjmp-common.S: Remove condition code for
restoring r2 in longjmp.
* sysdeps/powerpc/powerpc64/Makefile: Added tst-setjmp-bug21895-static to
test list.
Added rules to build test tst-setjmp-bug21895-static.
Added module setjmp-bug21895 and rules to build a shared object from it.
* sysdeps/powerpc/powerpc64/setjmp-bug21895.c: New test file.
* sysdeps/powerpc/powerpc64/tst-setjmp-bug21895-static.c: New test file.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Since SHADOW_STACK_POINTER_OFFSET is defined in jmp_buf-ssp.h, we must
undef SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Undef
SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
Save and restore shadow stack pointer in setjmp and longjmp to support
shadow stack in Intel CET. Use feature_1 in tcbhead_t to check if
shadow stack is enabled before saving and restoring shadow stack pointer.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/i386/bsd-_setjmp.S: Include <jmp_buf-ssp.h>.
(_setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/bsd-setjmp.S: Include <jmp_buf-ssp.h>.
(setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/i386/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/x86/Makefile (gen-as-const-headers):
Remove jmp_buf-ssp.sym.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/x86/Makefile (gen-as-const-headers): Add
jmp_buf-ssp.sym.
* sysdeps/x86/jmp_buf-ssp.sym: New dummy file.
* sysdeps/x86_64/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/x86_64/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
feature_1 has X86_FEATURE_1_IBT and X86_FEATURE_1_SHSTK bits for CET
run-time control.
CET_ENABLED, IBT_ENABLED and SHSTK_ENABLED are defined to 1 or 0 to
indicate that if CET, IBT and SHSTK are enabled.
<tls-setup.h> is added to set up thread-local data.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #22563]
* nptl/pthread_create.c: Include <tls-setup.h>.
(__pthread_create_2_1): Call tls_setup_tcbhead.
* sysdeps/generic/tls-setup.h: New file.
* sysdeps/x86/nptl/tls-setup.h: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym (FEATURE_1_OFFSET): New.
* sysdeps/x86_64/nptl/tcb-offsets.sym (FEATURE_1_OFFSET):
Likewise.
* sysdeps/i386/nptl/tls.h (tcbhead_t): Rename __glibc_reserved1
to feature_1.
* sysdeps/x86_64/nptl/tls.h (tcbhead_t): Likewise.
* sysdeps/x86/sysdep.h (X86_FEATURE_1_IBT): New.
(X86_FEATURE_1_SHSTK): Likewise.
(CET_ENABLED): Likewise.
(IBT_ENABLED): Likewise.
(SHSTK_ENABLED): Likewise.
As pointed out in a libc-alpha thread [1], the misc/tst-ofdlocks-compat
may fail in some specific Linux releases. This patch adds a comment
along with a link to discussion in the test source code.
No changes are expected.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Add a comment about
a kernel issue which lead to test failure in some cases.
[1] https://sourceware.org/ml/libc-alpha/2018-07/msg00243.html
This enables searching shared libraries in atomics/ when the hardware
supports LSE atomics of armv8.1 so one can provide optimized variants
of libraries in a portable way.
LSE atomics does not affect library abi, the new instructions can
interoperate with old ones.
I considered the earlier comments on the patch
https://sourceware.org/ml/libc-alpha/2018-04/msg00400.htmlhttps://sourceware.org/ml/libc-alpha/2018-04/msg00625.html
It turns out that the way glibc dynamic linker decides on the search
path is not very flexible: it wants to use hwcap bits and associated
strings. So some targets reuse hwcap bits for glibc internal purposes
to affect the search logic. But hwcap is an interface with the kernel,
glibc should not allocate bits in it for its internal logic as that
limits future hwcap extensions and confusing to users who expect to see
hwcap bits in ifunc resolvers. Instead of rewriting the dynamic linker
path logic (which affects all targets) this patch just uses the existing
mechanism, however this means that the path name has to be the hwcap
name "atomics" and cannot be changed to something more meaningful to
users.
It is hard to tell how much performance benefit this can give, in
principle armv8.1 atomics can be better optimized in the hardware, so it
can make a difference for synchronization heavy code. On some systems
such multilib setup may be the only viable way to get optimized
libraries used.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT): Add
HWCAP_ATOMICS.
This partially reverts
commit f82e9672ad
Author: Siddhesh Poyarekar <siddhesh@sourceware.org>
aarch64: Allow overriding HWCAP_CPUID feature check using HWCAP_MASK
The idea was to make it possible to disable cpuid based ifunc resolution
in glibc by changing the hwcap mask which the user could already control.
However the hwcap mask has an orthogonal role: it specifies additional
library search paths for the dynamic linker. So "cpuid" got added to
the search paths when it was set in the default mask (HWCAP_IMPORTANT),
which is not useful behaviour, the hwcap masking should not be reused
in the cpu features code.
Meanwhile there is a tunable to set the cpu explicitly so it is possible
to disable the cpuid based dispatch without using a hwcap mask:
GLIBC_TUNABLES=glibc.tune.cpu=generic
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (init_cpu_features):
Use dl_hwcap without masking.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT):
Remove HWCAP_CPUID.
From Zen onwards this will be enabled. It was disabled for the
Excavator case and will remain disabled.
Reviewd-by: Carlos O'Donell <carlos@redhat.com>
Define a new ABSOLUTE ABI for static linker's use with EI_ABIVERSION
where correct absolute (SHN_ABS) symbol run-time load semantics is
required. This way it can be ensured at static link time that a program
or DSO will not suffer from previous semantics where absolute symbols
were relocated by the base address, or symbols whose `st_value' is zero
silently ignored leading to a confusing "undefined symbol" error message
at load time, and instead "ELF file ABI version invalid" is printed with
old dynamic loaders, making it clear that there is an ABI version
incompatibility.
[BZ #19818]
[BZ #23307]
* libc-abis (ABSOLUTE): New ABI.
* sysdeps/unix/sysv/linux/mips/libc-abis (ABSOLUTE): New ABI.
* NEWS: Mention the new ABI.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The implementation falls back to renameat if renameat2 is not available
in the kernel (or in the kernel headers) and the flags argument is zero.
Without kernel support, a non-zero argument returns EINVAL, not ENOSYS.
This mirrors what the kernel does for invalid renameat2 flags.
Different than Linux, hurd does not need the OFD locks fix from
06ab719d30 (since OFD locks are current Linux specific). This in
turn allows hurd to not provide a fcntl compat symbol.
Checked on a i686-gnu with check-abi.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl): Remove
symbol.
Since the addition of the _Float128 API, strfromf128 and printf_size use
__printf_fp to print _Float128 values. This is achieved by setting the
'is_binary128' member of the 'printf_info' structure to one. Now that
the format of long double on powerpc64le is getting a third option, this
mechanism is reused for long double values that have binary128 format
(i.e.: when -mabi=ieeelongdouble).
This patch adds __printf_sizeieee128 as an exported symbol, but doesn't
provide redirections from printf_size, yet. All redirections will be
installed in a future commit, once all other functions that print or
read long double values with binary128 format are ready. In
__printf_fp, when 'is_binary128' is one, the floating-point argument is
treated as if it was of _Float128 type, regardless of the value of
'is_long_double', thus __printf_sizeieee128 sets 'is_binary128' to the
same value of 'is_long_double'. Otherwise, double values would not be
printed correctly.
Tested for powerpc64le.
Ideally sign should be bool, but sometimes (e.g. in powf) it's more
efficient to pass a non-zero value than 1 to indicate that the sign
should be set. The fixed size int is less ambigous than unsigned
long.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Use uint32_t.
(exp2f_inline): Likewise.
* sysdeps/ieee754/flt-32/math_config.h (__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
* sysdeps/ieee754/flt-32/math_errf.c (xflowf): Likewise.
(__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
The __libc_freeres framework does not extend to non-libc.so objects.
This causes problems in general for valgrind and mtrace detecting
unfreed objects in both libdl.so and libpthread.so. This change is
a pre-requisite to properly moving the malloc hooks out of malloc
since such a move now requires precise accounting of all allocated
data before destructors are run.
This commit adds a proper hook in libc.so.6 for both libdl.so and
for libpthread.so, this ensures that shm-directory.c which uses
freeit () to free memory is called properly. We also remove the
nptl_freeres hook and fall back to using weak-ref-and-check idiom
for a loaded libpthread.so, thus making this process similar for
all DSOs.
Lastly we follow best practice and use explicit free calls for
both libdl.so and libpthread.so instead of the generic hook process
which has undefined order.
Tested on x86_64 with no regressions.
Signed-off-by: DJ Delorie <dj@redhat.com>
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Vector registers perform better than scalar register pairs for copying
data so prefer them instead. This results in a time reduction of over
50% (i.e. 2x speed improvemnet) for some smaller sizes for memcpy-walk.
Larger sizes show improvements of around 1% to 2%. memcpy-random shows
a very small improvement, in the range of 1-2%.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use vector registers.
Vector registers perform much better for moves compared to pairs of
registers on falkor, so use them instead. This results in a time
reduction of up to 50% (i.e. 2x improvement) for a lot of the smaller
sizes, i.e. up to 1K in memmove-walk. Improvements for larger sizes are
smaller, at about 1%-2%.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memcpy_falkor): Use vector registers.
A lookup operation in map_newlink could turn into an insert because of
holes in the interface part of the map. This leads to incorrectly set
the name of the interface to NULL when the interface is not present
for the address being processed (most likely because the interface was
added between the RTM_GETLINK and RTM_GETADDR calls to the kernel).
When such changes are detected by the kernel, it'll mark the dump as
"inconsistent" by setting NLM_F_DUMP_INTR flag on the next netlink
message.
This patch checks this condition and retries the whole operation.
Hopes are that next time the interface corresponding to the address
entry is present in the list and correct name is returned.
This patch adds __*ieee128 symbols for strfrom, strtold, strtold_l, wcstold
and wcstold_l functions. Redirection from *l to *ieee128 will be handled
in separate patch once we start building these new files.
2018-06-28 Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: Add __strfromieee128,
__strtoieee128, __strtoieee128_l,__wcstoieee128 and __wcstoieee128_l.
* sysdeps/ieee754/ldbl-128ibm-compat/strfromf128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128_l.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128_l.c: New file.
This patch fixes the OFD ("file private") locks for architectures that
support non-LFS flock definition (__USE_FILE_OFFSET64 not defined). The
issue in this case is both F_OFD_{GETLK,SETLK,SETLKW} and
F_{SET,GET}L{W}K64 expects a flock64 argument and when using old
F_OFD_* flags with a non LFS flock argument the kernel might interpret
the underlying data wrongly. Kernel idea originally was to avoid using
such flags in non-LFS syscall, but since GLIBC uses fcntl with LFS
semantic as default it is possible to provide the functionality and
avoid the bogus struct kernel passing by adjusting the struct manually
for the required flags.
The idea follows other LFS interfaces that provide two symbols:
1. A new LFS fcntl64 is added on default ABI with the usual macros to
select it for FILE_OFFSET_BITS=64.
2. The Linux non-LFS fcntl use a stack allocated struct flock64 for
F_OFD_{GETLK,SETLK,SETLKW} copy the results on the user provided
struct.
3. Keep a compat symbol with old broken semantic for architectures
that do not define __OFF_T_MATCHES_OFF64_T.
So for architectures which defines __USE_FILE_OFFSET64, fcntl64 will
aliased to fcntl and no adjustment would be required. So to actually
use F_OFD_* with LFS support the source must be built with LFS support
(_FILE_OFFSET_BITS=64).
Also F_OFD_SETLKW command is handled a cancellation point, as for
F_SETLKW{64}.
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #20251]
* NEWS: Mention fcntl64 addition.
* csu/check_fds.c: Replace __fcntl_nocancel by __fcntl64_nocancel.
* login/utmp_file.c: Likewise.
* sysdeps/posix/fdopendir.c: Likewise.
* sysdeps/posix/opendir.c: Likewise.
* sysdeps/unix/pt-fcntl.c: Likewise.
* include/fcntl.h (__libc_fcntl64, __fcntl64,
__fcntl64_nocancel_adjusted): New prototype.
(__fcntl_nocancel_adjusted): Remove prototype.
* io/Makefile (routines): Add fcntl64.
(CFLAGS-fcntl64.c): New rule.
* io/Versions [GLIBC_2.28] (fcntl64): New symbol.
[GLIBC_PRIVATE] (__libc_fcntl): Rename to __libc_fcntl64.
* io/fcntl.h (fcntl64): Add prototype and redirect if
__USE_FILE_OFFSET64 is defined.
* io/fcntl64.c: New file.
* manual/llio.text: Add a note for which commands fcntl acts a
cancellation point.
* nptl/Makefile (CFLAGS-fcntl64.c): New rule.
* sysdeps/mach/hurd/fcntl.c: Alias fcntl to fcntl64 symbols.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl, fcntl64):
New symbols.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Fix F_GETLK64,
F_OFD_GETLK, F_SETLK64, F_SETLKW64, F_OFD_SETLK, and F_OFD_SETLKW for
non-LFS case.
* sysdeps/unix/sysv/linux/fcntl64.c: New file.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
(__fcntl_nocancel_adjusted): Rename to __fcntl64_nocancel_adjusted.
* sysdeps/unix/sysv/linux/not-cancel.h (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
* sysdeps/unix/sysv/linux/tst-ofdlocks.c: New file.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Likewise.
* sysdeps/unix/sysv/linux/Makefile (tests): Add tst-ofdlocks.
(tests-internal): Add tst-ofdlocks-compat.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist [GLIBC_2.28]
(fcntl64): New symbol.
* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist: Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libc.abilist [GLIBC_2.28] (fcntl,
fcntl64): Likewise.
* sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilis: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
Commit 5e79e0292b broke m68k after
s_significand.c became available in the build directory. All m68k
implementations of log1p and significand were including s_significand.c
and stopped working after the inclusion of the the auto-generated file.
This patch reorganizes the implementation of log1p and significand for
m680x0 in order to avoid hitting this problem.
* sysdeps/m68k/m680x0/fpu/s_log1p.c: Set as the generic file for
all log1p and significand functions on m680x0.
* sysdeps/m68k/m680x0/fpu/s_log1pf.c: Include s_log1p.c instead
of s_significand.c..
* sysdeps/m68k/m680x0/fpu/s_log1pl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significand.c: Move all the code to
s_log1p.c and include it..
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Add a new libm-alias-float128.h in order to provide the __*ieee128
aliases for the existing *f128 that do not have a globally exported
symbol.
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/libm-alias-float128.h: New file.
Move declare_mgen_finite_alias, declare_mgen_finite_alias_s and
declare_mgen_finite_alias_x to a shared place in order to reuse them in
other files that also declare _finite aliases.
* math/e_exp2_template.c (declare_mgen_finite_alias,
declare_mgen_finite_alias_s, declare_mgen_finite_alias_x): Move to...
* sysdeps/generic/math-type-macros.h (declare_mgen_finite_alias,
declare_mgen_finite_alias_s, declare_mgen_finite_alias_x): ... here.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch updates the hppa definition of MAP_TYPE to reflect a
corresponding change in the Linux kernel in 4.17 (so the value now has
four bits set, as it does on other architectures, although they are
different from other architectures because of hppa differences in
other MAP_* bits).
Tested with build-many-glibcs.py for hppa.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_MISC]
(MAP_TYPE): Change value to 0x2b.
My recent nan-sign tests fail to build for powerpc64le with GCC 8
because of the special compile / link options needed there for any
test using _Float128. This patch arranges for these tests to be
handled on powerpc64le similarly to other such tests.
Tested with build-many-glibcs.py for powerpc64le.
[BZ #23303]
* sysdeps/powerpc/powerpc64/le/Makefile
(CFLAGS-tst-strtod-nan-sign.c): Add -mfloat128.
(CFLAGS-tst-wcstod-nan-sign.c): Likewise.
(gnulib-tests): Also add $(f128-loader-link) for
tst-strtod-nan-sign abd tst-wcstod-nan-sign.
* sysdeps/mach/include/mach-shortcuts-hidden.h: New file.
* mach/shortcut.awk: Make syscall stubs include
<mach-shortcuts-hidden.h> and add hidden definition.
* sysdeps/mach/include/mach.h: Include <mach-shortcuts-hidden.h>.
* sysdeps/mach/hurd/lseek.c: Include <errno.h>.
* sysdeps/mach/hurd/lseek.c (__libc_lseek): Check that the value returned
by __lseek64 can fit off_t, return EOVERFLOW otherwise.
126b3ec370 ("hurd: Avoid PLTs for __mach_thread_self and
__mach_reply_port") made mach traps hidden, but htl actually uses two of
them. Re-expose them for now. Exposing them properly will be more involved
since their definition is generated.
* sysdeps/mach/include/mach/mach_traps.h (__mach_thread_self,
__mach_task_self): Remove attribute_hidden.
This patch uses an ifunc to implement gettimeofday in the shared libc.
This is faster compared to the vsyscall mechanism that has to check a
global pointer, demangle it and call it indirectly when the VDSO is
present. Resolving the gettimeofday symbol directly to the VDSO code
is safe because there are no failures that the libc has to handle by
setting errno like in a generic vsyscall (the only failure when the
VDSO code falls back to a syscall is EFAULT, but passing an invalid
pointer is undefined behaviour so returning -EFAULT is fine).
If the kernel supports the VDSO interface we use it for extern calls,
otherwise the old vsyscall method is used which falls back to a syscall.
The static version of gettimeofday continues to use a syscall, libc.so
internal calls use the old vsyscall method.
* sysdeps/unix/sysv/linux/aarch64/gettimeofday.c: New file.
after 329ea513b4 ("Avoid cancellable I/O primitives in ld.so.")
* sysdeps/mach/hurd/localplt.data (ld.so): Add __open64, rename
__libc_read and __libc_write to __read and __write.
They need more work to implement, see bug 23286.
* sysdeps/mach/hurd/i386/Makefile (test-xfail-check-abi-libhurduser,
test-xfail-check-abi-libmachuser): Add.
Neither the <dlfcn.h> entry points, nor lazy symbol resolution, nor
initial shared library load-up, are cancellation points, so ld.so
should exclusively use I/O primitives that are not cancellable. We
currently achieve this by having the cancellation hooks compile as
no-ops when IS_IN(rtld); this patch changes to using exclusively
_nocancel primitives in the source code instead, which makes the
intent clearer and significantly reduces the amount of code compiled
under IS_IN(rtld) as well as IS_IN(libc) -- in particular,
elf/Makefile no longer thinks we require a copy of unwind.c in
rtld-libc.a. (The older mechanism is preserved as a backstop.)
The bulk of the change is splitting up the files that define the
_nocancel I/O functions, so they don't also define the variants that
*are* cancellation points; after which, the existing logic for picking
out the bits of libc that need to be recompiled as part of ld.so Just
Works. I did this for all of the _nocancel functions, not just the
ones used by ld.so, for consistency.
fcntl was a little tricky because it's only a cancellation point for
certain opcodes (F_SETLKW(64), which can block), and the existing
__fcntl_nocancel wasn't applying the FCNTL_ADJUST_CMD hook, which
strikes me as asking for trouble, especially as the only nontrivial
definition of FCNTL_ADJUST_CMD (for powerpc64) changes F_*LK* opcodes.
To fix this, fcntl_common moves to fcntl_nocancel.c along with
__fcntl_nocancel, and changes its name to the extern (but hidden)
symbol __fcntl_nocancel_adjusted, so that regular fcntl can continue
calling it. __fcntl_nocancel now applies FCNTL_ADJUST_CMD; so that
both both fcntl.c and fcntl_nocancel.c can see it, the only nontrivial
definition moves from sysdeps/u/s/l/powerpc/powerpc64/fcntl.c to
.../powerpc64/sysdep.h and becomes entirely a macro, instead of a macro
that calls an inline function.
The nptl version of libpthread also changes a little, because its
"compat-routines" formerly included files that defined all the
_nocancel functions it uses; instead of continuing to duplicate them,
I exported the relevant ones from libc.so as GLIBC_PRIVATE. Since the
Linux fcntl.c calls a function defined by fcntl_nocancel.c, it can no
longer be used from libpthread.so; instead, introduce a custom
forwarder, pt-fcntl.c, and export __libc_fcntl from libc.so as
GLIBC_PRIVATE. The nios2-linux ABI doesn't include a copy of vfork()
in libpthread, and it was handling that by manipulating
libpthread-routines in .../linux/nios2/Makefile; it is cleaner to do
what other such ports do, and have a pt-vfork.S that defines no symbols.
Right now, it appears that Hurd does not implement _nocancel I/O, so
sysdeps/generic/not-cancel.h will forward everything back to the
regular functions. This changed the names of some of the functions
that sysdeps/mach/hurd/dl-sysdep.c needs to interpose.
* elf/dl-load.c, elf/dl-misc.c, elf/dl-profile.c, elf/rtld.c
* sysdeps/unix/sysv/linux/dl-sysdep.c
Include not-cancel.h. Use __close_nocancel instead of __close,
__open64_nocancel instead of __open, __read_nocancel instead of
__libc_read, and __write_nocancel instead of __libc_write.
* csu/check_fds.c (check_one_fd)
* sysdeps/posix/fdopendir.c (__fdopendir)
* sysdeps/posix/opendir.c (__alloc_dir): Use __fcntl_nocancel
instead of __fcntl and/or __libc_fcntl.
* sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np)
* sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np)
* sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system):
Use __open64_nocancel instead of __open_nocancel.
* sysdeps/unix/sysv/linux/not-cancel.h: Move all of the
hidden_proto declarations to the end and issue them if either
IS_IN(libc) or IS_IN(rtld).
* sysdeps/unix/sysv/linux/Makefile [subdir=io] (sysdep_routines):
Add close_nocancel, fcntl_nocancel, nanosleep_nocancel,
open_nocancel, open64_nocancel, openat_nocancel, pause_nocancel,
read_nocancel, waitpid_nocancel, write_nocancel.
* io/Versions [GLIBC_PRIVATE]: Add __libc_fcntl,
__fcntl_nocancel, __open64_nocancel, __write_nocancel.
* posix/Versions: Add __nanosleep_nocancel, __pause_nocancel.
* nptl/pt-fcntl.c: New file.
* nptl/Makefile (pthread-compat-wrappers): Remove fcntl.
(libpthread-routines): Add pt-fcntl.
* include/fcntl.h (__fcntl_nocancel_adjusted): New function.
(__libc_fcntl): Remove attribute_hidden.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Call
__fcntl_nocancel_adjusted, not fcntl_common.
(__fcntl_nocancel): Move to new file fcntl_nocancel.c.
(fcntl_common): Rename to __fcntl_nocancel_adjusted; also move
to fcntl_nocancel.c.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c: New file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/fcntl.c: Remove file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h:
Define FCNTL_ADJUST_CMD here, as a self-contained macro.
* sysdeps/unix/sysv/linux/close.c: Move __close_nocancel to...
* sysdeps/unix/sysv/linux/close_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nanosleep.c: Move __nanosleep_nocancel to...
* sysdeps/unix/sysv/linux/nanosleep_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open.c: Move __open_nocancel to...
* sysdeps/unix/sysv/linux/open_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open64.c: Move __open64_nocancel to...
* sysdeps/unix/sysv/linux/open64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat.c: Move __openat_nocancel to...
* sysdeps/unix/sysv/linux/openat_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat64.c: Move __openat64_nocancel to...
* sysdeps/unix/sysv/linux/openat64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/pause.c: Move __pause_nocancel to...
* sysdeps/unix/sysv/linux/pause_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/read.c: Move __read_nocancel to...
* sysdeps/unix/sysv/linux/read_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/waitpid.c: Move __waitpid_nocancel to...
* sysdeps/unix/sysv/linux/waitpid_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/write.c: Move __write_nocancel to...
* sysdeps/unix/sysv/linux/write_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nios2/Makefile: Don't override
libpthread-routines.
* sysdeps/unix/sysv/linux/nios2/pt-vfork.S: New file which
defines nothing.
* sysdeps/mach/hurd/dl-sysdep.c: Define __read instead of
__libc_read, and __write instead of __libc_write. Define
__open64 in addition to __open.
sysdeps/i386/nptl/tls.h has
typedef struct
{
void *tcb; /* Pointer to the TCB. Not necessarily the
thread descriptor used by libpthread. */
dtv_t *dtv;
void *self; /* Pointer to the thread descriptor. */
int multiple_threads;
uintptr_t sysinfo;
uintptr_t stack_guard;
uintptr_t pointer_guard;
int gscope_flag;
int __glibc_reserved1;
/* Reservation of some values for the TM ABI. */
void *__private_tm[4];
/* GCC split stack support. */
void *__private_ss;
} tcbhead_t;
The offset of __private_ss is 0x34. But GCC defines
/* We steal the last transactional memory word. */
#define TARGET_THREAD_SPLIT_STACK_OFFSET 0x30
and libgcc/config/i386/morestack.S has
cmpl %gs:0x30,%eax # See if we have enough space.
movl %eax,%gs:0x30 # Save the new stack boundary.
movl %eax,%gs:0x30 # Save the new stack boundary.
movl %ecx,%gs:0x30 # Save new stack boundary.
movl %eax,%gs:0x30
movl %gs:0x30,%eax
movl %eax,%gs:0x30
Since update TARGET_THREAD_SPLIT_STACK_OFFSET changes split stack ABI,
this patch updates tcbhead_t to match GCC.
[BZ #23250]
[BZ #10686]
* sysdeps/i386/nptl/tls.h (tcbhead_t): Change __private_tm[4]
to _private_tm[3] and add __glibc_reserved2.
Add _Static_assert of offset of __private_ss == 0x30.
* sysdeps/x86_64/nptl/tls.h: Add _Static_assert of offset of
__private_ss == 0x40 for ILP32 and == 0x70 for LP64.
Due to the way the conditions were written, the rtld build of strncmp
ended up with no definition of the strncmp symbol at all: The
implementations were renamed for use within an IFUNC resolver, but the
IFUNC resolver itself was missing (because rtld does not use IFUNCs).
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As reported in bug 23272, the ldbl-96 implementation of fma (fma for
double, in terms of ldbl-96 as the internal arithmetic type, as used
on 32-bit x86) is missing some of the special-case handling for
non-finite arguments, resulting in incorrect NaN results when the
first two arguments are infinities, the third is finite and so the
infinities go through the logic for finite arguments. This patch
fixes it by handling all cases of non-finite arguments up front, with
additional fma tests for the problem cases being added to the
testsuite.
Tested for x86_64 and x86.
[BZ #23272]
* sysdeps/ieee754/ldbl-96/s_fma.c (__fma): Start by handling all
cases of non-finite arguments.
* math/libm-test-fma.inc (fma_test_data): Add more tests.
syscall restarts and signal returns. Thus, we need to xfail the
check-execstack test.
[BZ #23174]
* sysdeps/unix/sysv/linux/hppa/Makefile: xfail check-execstack.
Current posix_spawnp implementation wrongly tries to execute invalid
binaries (for instance script without shebang) as a shell script in
non compat mode. It was a regression introduced by
9ff72da471 when __spawni started to use
__execvpe instead of __execve (glibc __execvpe try to execute ENOEXEC
as shell script regardless).
This patch fixes it by using an internal symbol (__execvpex) with the
faulty semantic (since compat mode is handled by spawni.c itself).
It was reported by Daniel Drake on libc-help [1].
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #23264]
* include/unistd.h (__execvpex): New prototype.
* posix/Makefile (tests): Add tst-spawn4.
(tests-internal): Add tst-spawn4-compat.
* posix/execvpe.c (__execvpe_common, __execvpex): New functions.
* posix/tst-spawn4-compat.c: New file.
* posix/tst-spawn4.c: Likewise.
* sysdeps/unix/sysv/linux/spawni.c (__spawni): Do not interpret invalid
binaries as shell scripts.
* sysdeps/posix/spawni.c (__spawni): Likewise.
[1] https://sourceware.org/ml/libc-help/2018-06/msg00012.html
_init and _fini are special functions provided by glibc for linker to
define DT_INIT and DT_FINI in executable and shared library. They
should never be put in dynamic symbol table. This patch marks them as
hidden to remove them from dynamic symbol table.
Tested with build-many-glibcs.py.
[BZ #23145]
* elf/Makefile (tests-special): Add $(objpfx)check-initfini.out.
($(all-built-dso:=.dynsym): New target.
(common-generated): Add $(all-built-dso:$(common-objpfx)%=%.dynsym).
($(objpfx)check-initfini.out): New target.
(generated): Add check-initfini.out.
* scripts/check-initfini.awk: New file.
* sysdeps/aarch64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/alpha/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/arm/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/hppa/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/i386/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/ia64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/m68k/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/microblaze/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/nios2/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sh/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sparc/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
When building with -mlong-double-128 or -mabi=ibmlongdouble, TFtype
represents the IBM 128-bit extended floating point type, while KFtype
represents the IEEE 128-bit floating point type.
The soft float implementation of e_sqrtf128 had to redefine TFtype and
TF in order to workaround this issue. However, this behavior changes
when -mabi=ieeelongdouble is used and the macros are not necessary.
* sysdeps/powerpc/powerpc64/le/fpu/e_sqrtf128.c
[__HAVE_FLOAT128_UNLIKE_LDBL] (TFtype, TF): Restrict TFtype
and TF redirection to KFtype and KF only when the default
long double type is not the IEEE 128-bit floating point type.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Linux 4.17 adds four new AArch64 hwcap values. This patch adds them
to glibc's AArch64 bits/hwcap.h, with corresponding dl-procinfo.c
updates.
Tested with build-many-glibcs.py for aarch64.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_DIT): New
macro.
(HWCAP_USCAT): Likewise.
(HWCAP_ILRCPC): Likewise.
(HWCAP_FLAGM): Likewise.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 28.
(_dl_aarch64_cap_flags): Add new flag names.
As far as I can tell, Linux 4.17 does not add any new syscalls; this
patch updates the version number in syscall-names.list to reflect that
it's still current for 4.17.
Tested for x86_64-linux-gnu with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.17.
Optimize x86-64 strcmp/wcscmp and strncmp/wcsncmp with AVX2. It uses vector
comparison as much as possible. Peak performance observed on a SkyLake
machine: 9x, 3x, 2.5x and 5.5x for strcmp, strncmp, wcscmp and wcsncmp,
respectively. The larger the comparison length, the more benefit using
avx2 functions, except on the strcmp, where peak is observed at length
== 32 bytes. Select AVX2 strcmp/wcscmp on AVX2 machines where vzeroupper
is preferred and AVX unaligned load is fast.
NB: It uses TZCNT instead of BSF since TZCNT produces the same result
as BSF for non-zero input. TZCNT is faster than BSF and is executed
as BSF if machine doesn't support TZCNT.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
strcmp-avx2, strncmp-avx2, wcscmp-avx2, wcscmp-sse2, wcsncmp-avx2 and
wcsncmp-sse2.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add tests for __strcmp_avx2,
__strncmp_avx2, __wcscmp_avx2, __wcsncmp_avx2, __wcscmp_sse2
and __wcsncmp_sse2.
* sysdeps/x86_64/multiarch/strcmp.c (OPTIMIZE (avx2)):
(IFUNC_SELECTOR): Return OPTIMIZE (avx2) on AVX 2 machines if
AVX unaligned load is fast and vzeroupper is preferred.
* sysdeps/x86_64/multiarch/strncmp.c: Likewise.
* sysdeps/x86_64/multiarch/strcmp-avx2.S: New file.
* sysdeps/x86_64/multiarch/strncmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp-sse2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp.c: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp-sse2.c: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp.c: Likewise.
* sysdeps/x86_64/wcscmp.S (__wcscmp): Add alias only if __wcscmp
is undefined.
The results are from configuring with --disable-multi-arch, building
with “-march=x86-64 -mtune=generic -mfpmath=sse” and running the
testsuite on a Haswell-era CPU.
powerpc-nofpu libc exports __sqrtsf2 and __sqrtdf2 symbols. The
export of these soft-fp symbols is a mistake; they aren't part of the
libgcc interface and GCC will never generate code that calls them.
This patch makes them into compat symbols (no code built for static
libc), moving their sources from the generic soft-fp sources to
sysdeps/powerpc/nofpu (the underlying soft-fp FP_SQRT functionality
remains of use to implement actual sqrt public interfaces, such as
sqrtl / sqrtf128 for which it is used on various platforms, but
__sqrt[sdt]f2 are not such interfaces).
Tested with build-many-glibcs.py for relevant platforms.
[BZ #18473]
* soft-fp/sqrttf2.c: Remove file.
* soft-fp/sqrtdf2.c: Move to ....
* sysdeps/powerpc/nofpu/sqrtdf2.c: ... here. Include
<shlib-compat.h>.
(__sqrtdf2): Make conditional on
[SHLIB_COMPAT (libc, GLIBC_2_3_2, GLIBC_2_28)]. Define as compat
symbol.
* soft-fp/sqrtsf2.c: Move to ....
* sysdeps/powerpc/nofpu/sqrtsf2.c: ... here. Include
<shlib-compat.h>.
(__sqrtsf2): Make conditional on
[SHLIB_COMPAT (libc, GLIBC_2_3_2, GLIBC_2_28)]. Define as compat
symbol.
* soft-fp/Makefile (gcc-single-routines): Remove sqrtsf2.
(gcc-double-routines): Remove sqrtdf2.
(gcc-quad-routines): Remove sqrttf2.
* sysdeps/nios2/Makefile [$(subdir) = soft-fp] (sysdep_routines):
Do not filter out sqrtsf2 and sqrtdf2.
* sysdeps/powerpc/nofpu/Makefile [$(subdir) = soft-fp]
(sysdep_routines): Add sqrtsf2 and sqrtdf2.
This patch creates ifunc for sqrtf128() to make use of new xssqrtqp
instruction for POWER9 when --enable-multi-arch and --with-cpu=power8
options are used on power9 system. This is achieved by explicitly
adding -mcpu=power9 flag for sqrtf128-power9.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/sparc/sparc64/soft-fp directory accordingly, merging its
contents into sysdeps/sparc/sparc64. This completes removing the
unnecessary <arch>/soft-fp sysdeps directories.
sysdeps/sparc/sparc64/soft-fp/e_ilogbl.c is removed rather than moved.
It was not in fact used previously - the ldbl-128 version of
e_ilogbl.c was used instead - and moving it into sysdeps/sparc/sparc64
results in it being used, but causing a build failure because of
FP_DECL_EX declaring an unused variable (as I noted in
<https://sourceware.org/ml/libc-alpha/2013-10/msg00457.html> that file
doesn't appear to use FP_DECL_EX). Given that the file was previously
unused and so presumably not tested recently, removing it is the safe
way to avoid this patch changing what actually gets built into glibc
(if this file should turn out more efficient than the ldbl-128
e_ilogbl.c, it can always be added back in future with the build
failure fixed).
Tested with build-many-glibcs.py that installed stripped shared
libraries for sparc configurations are unchanged by this patch.
* sysdeps/sparc/sparc64/Implies: Remove sparc/sparc64/soft-fp.
* sysdeps/sparc/sparc64/Makefile [$(subdir) = soft-fp]
(sparc64-quad-routines): New variable. Moved from ....
[$(subdir) = soft-fp] (sysdep_routines): Add
$(sparc64-quad-routines). Moved from ....
[$(subdir) = math] (CPPFLAGS): Add -I../soft-fp/. Moved from ....
* sysdeps/sparc/sparc64/soft-fp/Makefile: ... here. Remove file.
* sysdeps/sparc/sparc64/Versions (libc): Add GLIBC_2.2 symbols
moved from ....
* sysdeps/sparc/sparc64/soft-fp/Versions: ... here. Remove file.
* sysdeps/sparc/sparc64/soft-fp/e_ilogbl.c: Remove file.
* sysdeps/sparc/sparc64/soft-fp/qp_add.c: Move to ....
* sysdeps/sparc/sparc64/qp_add.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_cmp.c: Move to ....
* sysdeps/sparc/sparc64/qp_cmp.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_cmpe.c: Move to ....
* sysdeps/sparc/sparc64/qp_cmpe.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_div.c: Move to ....
* sysdeps/sparc/sparc64/qp_div.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_dtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_dtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_feq.c: Move to ....
* sysdeps/sparc/sparc64/qp_feq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fge.c: Move to ....
* sysdeps/sparc/sparc64/qp_fge.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fgt.c: Move to ....
* sysdeps/sparc/sparc64/qp_fgt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fle.c: Move to ....
* sysdeps/sparc/sparc64/qp_fle.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_flt.c: Move to ....
* sysdeps/sparc/sparc64/qp_flt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fne.c: Move to ....
* sysdeps/sparc/sparc64/qp_fne.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_itoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_itoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_mul.c: Move to ....
* sysdeps/sparc/sparc64/qp_mul.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_neg.S: Move to ....
* sysdeps/sparc/sparc64/qp_neg.S: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtod.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtod.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoi.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoi.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtos.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtos.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoui.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoui.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoux.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoux.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtox.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtox.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_sqrt.c: Move to ....
* sysdeps/sparc/sparc64/qp_sqrt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_stoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_stoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_sub.c: Move to ....
* sysdeps/sparc/sparc64/qp_sub.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_uitoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_uitoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_util.c: Move to ....
* sysdeps/sparc/sparc64/qp_util.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_uxtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_uxtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_xtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_xtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/sfp-machine.h: Move to ....
* sysdeps/sparc/sparc64/sfp-machine.h: ... here.
Currently, powerpc, powerpc64, and powerpc64le imply the same set of
subdirectories from sysdeps/ieee754: flt-32, dbl-64, ldbl-128ibm, and
ldbl-opt. In preparation for the transition of the long double format -
from IBM Extended Precision to IEEE 754 128-bits floating-point - on
powerpc64le, this patch splits the shared Implies file into three
separate files (one for each of the powerpc architectures), without
changing their contents. Future patches will modify powerpc64le.
* sysdeps/powerpc/Implies: Removed. Previous contents copied to...
* sysdeps/powerpc/powerpc32/Implies-after: ... here.
* sysdeps/powerpc/powerpc64/be/Implies-after: ... here.
* sysdeps/powerpc/powerpc64/le/Implies-before: ... and here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar.
sysdeps/powerpc/soft-fp isn't quite such a case, as the Implies files
pointing to it are
sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies and
sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies (and
indeed there is a different sfp-machine.h used for powerpc64le).
However, the same principle applies: there is no need for this
directory because sfp-machine.h, the only file in it, can most
naturally go in sysdeps/powerpc/nofpu, which is used by exactly the
same configurations (and there is a close dependence between the files
there and the sfp-machine.h implementation). This patch eliminates
the sysdeps/powerpc/soft-fp directory accordingly.
Tested with build-many-glibcs.py that installed stripped shared
libraries for powerpc configurations are unchanged by this patch.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies: Remove
powerpc/soft-fp.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies:
Likewise.
* sysdeps/powerpc/soft-fp/sfp-machine.h: Move to ....
* sysdeps/powerpc/nofpu/sfp-machine.h: ... here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the sysdeps/sh/soft-fp
directory accordingly, merging its contents into sysdeps/sh.
Tested with build-many-glibcs.py that installed stripped shared
libraries for sh configurations are unchanged by this patch.
* sysdeps/sh/Implies: Remove sh/soft-fp.
* sysdeps/sh/soft-fp/sfp-machine.h: Move to ....
* sysdeps/sh/sfp-machine.h: ... here.
This patch skips zero length in __mempcpy_erms, __memmove_erms and
__memset_erms.
Tested on x86-64.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S
(__mempcpy_erms): Skip zero length.
(__memmove_erms): Likewise.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(__memset_erms): Likewise.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/alpha/soft-fp directory accordingly, merging its contents
into sysdeps/alpha.
Tested with build-many-glibcs.py that installed stripped shared
libraries for alpha-linux-gnu are unchanged by this patch.
* sysdeps/alpha/Implies: Remove alpha/soft-fp.
* sysdeps/alpha/Makefile [$(subdir) = soft-fp] (sysdep_routines):
Add functions moved from ....
[$(subdir) = math] (CPPFLAGS): Add -I../soft-fp. Moved from ....
* sysdeps/alpha/soft-fp/Makefile: ... here. Remove file.
* sysdeps/alpha/Versions (libc): Add GLIBC_2.3.4 symbols moved
from ....
* sysdeps/alpha/soft-fp/Versions: ... here. Remove file.
* sysdeps/alpha/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/alpha/e_sqrtl.c: ... here.
* sysdeps/alpha/soft-fp/local-soft-fp.h: Move to ....
* sysdeps/alpha/local-soft-fp.h: ... here.
* sysdeps/alpha/soft-fp/ots_add.c: Move to ....
* sysdeps/alpha/ots_add.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmp.c: Move to ....
* sysdeps/alpha/ots_cmp.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmpe.c: Move to ....
* sysdeps/alpha/ots_cmpe.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqux.c: Move to ....
* sysdeps/alpha/ots_cvtqux.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqx.c: Move to ....
* sysdeps/alpha/ots_cvtqx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvttx.c: Move to ....
* sysdeps/alpha/ots_cvttx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxq.c: Move to ....
* sysdeps/alpha/ots_cvtxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxt.c: Move to ....
* sysdeps/alpha/ots_cvtxt.c: ... here.
* sysdeps/alpha/soft-fp/ots_div.c: Move to ....
* sysdeps/alpha/ots_div.c: ... here.
* sysdeps/alpha/soft-fp/ots_mul.c: Move to ....
* sysdeps/alpha/ots_mul.c: ... here.
* sysdeps/alpha/soft-fp/ots_nintxq.c: Move to ....
* sysdeps/alpha/ots_nintxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_sub.c: Move to ....
* sysdeps/alpha/ots_sub.c: ... here.
* sysdeps/alpha/soft-fp/sfp-machine.h: Move to ....
* sysdeps/alpha/sfp-machine.h: ... here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/aarch64/soft-fp directory accordingly, merging its contents
into sysdeps/aarch64.
Tested with build-many-glibcs.py that installed stripped shared
libraries for aarch64 configurations are unchanged by this patch.
* sysdeps/aarch64/Implies: Remove aarch64/soft-fp.
* sysdeps/aarch64/Makefile [$(subdir) = math] (CPPFLAGS): Add
-I../soft-fp. Moved from ....
* sysdeps/aarch64/soft-fp/Makefile: ... here. Remove file.
* sysdeps/aarch64/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/aarch64/e_sqrtl.c: ... here.
* sysdeps/aarch64/soft-fp/sfp-machine.h: Move to ....
* sysdeps/aarch64/sfp-machine.h: ... here.
Building with recent GCC mainline for i686-linux-gnu is failing with:
../sysdeps/ieee754/flt-32/k_rem_pio2f.c: In function '__kernel_rem_pio2f':
../sysdeps/ieee754/flt-32/k_rem_pio2f.c:186:28: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0]-fv);
^
and
../sysdeps/ieee754/dbl-64/k_rem_pio2.c: In function '__kernel_rem_pio2':
../sysdeps/ieee754/dbl-64/k_rem_pio2.c:333:32: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0] - fv);
^
These are similar to -Warray-bounds cases for which the DIAG_* macros
are already used in those files: the array element is in fact always
initialized, but the reasoning that it is depends on another array not
having been all zero at an earlier point, which depends on the
functions not being called with zero arguments. Thus, this patch uses
DIAG_* to disable -Wmaybe-uninitialized for this code.
(The warning may be i686-specific because of math_narrow_eval somehow
perturbing what the compiler does with this code enough to cause the
warning. I don't know why it doesn't appear for i686-gnu.)
Tested with build-many-glibcs.py that this fixes the i686 build in
this configuration.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Ignore
-Wmaybe-uninitialized around access to fq[0].
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
The llseek function name is an obsolete, Linux-specific, unprototyped
name for lseek64 with a link-time warning. This patch completes the
obsoletion of this function name by making it into a compat symbol,
not available for newly linked programs and not included in the ABI
for new ports.
When a compat symbol is defined in syscalls.list, the code for that
function is not built at all for static linking unless some non-compat
symbol for that function is also defined with an explicit symbol
version, so an explicit symbol version for lseek64 is added to the
MIPS n32 syscalls.list. The case in make-syscalls.sh that handles
such explicit non-compat symbol versions then needs to be changed to
use weak_alias instead of strong_alias when the syscall is built
outside of libc, to avoid linknamespace failures from a strong lseek64
symbol in static libpthread.
The x32 llseek.S was as far as I could tell already unused (nothing
builds an llseek.* source file, at least since the lseek / lseek64 /
llseek consolidation), so is removed in this patch as well.
Tested for x86_64 and x86, and with build-many-glibcs.py.
[BZ #18471]
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use weak
aliases for non-libc case of versioned symbols.
* sysdeps/unix/sysv/linux/lseek64.c: Include <shlib-compat.h>.
(llseek): Define as compat symbol if
[SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_28)], not as weak alias
with link warning.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (llseek):
Make into a compat symbol, disabled for minimum symbol version
GLIBC_2.28 and later.
* sysdeps/unix/sysv/linux/x86_64/x32/llseek.S: Remove file.
Although the REP MOVSB implementations of memmove, memcpy and mempcpy
aren't used by the current processors, this patch adds Prefer_FSRM
check in ifunc-memmove.h so that they can be used in the future.
* sysdeps/x86/cpu-features.h (bit_arch_Prefer_FSRM): New.
(index_arch_Prefer_FSRM): Likewise.
* sysdeps/x86/cpu-tunables.c (TUNABLE_CALLBACK (set_hwcaps)):
Also check Prefer_FSRM.
* sysdeps/x86_64/multiarch/ifunc-memmove.h (IFUNC_SELECTOR):
Also return OPTIMIZE (erms) for Prefer_FSRM.
The newer Intel processors support Fast Short REP MOVSB which has a
feature bit in CPUID. This patch adds the Fast Short REP MOVSB (FSRM)
bit to x86 cpu-features.
* sysdeps/x86/cpu-features.h (bit_cpu_FSRM): New.
(index_cpu_FSRM): Likewise.
(reg_FSRM): Likewise.
The Linux nfsservctl syscall was removed in Linux 3.1. Since the
minimum kernel version for use with glibc is 3.2, the glibc wrapper
for this syscall can no longer usefully be called. This patch makes
it into a compat symbol, not provided at all for static linking or new
ports. (It was already the case that there was no header declaration
of this function.)
Tested for x86_64.
* sysdeps/unix/sysv/linux/syscalls.list (nfsservctl): Make into a
compat symbol, disabled for minimum symbol version GLIBC_2.28 and
later.
_Float128 is defined for certain compilers indirectly from
<libm-alias-double.h>, and <ieee754_float128.h> (included from
<math-nan-payload-float128.h>) needs this definition.
As indicated by BZ#23178, concurrent access on some files read by nscd
may result non expected data send through service requisition. This is
due 'sendfile' Linux implementation where for sockets with zero-copy
support, callers must ensure the transferred portions of the the file
reffered by input file descriptor remain unmodified until the reader
on the other end of socket has consumed the transferred data.
I could not find any explicit documentation stating this behaviour on
Linux kernel documentation. However man-pages sendfile entry [1] states
in NOTES the aforementioned remark. It was initially pushed on man-pages
with an explicit testcase [2] that shows changing the file used in
'sendfile' call prior the socket input data consumption results in
previous data being lost.
From commit message it stated on tested Linux version (3.15) only TCP
socket showed this issues, however on recent kernels (4.4) I noticed the
same behaviour for local sockets as well.
Since sendfile on HURD is a read/write operation and the underlying
issue on Linux, the straightforward fix is just remove sendfile use
altogether. I am really skeptical it is hitting some hotstop (there
are indication over internet that sendfile is helpfull only for large
files, more than 10kb) here to justify that extra code complexity or
to pursuit other possible fix (through memory or file locks for
instance, which I am not sure it is doable).
Checked on x86_64-linux-gnu.
[BZ #23178]
* nscd/nscd-client.h (sendfileall): Remove prototype.
* nscd/connections.c [HAVE_SENDFILE] (sendfileall): Remove function.
(handle_request): Use writeall instead of sendfileall.
* nscd/aicache.c (addhstaiX): Likewise.
* nscd/grpcache.c (cache_addgr): Likewise.
* nscd/hstcache.c (cache_addhst): Likewise.
* nscd/initgrcache.c (addinitgroupsX): Likewise.
* nscd/netgroupcache.c (addgetnetgrentX, addinnetgrX): Likewise.
* nscd/pwdcache.c (cache_addpw): Likewise.
* nscd/servicescache.c (cache_addserv): Likewise.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) == nscd]
(sysdep-CFLAGS): Remove -DHAVE_SENDFILE.
* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_SENDFILE):
Remove define.
[1] http://man7.org/linux/man-pages/man2/sendfile.2.html
[2] 7b6a329977 (diff-efd6af3a70f0f07c578e85b51e83b3c3)
Unlike i386, we can call hidden IFUNC functions inside libc.so since
x86-64 PLT is always PIC.
Tested on x86-64.
* sysdeps/x86_64/multiarch/strncat-c.c (STRNCAT_PRIMARY): Removed.
Include <string/strncat.c>.
* sysdeps/x86_64/multiarch/strncat.c (__strncat): New strong
alias.
(__GI___strncat): New hidden alias.
Since we have loaded address of PREINIT_FUNCTION into %eax, we can
avoid extra branch to PLT slot.
* sysdeps/i386/crti.S (_init): Replace PREINIT_FUNCTION@PLT
with *%eax in call.
Acked-by: Christian Brauner (Ubuntu) <christian@brauner.io>
Since the result of testl is never used, this patch removes it.
Tested on 64-bit AVX2 machine.
* sysdeps/x86_64/multiarch/strlen-avx2.S (STRLEN): Remove the
unnecessary testl.
When compiling C++ code with -mabi=ieeelongdouble, KCtype is
unavailable and the long double type should be used instead.
This is also providing macro __HAVE_FLOAT128_UNLIKE_LDBL in order to
identify the kind of long double type is being used in the current
compilation unit.
Notice that bits/floatn.h cannot benefit from the new macro due to order
of header inclusion.
* bits/floatn-common.h: Define __HAVE_FLOAT128_UNLIKE_LDBL.
* math/math.h: Restrict the prototype definition for the functions
issignaling(_Float128) and iszero(_Float128); and template
__iseqsig_type<_Float128>, from __HAVE_DISTINCT_FLOAT128 to
__HAVE_FLOAT128_UNLIKE_LDBL.
* sysdeps/powerpc/bits/floatn.h [__HAVE_FLOAT128
&& (!__GNUC_PREREQ (7, 0) || defined __cplusplus)
&& __LDBL_MANT_DIG__ == 113]: Use long double suffix for
__f128() constants; define the type _Float128 as long double;
and reuse long double in __CFLOAT128.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch continues the math_private.h cleanup by stopping
math_private.h from including math-barriers.h and making the users of
the barrier macros include the latter header directly. No attempt is
made to remove any math_private.h includes that are now unused, except
in strtod_l.c where that is done to avoid line number changes in
assertions, so that installed stripped shared libraries can be
compared before and after the patch. (I think the floating-point
environment support in math_private.h should also move out - some
architectures already have fenv_private.h as an architecture-internal
header included from their math_private.h - and after moving that out
might be a better time to identify unused math_private.h includes.)
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/math_private.h: Do not include
<math-barriers.h>.
* stdlib/strtod_l.c: Include <math-barriers.h> instead of
<math_private.h>.
* math/fromfp.h: Include <math-barriers.h>.
* math/math-narrow.h: Likewise.
* math/s_nextafter.c: Likewise.
* math/s_nexttowardf.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_nextafterl.c: Likewise.
* sysdeps/i386/fpu/s_nexttoward.c: Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atanh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
For smaller and medium sized copies, the effect of hardware
prefetching are not as dominant as instruction level parallelism.
Hence it makes more sense to load data into multiple registers than to
try and route them to the same prefetch unit. This is also the case
for the loop exit where we are unable to latch on to the same prefetch
unit anyway so it makes more sense to have data loaded in parallel.
The performance results are a bit mixed with memcpy-random, with
numbers jumping between -1% and +3%, i.e. the numbers don't seem
repeatable. memcpy-walk sees a 70% improvement (i.e. > 2x) for 128
bytes and that improvement reduces down as the impact of the tail copy
decreases in comparison to the loop.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use multiple registers to copy data in loop tail.
The tail of the copy loops are unable to train the falkor hardware
prefetcher because they load from a different base compared to the hot
loop. In this case avoid serializing the instructions by loading them
into different registers. Also peel the last iteration of the loop
into the tail (and have them use different registers) since it gives
better performance for medium sizes.
This results in performance improvements of between 3% and 20% over
the current falkor implementation for sizes between 128 bytes and 1K
on the memmove-walk benchmark, thus mostly covering the regressions
seen against the generic memmove.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memmove_falkor): Use multiple registers to move data in
loop tail.
This patch continues cleaning up math_private.h by moving the
math_opt_barrier and math_force_eval macros to a separate header
math-barriers.h.
At present, those macros are inside a "#ifndef math_opt_barrier" in
math_private.h to allow architectures to override them and then use
a separate math-barriers.h header, no such #ifndef or #include_next is
needed; architectures just have their own alternative version of
math-barriers.h when providing their own optimized versions that avoid
going through memory unnecessarily. The generic math-barriers.h has a
comment added to document these two macros.
In this patch, math_private.h is made to #include <math-barriers.h>,
so files using these macros do not need updating yet. That is because
of uses of math_force_eval in math_check_force_underflow and
math_check_force_underflow_nonneg, which are still defined in
math_private.h. Once those are moved out to a separate header, that
separate header can be made to include <math-barriers.h>, as can the
other files directly using these barrier macros, and then the include
of <math-barriers.h> from math_private.h can be removed.
Tested for x86_64 and x86. Also tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math-barriers.h: New file.
* sysdeps/generic/math_private.h [!math_opt_barrier]
(math_opt_barrier): Move to math-barriers.h.
[!math_opt_barrier] (math_force_eval): Likewise.
* sysdeps/aarch64/fpu/math-barriers.h: New file.
* sysdeps/aarch64/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/alpha/fpu/math-barriers.h: New file.
* sysdeps/alpha/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/x86/fpu/math-barriers.h: New file.
* sysdeps/i386/fpu/fenv_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/m68k/m680x0/fpu/math_private.h: Move to....
* sysdeps/m68k/m680x0/fpu/math-barriers.h: ... here. Adjust
multiple-include guard for rename.
* sysdeps/powerpc/fpu/math-barriers.h: New file.
* sysdeps/powerpc/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
This patch continues cleaning up the math_private.h header, which
contains lots of different definitions many of which are only needed
by a limited subset of files using that header (and some of which are
overridden by architectures that only want to override selected parts
of the header), by moving the math_narrow_eval macro out to a separate
math-narrow-eval.h header, only included by those files that need it.
That header is placed in include/ (since it's used in stdlib/, not
just files built in math/, but no sysdeps variants are needed at
present).
Tested for x86_64, and with build-many-glibcs.py. (Installed stripped
shared libraries change because of line numbers in assertions in
strtod_l.c.)
* include/math-narrow-eval.h: New file. Contents moved from ....
* sysdeps/generic/math_private.h: ... here.
(math_narrow_eval): Remove macro. Moved to math-narrow-eval.h.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* math/s_fdim_template.c: Include <math-narrow-eval.h>.
* stdlib/strtod_l.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c: Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c: Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c: Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c: Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c: Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c: Likewise.
* sysdeps/ieee754/flt-32/e_expf.c: Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c: Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c: Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/s_erff.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c: Likewise.
When MEMSET_SYMBOL (__memset, erms) is provided for debugger, mark it
as hidden so that it will be local to the library.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(MEMSET_SYMBOL (__memset, erms)): Mark the debugger symbol as
hidden.
On s390 (31bit) if glibc is build with -Os, pthread_join sometimes
blocks indefinitely. This is e.g. observable with
testcase intl/tst-gettext6.
pthread_join is calling lll_wait_tid(tid), which performs the futex-wait
syscall in a loop as long as tid != 0 (thread is alive).
On s390 (and build with -Os), tid is loaded from memory before
comparing against zero and then the tid is loaded a second time
in order to pass it to the futex-wait-syscall.
If the thread exits in between, then the futex-wait-syscall is
called with the value zero and it waits until a futex-wake occurs.
As the thread is already exited, there won't be a futex-wake.
In lll_wait_tid, the tid is stored to the local variable __tid,
which is then used as argument for the futex-wait-syscall.
But unfortunately the compiler is allowed to reload the value
from memory.
With this patch, the tid is loaded with atomic_load_acquire.
Then the compiler is not allowed to reload the value for __tid from memory.
ChangeLog:
[BZ #23137]
* sysdeps/nptl/lowlevellock.h (lll_wait_tid):
Use atomic_load_acquire to load __tid.
To prepare for shadow stack support, restore the pointer into %rdx after
syscall and use %rdx, instead of %rsi, to restore context. There is no
functional change.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86_64/swapcontext.S (__swapcontext):
Restore the pointer into %rdx, after syscall and use %rdx,
instead of %rsi, to restore context.
To prepare for shadow stack support, pop the pointer into %rdx after
syscall and use %rdx, instead of %rsi, to restore context. There is
no functional change.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86_64/setcontext.S (__setcontext):
Pop the pointer into %rdx after syscall and use %rdx, instead
of %rsi, to restore context.
The pad array in struct pthread_unwind_buf is used by setjmp to save
shadow stack register. We assert that size of struct pthread_unwind_buf
is no less than offset of shadow stack pointer + shadow stack pointer
size.
Since functions, like LIBC_START_MAIN, START_THREAD_DEFN as well as
these with thread cancellation, call setjmp, but never return after
__libc_unwind_longjmp, __libc_unwind_longjmp, which is defined as
__libc_longjmp on x86, doesn't need to restore shadow stack register.
__libc_longjmp, which is a private interface for thread cancellation
implementation in libpthread, is changed to call __longjmp_cancel,
instead of __longjmp. __longjmp_cancel is a new internal function
in libc, which is similar to __longjmp, but doesn't restore shadow
stack register.
The compatibility longjmp and siglongjmp in libpthread.so are changed
to call __libc_siglongjmp, instead of __libc_longjmp, so that they will
restore shadow stack register.
Tested with build-many-glibcs.py.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* nptl/pthread_create.c (START_THREAD_DEFN): Clear previous
handlers after setjmp.
* setjmp/longjmp.c (__libc_longjmp): Don't define alias if
defined.
* sysdeps/unix/sysv/linux/x86/setjmpP.h: Include
<libc-pointer-arith.h>.
(_JUMP_BUF_SIGSET_BITS_PER_WORD): New.
(_JUMP_BUF_SIGSET_NSIG): Changed to 96.
(_JUMP_BUF_SIGSET_NWORDS): Changed to use ALIGN_UP and
_JUMP_BUF_SIGSET_BITS_PER_WORD.
* sysdeps/x86/Makefile (sysdep_routines): Add __longjmp_cancel.
* sysdeps/x86/__longjmp_cancel.S: New file.
* sysdeps/x86/longjmp.c: Likewise.
* sysdeps/x86/nptl/pt-longjmp.c: Likewise.
As for sysctl, ustat has been deprecated in favor of {f}statfs. Also
some newer ports which uses generic interface builds a stub version that
returns ENOSYS.
This patch deprecates ustat interface by removing ustat.h related headers,
adding a compatibility symbol, and avoiding new ports to build and provide
the symbol.
Checked on x86_64-linux-gnu and i686-linux-gnu. Also checked with a
check-abi on all affected ABIs.
* NEWS: Add ustat.h deprecation entry.
* bits/ustat.h: Remove file.
* misc/sys/ustat.h: Likewise.
* misc/ustat.h: Likewise.
* sysdeps/unix/sysv/linux/generic/ustat.c: Likewise.
* misc/Makefile (headers): Remove ustat.h and sys/ustat.h.
* misc/ustat.c (__ustat): Rename to __old_ustat and export only in
compatibility mode.
* sysdeps/unix/sysv/linux/ustat.c (__ustat): Likewise.
* sysdeps/unix/sysv/linux/mips/ustat.c: Define DEV_TO_KDEV and use
generic Linux implementation.
This patch consolidate Linux readahead implementation on generic
sysdeps/unix/sysv/linux/readahead.c one. The changes are:
- Assume __NR_readahead existence with current minimum kernel of 3.2
for all architectures.
- Use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG, and SYSCALL_LL64 to pass
the 64 bit offset. This allows architectures with different abis
to use the same implementation.
- Remove arch-specific readahead implementations.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* sysdeps/unix/sysv/linux/arm/readahead.c: Remove file.
* sysdeps/unix/sysv/linux/mips/mips32/readahead.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (readahead):
Remove.
* sysdeps/unix/sysv/linux/mips/mips64/n64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/readahead.c (__readahead): Assume
__NR_readahead existence, and use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG,
and SYSCALL_LL64.
The creation of the divergent sysdeps directory for powerpc64le
commit 2f7f3cd8cd
Author: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
Date: Fri Jul 15 18:04:40 2016 -0500
powerpc64le: Create divergent sysdep directory for powerpc64le.
allowed float128 to be enabled for powerpc64le (little-endian) and not
for powerpc64 (big-endian). Since the only intended difference between
them was the presence or absence of the float128 interface, the sysdeps
directory for powerpc64le explicitly reused the files from powerpc64
(through the use of Implies files).
Although this works, it also means that files under the powerpc64
directory might be preferred over files under powerpc64le. For
instance, on a build for powerpc64le with target set to power9, a file
from powerpc64/power5 might get built, even though a file with the same
name exists in powerpc64le/power8. That happens because the processor
hierarchy was only defined in the sysdeps directory for powerpc64 (and
borrowed by powerpc64le).
This patch fixes this behavior, by creating new subdirectories under
powerpc64 (i.e.: powerpc64/be and powerpc64/le) and creating new Implies
files to provide the hierarchy of processors for powerpc64 and
powerpc64le separately. These changes have no effect on installed,
stripped binaries (which remain unchanged).
Tested that installed stripped binaries are unchanged and that there are
no regressions on powerpc64 and powerpc64le.
Since tile support has been removed from the Linux kernel for 4.17,
this patch removes the (unmaintained) port to tilegx from glibc (the
tilepro support having been previously removed). This reflects the
general principle that a glibc port needs upstream support for the
architecture in all the components it build-depends on (so binutils,
GCC and the Linux kernel, for the normal case of a port supporting the
Linux kernel but no other OS), in order to be maintainable.
Apart from removal of sysdeps/tile and sysdeps/unix/sysv/linux/tile,
there are updates to various comments referencing tile for which
removal of those references seemed appropriate. The configuration is
removed from README and from build-many-glibcs.py. contrib.texi keeps
mention of removed contributions, but I updated Chris Metcalf's entry
to reflect that he also contributed the non-removed support for the
generic Linux kernel syscall interface.
__ASSUME_FADVISE64_64_NO_ALIGN support is removed, as it was only used
by tile.
* sysdeps/tile: Remove.
* sysdeps/unix/sysv/linux/tile: Likewise.
* README (tilegx-*-linux-gnu): Remove from list of supported
configurations.
* manual/contrib.texi (Contributors): Mention Chris Metcalf's
contribution of support for generic Linux kernel syscall
interface.
* scripts/build-many-glibcs.py (Context.add_all_configs): Remove
tilegx configurations.
(Config.install_linux_headers): Do not handle tile.
* sysdeps/unix/sysv/linux/aarch64/ldsodefs.h: Do not mention Tile
in comment.
* sysdeps/unix/sysv/linux/nios2/Makefile: Likewise.
* sysdeps/unix/sysv/linux/posix_fadvise.c: Likewise.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
* sysdeps/unix/sysv/linux/posix_fadvise64.c: Do not mention Tile
in comment.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
Prevent random runtime crashes due to missing symbols caused by mixed
libnss_* versions.
[BZ #22766]
* include/dlfcn.h [__libc_dl_open]: Replace RTLD_LAZY with RTLD_NOW.
* sysdeps/gnu/unwind-resume.c (__lib_gcc_s_init): Replace
__libc_dlopen_mode() using RTLD_NOW with __libc_dlopen.
* sysdeps/nptl/unwind-forcedunwind.c: Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch consolidates Linux getdirentries{64} implementation on just
the default sysdeps/unix/sysv/linux/getdirentries{64} ones. The default
implementation handles the Linux requirements:
* getdirentries is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdirentries64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/getdirentries.c (getdirentries): Build iff
_DIRENT_MATCHES_DIRENT64 is not defined.
* sysdeps/unix/sysv/linux/getdirentries64.c (getdirentries64): Open
implementation and alias to getdirentries if _DIRENT_MATCHES_DIRENT64
is defined.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries.c: Remove file.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries64.c: Remove file.
The build of glibc for Hurd has been failing with GCC mainline because
of the checks that aliases have the same type as the symbol aliased;
the Hurd dl-sysdep.c has a macro that defines aliases without using
the proper type. When GCC 8 branches (soon), I intend to make it the
default version in build-many-glibcs.py, so these failures would mean
the default build-many-glibcs.py build fails for Hurd again.
This patch fixes the Hurd build with GCC 8 by changing the macro that
defines the problem aliases to use the correct type for them. An
include of <not-errno.h> is needed to avoid this use of typeof
resulting in an error for __access_noerrno not being declared.
Tested compilation for i686-gnu with build-many-glibcs.py.
* sysdeps/mach/hurd/dl-sysdep.c: Include <not-errno.h>.
(check_no_hidden): Use type of original function when declaring
alias.
This patch adds the PTRACE_SECCOMP_GET_METADATA constant from Linux
4.16 to all relevant sys/ptrace.h files. A type struct
__ptrace_seccomp_metadata, analogous to other such types, is also
added.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): New enum value and macro.
* sysdeps/unix/sysv/linux/bits/ptrace-shared.h
(struct __ptrace_seccomp_metadata): New type.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/arm/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/tile/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/x86/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
This patch consolidates both alphasort{64} and versionsort{64}
implementation on just the default dirent/alphasort{64}c and
dirent/versionsort{64} respectively. It changes the logic
to follow the conventions used on other code consolidation:
* the non-LFS variant is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* the LFS variant is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c. For powerpc32 and sparcv9
it requires to add specific arch-implementation to override the
generic Linux one because neither ABI exports an compat symbol for
non-LFS alphasort64 and versionsort64 variant. It is most likely a
bug and it is also not one that can be fixed (in that there would be
existing binaries expecting both meanings of that symbol at its single
existing version, with binaries expecting the new meaning probably much
more common than those expecting the original meaning of that symbol at
that version).
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/alphasort.c (alphasort): Build iff _DIRENT_MATCHES_DIRENT64 is
defined.
* dirent/versionsort.c (versionsort): Likewise.
* dirent/alphasort64.c (alphasort64): Build regardless and alias to
alphasort if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/versionsort64.c (versionsort64): Likewise.
* sysdeps/unix/sysv/linux/i386/alphasort64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/alphasort64.c: New file.
* sysdeps/unix/sysv/linux/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/versionsort64.c: Likewise.
This patch makes the alpha bits/termios.h define XTABS to TAB3, so
matching a change made in Linux 4.16 as well as matching other
architectures where the values are already equal.
Tested with build-many-glibcs.py for alpha-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h [__USE_MISC]
(XTABS): Define to TAB3.
This patch consolidates scandir{at}{64} implementation on just
the default dirent/scandir{at}{64}{_r}.c ones. It changes the logic
to follow the conventions used on other code consolidation:
* scandir{at} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* scandir{at}{64} is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/scandir-tail-common.c: New file.
* dirent/scandir-tail.c: Use scandir-tail-common.c.
(__scandir_tail): Build iff _DIRENT_MATCHES_DIRENT64 is not defined.
* dirent/scandir.c: Use scandir-tail-common.c.
* dirent/scandirat.c: Likewise.
* dirent/scandir64-tail.c: Use scandir-tail-common.c.
* dirent/scandir64.c (scandir64): Always build and alias to scandir
if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/scandirat64.c (scandirat64): Likewise.
* include/dirent.h (__scandir_tail): Only define iff
_DIRENT_MATCHES_DIRENT64 is not defined.
(__scandir64_tail): Define regardless.
(__scandirat, scandirat64): Remove libc_hidden_proto.
* sysdeps/unix/sysv/linux/arm/scandir64.c: Remove file.
* sysdeps/unix/sysv/linux/m68k/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/scandir64.c: New file.
This patch updates the aarch64 bits/hwcap.h and dl-procinfo.c for the
new HWCAP_ASIMDFHM value in Linux 4.16.
Tested with build-many-glibcs.py for aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_ASIMDFHM):
New macro.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 24.
(_dl_aarch64_cap_flags): Add asimdfhm.
* sysdeps/pthread/bits/types/sigevent_t.h: New file, based on the
generic version but include <bits/pthreadtypes.h> to make struct
sigevent's sigev_notify_attributes field a pthread_attr_t*.
* bits/sched.h: Include <bits/types/struct_sched_param.h> and move struct
sched_param definition to it.
* sysdeps/unix/sysv/linux/bits/sched.h: Likewise.
* bits/types/struct_sched_param.h: New file.
* sysdeps/htl/bits/types/struct___pthread_attr.h: Include
<bits/types/struct_sched_param.h> instead of <sched.h>.
* posix/Makefile (headers): Add bits/types/struct_sched_param.h.
Fix commit 298d0e3 for mips64n32, checked on a mips64n32-linux-gnu build.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c (__getdents64):
Only alias to __getdents for _DIRENT_MATCHES_DIRENT64.
* bits/in.h [!__USE_MISC]: Do not define struct ip_opts.
* conform/data/netinet/in.h-data: Allow sin_ and sin6_ prefix.
* sysdeps/gnu/bits/msq.h (struct msqid_ds): Use __wait_queue struct
instead of wait_queue.
* sysdeps/gnu/bits/shm.h (struct shmid_ds): Use __vm_area_struct
instead of vm_area_struct.
This patch consolidates Linux getdents{64} implementation on just
the default sysdeps/unix/sysv/linux/getdents{64}{_r}.c ones.
Although this symbol is used only internally, the non-LFS version
still need to be build due the non-LFS getdirentries which requires
its semantic.
The non-LFS default implementation now uses the wordsize-32 as base
which uses getdents64 syscall plus adjustment for overflow (it allows
to use the same code for architectures that does not support non-LFS
getdents syscall). It has two main differences to wordsize-32 one:
- DIRENT_SET_DP_INO is added to handle alpha requirement to zero
the padding.
- alloca is removed by allocating a bounded temporary buffer (it
increases stack usage by roughly 276 bytes).
The default implementation handle the Linux requirements:
* getdents is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdents64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
* A compat symbol is added for getdents64 for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/getdents.c: Add comments with alpha
requirements.
(_DIRENT_MATCHES_DIRENT64): Undef
* sysdeps/unix/sysv/linux/alpha/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/getdents64.c: Remove file.
* sysdeps/unix/sysv/linux/generic/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/generic/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/getdents.c: Simplify implementation by
use getdents64 syscalls as base.
* sysdeps/unix/sysv/linux/getdents64.c: Likewise and add compatibility
symbol if required.
* sysdeps/unix/sysv/linux/hppa/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c
(__get_clockfreq_via_proc_openprom): Use __getdents64.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c: New file.
* sysdeps/mach/hurd/bits/statfs.h (struct statfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statfs64): Likewise.
Standards require that the f_bsize, f_frsize, f_flag and f_namemax fields be
unsigned long. They used to be only unsigned on hurd, which happens to be
compatible with unsigned long on the only existing, 32bit, port. We can
thus merely fix the type.
* sysdeps/mach/hurd/bits/statvfs.h (struct statvfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statvfs64): Likewise.
* sysdeps/mach/include/lock-intern.h: Move to include/.
* sysdeps/mach/include/mach.h: Move to include/.
* sysdeps/mach/include/mach/mig_support.h: Move to include/mach/.
* sysdeps/mach/include/mach_error.h: Move to include/.
This patch removes the ununsed ARM code path for armv6t2 memchr and
strlen and armv7 memch and strcmp. In all implementation, the ARM
code is not used in any possible build (unless glibc is explicit
build with the non-documented NO_THUMB compiler flag) and for armv7
the resulting code either produces wrong results (memchr) and throw
build error (strcmp).
Checked on arm-linux-gnueabihf built targeting both armv6 and
armv7.
* sysdeps/arm/armv6t2/memchr.S (memchr): Remove ARM code path.
* sysdeps/arm/armv6t2/strlen.S (memchr): Likewise.
* sysdeps/arm/armv7/multiarch/memchr_neon.S (memchr): Likewise.
* sysdeps/arm/armv7/strcmp.S (strcmp): Likewise.
Adds a fast path to e_exp.c when |x| < 1.03972053527832.
When values are tested in isolation, reduction in execution
time is: aarch 30%, sparc 18%, x86 37%.
When comparing benchtests/bench.out which includes values
outside that range, the gains are:
aarch 8%, sparc 5%, x86 9%.
make check is clean (no increase in ulp for any math test).
Testing 20M values for each rounding mode in that range shows
approximately one in 200 values is off by 1 ulp. No value tested
for exp(x) changed by 2 or more ulp.
No observed change in performance or accuracy for x outside
fast path range.
These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.
Linux 4.16 does not add any new syscalls; this patch updates the
version number in syscall-names.list to reflect that it's still
current for 4.16.
Tested for x86_64 (compilation with build-many-glibcs.py, using Linux
4.16).
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.16.
The recent commit b4a5d26d88
"linux: Consolidate sigaction implementation" changed the definition
of struct sigaction for s390 (31bit). Unfortunately the order of the
fields were wrong.
This leads to blocking testcases e.g. nptl/tst-sem11.
A thread which blocks due to sem_wait() is cancelled via pthread_cancel()
and the signal-handler sigcancel_handler (see <glibc-src>/nptl/nptl-init.c
is called.
But it just returns as the siginfo_t argument is not setup by the kernel.
Then the main-thread is blocking due to pthread_join().
The flag SA_SIGINFO is set in sa_flags in struct sigaction and
is copied to the "kernel_sigaction.h" struct by the sigaction() call,
but due to the wrong ordering of the struct fields,
the kernel does not recognize it.
This patch consolidates Linux readdir{64}{_r} implementation on just
the default sysdeps/unix/sysv/linux/readdir{64}{_r}.c ones. The
default implementation handle the Linux requirements:
* readdir{_r} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* readdir64{_r} is always built and aliased to readdir{_r} for
ABI that define _DIRENT_MATCHES_DIRENT64.
* A compat symbol is added for readdir64{_r} for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/readdir.c (__READDIR, __GETDENTS, DIRENTY_TYPE,
__READDIR_ALIAS): Undefine after usage.
* sysdeps/posix/readdir_r.c (__READDIR_R, __GETDENTS, DIRENT_TYPE,
__READDIR_R_ALIAS): Likewise.
* sysdeps/unix/sysv/linux/arm/readdir64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir.c: New file.
* sysdeps/unix/sysv/linux/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir64.c: Add compat symbol if required.
* sysdeps/unix/sysv/linux/readdir64_r.c: Likewise.
This patch consolidates all Linux sigaction implementations on the default
sysdeps/unix/sysv/linux/sigaction.c. The idea is remove redundant code
and simplify new ports addition by following the current generic
Linux User API (UAPI).
The UAPI for new ports defines a generic extensible sigaction struct as:
struct sigaction
{
__sighandler_t sa_handler;
unsigned long sa_flags;
#ifdef SA_RESTORER
void (*sa_restorer) (void);
#endif
sigset_t sa_mask;
};
Where SA_RESTORER is just placed for compatibility reasons (news ports
should not add it). A similar definition is used on generic
kernel_sigaction.h.
The user exported sigaction definition is not changed, so for most
architectures it requires an adjustment to kernel expected one for the
syscall.
The main changes are:
- All architectures now define and use a kernel_sigaction struct meant
for the syscall, even for the architectures where the user sigaction
has the same layout of the kernel expected one (s390-64 and ia64).
Although it requires more work for these architectures, it simplifies
the generic implementation. Also, sigaction is hardly a hotspot where
micro optimization would play an important role.
- The generic kernel_sigaction definition is now aligned with expected
UAPI one for newer ports, where SA_RESTORER and sa_restorer are not
expected to be defined. This means adding kernel_sigaction for
current architectures that does define it (m68k, nios2, powerpc, s390,
sh, sparc, and tile) and which rely on previous generic definition.
- Remove old MIPS usage of sa_restorer. This was removed since 2.6.27
(2957c9e61ee9c - "[MIPS] IRIX: Goodbye and thanks for all the fish").
- The remaining arch-specific sigaction.c are to handle ABI idiosyncrasies
(like SPARC kernel ABI for rt_sigaction that requires an additional
stub argument).
So for new ports the generic implementation should work if its uses
Linux UAPI. If SA_RESTORER is still required (due some architecture
limitation), it should define its own kernel_sigaction.h, define it and
include generic header (assuming it still uses the default generic kernel
layout).
Checked on x86_64-linux-gnu, i686-linux-gnu, arm-linux-gnueabihf,
aarch64-linux-gnu, sparc64-linux-gnu, sparcv9-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, ia64-linux-gnu and alpha-linux-gnu. I also checked the
build on all remaining affected ABIs.
* sysdeps/unix/sysv/linux/aarch64/sigaction.c: Use default Linux version
as base implementation.
* sysdeps/unix/sysv/linux/arm/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/i386/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h: Add include guards,
remove unrequired definitions and update comments.
* sysdeps/unix/sysv/linux/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/mips/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: New file.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction: Likewise.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sh/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/tile/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/mips/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sigaction.c: Add STUB, SET_SA_RESTORER,
and RESET_SA_RESTORER hooks.
* sysdeps/powerpc/fpu/libm-test-ulps: Increase double-precision
sin, cos and sincos to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Do not relocate absolute symbols by the base address. Such symbols have
SHN_ABS as the section index and their value is not supposed to be
affected by relocation as per the ELF gABI[1]:
"SHN_ABS
The symbol has an absolute value that will not change because of
relocation."
The reason for our non-conformance here seems to be an old SysV linker
bug causing symbols like _DYNAMIC to be incorrectly emitted as absolute
symbols[2]. However in a previous discussion it was pointed that this
is seriously flawed by preventing the lone purpose of the existence of
absolute symbols from being used[3]:
"On the contrary, the only interpretation that makes sense to me is that
it will not change because of relocation at link time or at load time.
Absolute symbols, from the days of the earliest linking loaders, have
been used to represent addresses that are outside the address space of
the module (e.g., memory-mapped addresses or kernel gateway pages).
They've even been used to represent true symbolic constants (e.g.,
system entry point numbers, sizes, version numbers). There's no other
way to represent a true absolute symbol, while the meaning you seek is
easily represented by giving the symbol a non-negative st_shndx value."
and we ought to stop supporting our current broken interpretation.
Update processing for dladdr(3) and dladdr1(3) so that SHN_ABS symbols
are ignored, because under the corrected interpretation they do not
represent addresses within a mapped file and therefore are not supposed
to be considered.
References:
[1] "System V Application Binary Interface - DRAFT - 19 October 2010",
The SCO Group, Section "Symbol Table",
<http://www.sco.com/developers/gabi/2012-12-31/ch4.symtab.html>
[2] Alan Modra, "Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00019.html>
[3] Cary Coutant, "Re: Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00020.html>
[BZ #19818]
* sysdeps/generic/ldsodefs.h (SYMBOL_ADDRESS): Handle SHN_ABS
symbols.
* elf/dl-addr.c (determine_info): Ignore SHN_ABS symbols.
* elf/tst-absolute-sym.c: New file.
* elf/tst-absolute-sym-lib.c: New file.
* elf/tst-absolute-sym-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-sym'.
(modules-names): Add `tst-absolute-sym-lib'.
(LDLIBS-tst-absolute-sym-lib.so): New variable.
($(objpfx)tst-absolute-sym-lib.so): New dependency.
($(objpfx)tst-absolute-sym): New dependency.
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Three of the functions defined by internal-signals.h were not actually
fulfilling their contracts when the sysdeps/generic version of that
file was used. Also, the Linux version included several more headers
than the generic version, which is the root cause of a build failure
on Hurd (already addressed in another way, but I think it is proper to
make the headers match).
* sysdeps/generic/internal-signals.h: Include signal.h,
sigsetops.h, and stdbool.h.
(__libc_signal_block_all): Actually block all signals.
(__libc_signal_block_app): Likewise.
(__libc_signal_restore_set): Actually restore the signal mask.
This patch filters out the internal NPTL signals (SIGCANCEL/SIGTIMER and
SIGSETXID) from signal functions. GLIBC on Linux requires both signals to
proper implement pthread cancellation, posix timers, and set*id posix
thread synchronization.
And not filtering out the internal signal is troublesome:
- A conformant program on a architecture that does not filter out the
signals might inadvertently disable pthread asynchronous cancellation,
set*id synchronization or posix timers.
- It might also to security issues if SIGSETXID is masked and set*id
functions are called (some threads might have effective user or group
id different from the rest).
The changes are basically:
- Change __is_internal_signal to bool and used on all signal function
that has a signal number as input. Also for signal function which accepts
signals sets (sigset_t) it assumes that canonical function were used to
add/remove signals which lead to some input simplification.
- Fix tst-sigset.c to avoid check for SIGCANCEL/SIGTIMER and SIGSETXID.
It is rewritten to check each signal indidually and to check realtime
signals using canonical macros.
- Add generic __clear_internal_signals and __is_internal_signal
version since both symbols are used on generic implementations.
- Remove superflous sysdeps/nptl/sigfillset.c.
- Remove superflous SIGTIMER handling on Linux __is_internal_signal
since it is the same of SIGCANCEL.
- Remove dangling define and obvious comment on nptl/sigaction.c.
Checked on x86_64-linux-gnu.
[BZ #22391]
* nptl/sigaction.c (__sigaction): Use __is_internal_signal to
check for internal nptl signals.
* nptl/sigaction.c (__sigaction): Likewise.
* signal/sigaddset.c (sigaddset): Likewise.
* signal/sigdelset.c (sigdelset): Likewise.
* sysdeps/posix/signal.c (__bsd_signal): Likewise.
* sysdeps/posix/sigset.c (sigset): Call and check sigaddset return
value.
* signal/sigfillset.c (sigfillset): User __clear_internal_signals
to filter out internal nptl signals.
* signal/tst-sigset.c (do_test): Check ech signal indidually and
also check realtime signals using standard macros.
* sysdeps/generic/internal-signals.h (__clear_internal_signals,
__is_internal_signal, __libc_signal_block_all,
__libc_signal_block_app, __libc_signal_restore_set): New functions.
* sysdeps/nptl/sigfillset.c: Remove file.
* sysdeps/unix/sysv/linux/internal-signals.h (__is_internal_signal):
Change return to bool.
(__clear_internal_signals): Remove SIGTIMER clean since it is
equal to SIGCANEL on Linux.
* sysdeps/unix/sysv/linux/sigtimedwait.c (__sigtimedwait): Assume
signal set was constructed using standard functions.
Reported-by: Yury Norov <ynorov@caviumnetworks.com>
Refactor the sincos implementation - rather than rely on odd partial inlining
of preprocessed portions from sin and cos, explicitly write out the cases.
This makes sincos much easier to maintain and provides an additional 16-20%
speedup between 0 and 2^27. The overall speedup of sincos is 48% over this range.
Between 0 and PI it is 66% faster.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Cleanup ifdefs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (__sincos): Refactor using the same
logic as sin and cos.
Refactor duplicated code into do_sin. Since all calls to do_sin use copysign to
set the sign of the result, move it inside do_sin. Small inputs use a separate
polynomial, so move this into do_sin as well (the check is based on the more
conservative case when doing large range reduction, but could be relaxed).
* sysdeps/ieee754/dbl-64/s_sin.c (do_sin): Use TAYLOR_SIN for small
inputs. Return correct sign.
(do_sincos): Remove small input check before do_sin, let do_sin set
the sign.
(__sin): Likewise.
(__cos): Likewise.
For huge inputs use the improved do_sincos function as well. Now no cases use
the correction factor returned by do_sin, do_cos and TAYLOR_SIN, so remove it.
* sysdeps/ieee754/dbl-64/s_sin.c (TAYLOR_SIN): Remove cor parameter.
(do_cos): Remove corp parameter and calculations.
(do_sin): Likewise.
(do_sincos): Remove cor variable.
(__sin): Use do_sincos for huge inputs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
(reduce_and_compute_sincos): Remove unused function.
This patch improves the accuracy of the range reduction. When the input is
large (2^27) and very close to a multiple of PI/2, using 110 bits of PI is not
enough. Improve range reduction accuracy to 136 bits. As a result the special
checks for results close to zero can be removed. The ULP of the polynomials is
at worst 0.55ULP, so there is no reason for the slow functions, and they can be
removed.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_1): Rename to
reduce_sincos, improve accuracy to 136 bits.
(do_sincos_1): Rename to do_sincos, remove fallbacks to slow functions.
(__sin): Use improved reduction and simplified do_sincos calculation.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
This patch removes the large range reduction code and defers to the huge range
reduction code. The first level range reducer supports inputs up to 2^27,
which is way too large given that inputs for sin/cos are typically small
(< 10), and optimizing for a smaller range would give a significant speedup.
Input values above 2^27 are practically never used, so there is no reason for
supporting range reduction between 2^27 and 2^48. Removing it significantly
simplifies code and enables further speedups. There is about a 2.3x slowdown
in this range due to __branred being extremely slow (a better algorithm could
easily more than double performance).
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function.
(do_sincos_2): Likewise.
(__sin): Remove middle range reduction case.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range
reduction case.
This series of patches removes the slow patchs from sin, cos and sincos.
Besides greatly simplifying the implementation, the new version is also much
faster for inputs up to PI (41% faster) and for large inputs needing range
reduction (27% faster).
ULP is ~0.55 with no errors found after testing 1.6 billion inputs across most
of the range with mpsin and mpcos. The number of incorrectly rounded results
(ie. ULP >0.5) is at most ~2750 per million inputs between 0.125 and 0.5,
the average is ~850 per million between 0 and PI.
Tested on AArch64 and x86_64 with no regressions.
The first patch removes the slow paths for the cases where the input is small
and doesn't require range reduction. Update ULP tables for sin, cos and sincos
on AArch64 and x86_64.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sin, cos, sincos.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Remove slow paths for small
inputs.
(__cos): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sin, cos, sincos.
This patch assumes O_DIRECTORY works as defined by POSIX on opendir
implementation (aligning with other glibc code, for instance pwd). This
allows remove both the fallback code to handle system with missing or
broken O_DIRECTORY along with the Linux specific opendir.c which just
advertise the working flag.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/opendir.c (o_directory_works, tryopen_o_directory):
Remove definitions.
(opendir_oflags): Use O_DIRECTORY regardless.
(__opendir, __opendirat): Remove need_isdir_precheck usage.
* sysdeps/unix/sysv/linux/opendir.c: Remove file.
* htl/cthreads-compat.c (__cthread_detach): Call __pthread_detach
instead of pthread_detach.
(__cthread_fork): Call __pthread_create instead of pthread_create.
(__cthread_keycreate): Call __pthread_key_create instead of
pthread_key_create.
(__cthread_getspecific): Call __pthread_getspecific instead of
pthread_getspecific.
(__cthread_setspecific): Call __pthread_setspecific instead of
pthread_setspecific.
* htl/pt-alloc.c (__pthread_alloc): Call __pthread_mutex_lock and
__pthread_mutex_unlock instead of pthread_mutex_lock and
pthread_mutex_unlock.
* htl/pt-cleanup.c (__pthread_get_cleanup_stack): Rename to
___pthread_get_cleanup_stack.
(__pthread_get_cleanup_stack): New strong alias.
* htl/pt-create.c: Include <pthreadP.h>.
(entry_point): Call __pthread_exit instead of pthread_exit.
(pthread_create): Rename to __pthread_create.
(pthread_create): New strong alias.
* htl/pt-detach.c (pthread_detach): Rename to __pthread_detach.
(pthread_detach): New strong alias.
(__pthread_detach): Call __pthread_cond_broadcast instead of
pthread_cond_broadcast.
* htl/pt-exit.c (__pthread_exit): Call __pthread_setcancelstate
instead of pthread_setcancelstate.
* htl/pt-testcancel.c: Include <pthreadP.h>.
(pthread_testcancel): Call __pthread_exit instead of pthread_exit.
* sysdeps/htl/pt-attr-getstack.c: Include <pthreadP.h>
(__pthread_attr_getstack): Call __pthread_attr_getstackaddr and
__pthread_attr_getstacksize instead of pthread_attr_getstackaddr and
pthread_attr_getstacksize.
* sysdeps/htl/pt-attr-getstackaddr.c (pthread_attr_getstackaddr):
Rename to __pthread_attr_getstackaddr.
(pthread_attr_getstackaddr): New strong alias.
* sysdeps/htl/pt-attr-getstacksize.c (pthread_attr_getstacksize):
Rename to __pthread_attr_getstacksize.
(pthread_attr_getstacksize): New strong alias.
* sysdeps/htl/pt-attr-setstack.c: Include <pthreadP.h>.
(pthread_attr_setstack): Rename to __pthread_attr_setstack.
(pthread_attr_setstack): New strong alias.
(__pthread_attr_setstack): Call __pthread_attr_getstacksize,
__pthread_attr_setstacksize and __pthread_attr_setstackaddr instead of
pthread_attr_getstacksize, pthread_attr_setstacksize and
pthread_attr_setstackaddr.
* sysdeps/htl/pt-attr-setstackaddr.c (pthread_attr_setstackaddr):
Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/htl/pt-attr-setstacksize.c (pthread_attr_setstacksize):
Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/htl/pt-cond-timedwait.c: Include <pthreadP.h>.
(__pthread_cond_timedwait_internal): Use __pthread_exit instead of
pthread_exit.
* sysdeps/htl/pt-key-create.c: Include <pthreadP.h>.
(__pthread_key_create): New hidden def.
* sysdeps/htl/pt-key.h: Include <pthreadP.h>.
* sysdeps/htl/pthreadP.h (_pthread_mutex_init,
__pthread_cond_broadcast, __pthread_create, __pthread_detach,
__pthread_exit, __pthread_key_create, __pthread_getspecific,
__pthread_setspecific, __pthread_setcancelstate,
__pthread_attr_getstackaddr, __pthread_attr_setstackaddr,
__pthread_attr_getstacksize, __pthread_attr_setstacksize,
__pthread_attr_setstack, ___pthread_get_cleanup_stack): New
declarations.
(__pthread_key_create, _pthread_mutex_init): New hidden declarations.
* sysdeps/mach/hurd/htl/pt-attr-setstackaddr.c
(pthread_attr_setstackaddr): Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/mach/hurd/htl/pt-attr-setstacksize.c
(pthread_attr_setstacksize): Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/mach/hurd/htl/pt-docancel.c: Include <pthreadP.h>.
(call_exit): Call __pthread_exit instead of pthread_exit.
* sysdeps/mach/hurd/htl/pt-mutex-init.c: Include <pthreadP.h>.
(_pthread_mutex_init): New hidden definition.
* sysdeps/mach/hurd/htl/pt-sysdep.c: Include <pthreadP.h>.
(_init_routine): Call __pthread_attr_init and __pthread_attr_setstack
instead of pthread_attr_init and pthread_attr_setstack.
Contributed by
Agustina Arzille <avarzille@riseup.net>
Amos Jeffries <squid3@treenet.co.nz>
David Michael <fedora.dm0@gmail.com>
Marco Gerards <marco@gnu.org>
Marcus Brinkmann <marcus@gnu.org>
Neal H. Walfield <neal@gnu.org>
Pino Toscano <toscano.pino@tiscali.it>
Richard Braun <rbraun@sceen.net>
Roland McGrath <roland@gnu.org>
Samuel Thibault <samuel.thibault@ens-lyon.org>
Thomas DiModica <ricinwich@yahoo.com>
Thomas Schwinge <tschwinge@gnu.org>
* htl: New directory.
* sysdeps/htl: New directory.
* sysdeps/hurd/htl: New directory.
* sysdeps/i386/htl: New directory.
* sysdeps/mach/htl: New directory.
* sysdeps/mach/hurd/htl: New directory.
* sysdeps/mach/hurd/i386/htl: New directory.
* nscd/Depend, resolv/Depend, rt/Depend: Add htl dependency.
* sysdeps/mach/hurd/i386/Implies: Add mach/hurd/i386/htl imply.
* sysdeps/mach/hurd/i386/libpthread.abilist: New file.
This patch fixes 3dc214977 for sparc. Different than other architectures
SPARC kernel Kconfig does not define CONFIG_CLONE_BACKWARDS, however it
has the same ABI as if it did, implemented by sparc-specific code
(sparc_do_fork).
It also has a unique return value convention for clone:
Parent --> %o0 == child's pid, %o1 == 0
Child --> %o0 == parent's pid, %o1 == 1
Which required a special macro to correct issue the syscall
(INLINE_CLONE_SYSCALL).
Checked on sparc64-linux-gnu and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/arch-fork.h [__ASSUME_CLONE_BACKWARDS]
(arch_fork): Issue INLINE_CLONE_SYSCALL if defined.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Define.
When there is no login uid Linux sets /proc/self/loginid to the sentinel
value of, (uid_t) -1. If this is set we can return early and avoid
needlessly looking up the sentinel value in any configured nss
databases.
Checked on aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Return
early when linux sentinel value is set.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux kernel architectures have various arrangements for umount
syscalls. There is a syscall that takes flags, and an older one that
does not. Newer architectures have only the one taking flags, under
the name umount2 (or under the name umount, in the ia64 case). Older
architectures may have both, under the names umount2 and umount (or
under the names umount and oldumount, in the alpha case). glibc then
has several similar implementations of the umount function (no flags)
in terms of either the __umount2 function, or the corresponding
syscall, or in terms of the old syscall under either of its names.
This patch simplifies the implementations in glibc by always using the
__umount2 function to implement the umount function on all systems
using the Linux kernel. The linux/generic implementation is moved to
sysdeps/unix/sysv/linux (without any changes to code or comments) and
all the other variants are removed. (This will have the effect of
causing the new syscall to be used in some cases that previously used
the old one, but as discussed for previous changes, such a change to
the underlying syscalls used is OK.)
There remain two variants of how the __umount2 function is
implemented, either in umount2.S, or, for ia64, in syscalls.list.
Tested with build-many-glibcs.py.
[BZ #16552]
* sysdeps/unix/sysv/linux/generic/umount.c: Move to ....
* sysdeps/unix/sysv/linux/umount.c: ... here.
* sysdeps/unix/sysv/linux/arm/umount.c: Remove file.
* sysdeps/unix/sysv/linux/hppa/umount.c: Likewise.
* sysdeps/unix/sysv/linux/ia64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/umount.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/umount.c: Likewise.
* sysdeps/generic/libc-start.h [!SHARED] (ARCH_SETUP_TLS): Define to
__libc_setup_tls.
* sysdeps/unix/sysv/linux/powerpc/libc-start.h [!SHARED]
(ARCH_SETUP_TLS): Likewise.
* sysdeps/mach/hurd/libc-start.h: New file copied from
sysdeps/generic/libc-start.h, but define ARCH_SETUP_TLS to empty.
* csu/libc-start.c [!SHARED] (LIBC_START_MAIN): Call ARCH_SETUP_TLS instead
of __libc_setup_tls.
* sysdeps/mach/hurd/i386/init-first.c [!SHARED] (init1): Call
__libc_setup_tls before initializing libpthread and running _hurd_init which
starts the signal thread.
No glibc configuration uses the present debug/backtrace.c, whereas
several #include the x86_64 version. The x86_64 version is
effectively a generic one (using _Unwind_Backtrace from libgcc, which
works much more reliably than the built-in functions used by
debug/backtrace.c). This patch moves it to debug/backtrace.c and
removes all the #includes of the x86_64 version from other
architectures which are no longer required.
I do not know whether all the other architecture-specific backtrace
implementations that are based on _Unwind_Backtrace are required, or
whether, where their differences from the generic version do something
useful, suitable hooks could be added to the generic version to reduce
the duplication involved.
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by this patch.
* sysdeps/x86_64/backtrace.c: Move to ....
* debug/backtrace.c: ... here.
* sysdeps/aarch64/backtrace.c: Remove file.
* sysdeps/alpha/backtrace.c: Likewise.
* sysdeps/hppa/backtrace.c: Likewise.
* sysdeps/ia64/backtrace.c: Likewise.
* sysdeps/mips/backtrace.c: Likewise.
* sysdeps/nios2/backtrace.c: Likewise.
* sysdeps/riscv/backtrace.c: Likewise.
* sysdeps/sh/backtrace.c: Likewise.
* sysdeps/tile/backtrace.c: Likewise.
The powerpc and sparc bits/mathinline.h include inlines of fdim and
fdimf. These are not restricted to -fno-math-errno, but do not set
errno, and wrongly use ordered <= comparisons instead of the required
islessequal comparisons (this latter issue is latent on powerpc
because GCC wrongly uses unordered comparison instructions for
operations that should use ordered comparison instructions).
Since we wish to avoid such header inlines anyway, leaving it to the
compiler to inline such standard functions under appropriate
conditions, this patch fixes those issues by removing the inlines in
question (and thus removing the sparc bits/mathinline.h header which
had no other inlines left in it). I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85003> for adding
correct fdim inlines to GCC, since the function is simple enough that
a correct inline is a perfectly reasonable architecture-independent
optimization with -fno-math-errno and in the absence of implicit
excess precision.
Tested with build-many-glibcs.py for all its powerpc and sparc
configurations.
[BZ #22987]
* sysdeps/powerpc/bits/mathinline.h (fdim): Remove inline
function.
(fdimf): Likewise.
* sysdeps/sparc/fpu/bits/mathinline.h: Remove file.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): Remove errno
values from Linux-specific section now that it is in the GNU section.
* sysdeps/gnu/errlist.c: Regenerate.
* hurd/Makefile (routines): Add hurdlock.
* hurd/Versions (GLIBC_PRIVATE): Added new entry to export the above
interface.
(HURD_CTHREADS_0.3): Remove __libc_getspecific.
* hurd/hurdpid.c: Include <lowlevellock.h>
(_S_msg_proc_newids): Use lll_wait to synchronize.
* hurd/hurdsig.c: (reauth_proc): Use __mutex_lock and __mutex_unlock.
* hurd/setauth.c: Include <hurdlock.h>, use integer for synchronization.
* mach/Makefile (lock-headers): Remove machine-lock.h.
* mach/lock-intern.h: Include <lowlevellock.h> instead of
<machine-lock.h>.
(__spin_lock_t): New type.
(__SPIN_LOCK_INITIALIZER): New macro.
(__spin_lock, __spin_unlock, __spin_try_lock, __spin_lock_locked,
__mutex_init, __mutex_lock_solid, __mutex_unlock_solid, __mutex_lock,
__mutex_unlock, __mutex_trylock): Use lll to implement locks.
* mach/mutex-init.c: Include <lowlevellock.h> instead of <cthreads.h>.
(__mutex_init): Initialize with lll.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): New errno values.
* sysdeps/mach/Makefile: Add libmachuser as dependencies for libs
needing lll.
* sysdeps/mach/hurd/bits/errno.h: Regenerate.
* sysdeps/mach/hurd/cthreads.c (__libc_getspecific): Remove function.
* sysdeps/mach/hurd/bits/libc-lock.h: Remove file.
* sysdeps/mach/hurd/setpgid.c: Include <lowlevellock.h>.
(__setpgid): Use lll for synchronization.
* sysdeps/mach/hurd/setsid.c: Likewise with __setsid.
* sysdeps/mach/bits/libc-lock.h: Include <tls.h> and <lowlevellock.h>
instead of <cthreads.h>.
(_IO_lock_inexpensive): New macro
(__libc_lock_recursive_t, __rtld_lock_recursive_t): New structures.
(__libc_lock_self0): New declaration.
(__libc_lock_owner_self): New macro.
(__libc_key_t): Remove type.
(_LIBC_LOCK_INITIALIZER): New macro.
(__libc_lock_define_initialized, __libc_lock_init, __libc_lock_fini,
__libc_lock_fini_recursive, __rtld_lock_fini_recursive,
__libc_lock_lock, __libc_lock_trylock, __libc_lock_unlock,
__libc_lock_define_initialized_recursive,
__rtld_lock_define_initialized_recursive,
__libc_lock_init_recursive, __libc_lock_trylock_recursive,
__libc_lock_lock_recursive, __libc_lock_unlock_recursive,
__rtld_lock_initialize, __rtld_lock_trylock_recursive,
__rtld_lock_lock_recursive, __rtld_lock_unlock_recursive
__libc_once_define, __libc_mutex_unlock): Reimplement with lll.
(__libc_lock_define_recursive, __rtld_lock_define_recursive,
_LIBC_LOCK_RECURSIVE_INITIALIZER, _RTLD_LOCK_RECURSIVE_INITIALIZER):
New macros.
Include <libc-lockP.h> to reimplement libc_key* with pthread_key*.
* hurd/hurdlock.c: New file.
* hurd/hurdlock.h: New file.
* mach/lowlevellock.h: New file
This makes it notably safe against 'return' and such, and used for
__libc_cleanup_push/pop.
* sysdeps/mach/libc-lock.h (__libc_cleanup_frame): Define structure.
(__libc_cleanup_fct): Define function.
(__libc_cleanup_region_start, __libc_cleanup_region_end,
__libc_cleanup_end): Rewrite implementation using
__attribute__ ((__cleanup__)).
(__libc_cleanup_push, __libc_cleanup_pop): New macros.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h: Always include
<dl-sysdep.h>. Test for value of RTLD_PRIVATE_ERRNO instead of
testing whether it is defined.
This gets rid of a lot of kludge and gets closer to other ports.
* hurd/Makefile (headers): Remove threadvar.h.
(inline-headers): Remove threadvar.h.
* hurd/Versions (GLIBC_2.0: Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables,
__hurd_threadvar_max, __hurd_errno_location.
(HURD_CTHREADS_0.3): Add pthread_getattr_np, pthread_attr_getstack.
* hurd/hurd/signal.h: Do not include <hurd/threadvar.h>.
(_hurd_self_sigstate): Use THREAD_SELF to get _hurd_sigstate.
(_HURD_SIGNAL_H_EXTERN_INLINE): Use THREAD_SELF to get _hurd_sigstate,
unless TLS is not initialized yet, in which case we do not need a
critical section yet anyway.
* hurd/hurd/threadvar.h: Include <tls.h>, do not include
<machine-sp.h>.
(__hurd_sigthread_variables, __hurd_threadvar_max): Remove variables
declarations.
(__hurd_threadvar_index): Remove enum.
(_HURD_THREADVAR_H_EXTERN_INLINE): Remove macro.
(__hurd_threadvar_location_from_sp,__hurd_threadvar_location): Remove
inlines.
(__hurd_reply_port0): New variable declaration.
(__hurd_local_reply_port): New macro.
* hurd/hurdsig.c (__hurd_sigthread_variables): Remove variable.
(interrupted_reply_port_location): Add thread_t parameter. Use it
with THREAD_TCB to access thread-local variables.
(_hurdsig_abort_rpcs): Pass ss->thread to
interrupted_reply_port_location.
(_hurd_internal_post_signal): Likewise.
(_hurdsig_init): Use presence of cthread_fork instead of
__hurd_threadvar_stack_mask to start signal thread by hand.
Remove signal thread threadvar initialization.
* hurd/hurdstartup.c: Do not include <hurd/threadvar.h>
* hurd/sigunwind.c: Include <hurd/threadvar.h>
(_hurdsig_longjmp_from_handler): Use __hurd_local_reply_port instead
of threadvar.
* sysdeps/mach/hurd/Versions (libc.GLIBC_PRIVATE): Add
__libc_lock_self0.
(ld.GLIBC_2.0): Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables.
(ld.GLIBC_PRIVATE): Add __libc_lock_self0.
* sysdeps/mach/hurd/cthreads.c: Add __libc_lock_self0.
* sysdeps/mach/hurd/dl-sysdep.c (errno, __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables, threadvars,
__hurd_threadvar_stack_offset, __hurd_threadvar_stack_mask): Do not
define variables.
* sysdeps/mach/hurd/errno-loc.c: Do not include <errno.h> and
<hurd/threadvar.h>.
[IS_IN(rtld)] (rtld_errno): New variable.
[IS_IN(rtld)] (__errno_location): New weak function.
[!IS_IN(rtld)]: Include "../../../csu/errno-loc.c".
* sysdeps/mach/hurd/errno.c: Remove file.
* sysdeps/mach/hurd/fork.c: Include <hurd/threadvar.h>
(__fork): Remove THREADVAR_SPACE macro and its use.
* sysdeps/mach/hurd/i386/init-first.c (__hurd_threadvar_max): Remove
variable.
(init): Do not initialize threadvar.
* sysdeps/mach/hurd/i386/libc.abilist (__hurd_threadvar_max): Remove
symbol.
* sysdeps/mach/hurd/i386/sigreturn.c (__sigreturn): Use
__hurd_local_reply_port instead of threadvar.
* sysdeps/mach/hurd/i386/tls.h (tcbhead_t): Add reply_port and
_hurd_sigstate fields.
(HURD_DESC_TLS, __LIBC_NO_TLS, THREAD_TCB): New macro.
* sysdeps/mach/hurd/i386/trampoline.c: Remove outdated comment.
* sysdeps/mach/hurd/libc-lock.h: Do not include <hurd/threadvar.h>.
(__libc_lock_owner_self): Use &__libc_lock_self0 and THREAD_SELF
instead of threadvar.
* sysdeps/mach/hurd/libc-tsd.h: Remove file.
* sysdeps/mach/hurd/mig-reply.c (GETPORT, reply_port): Remove macros.
(use_threadvar, global_reply_port): Remove variables.
(__hurd_reply_port0): New variable.
(__mig_get_reply_port): Use __hurd_local_reply_port and
__hurd_reply_port0 instead of threadvar.
(__mig_dealloc_reply_port): Likewise.
(__mig_init): Do not initialize threadvar.
* sysdeps/mach/hurd/profil.c: Fix comment.
* sysdeps/generic/thread_state.h (MACHINE_NEW_THREAD_STATE_FLAVOR):
Define macro.
* sysdeps/mach/thread_state.h (MACHINE_THREAD_STATE_FIX_NEW): New macro.
* sysdeps/mach/i386/thread_state.h
(MACHINE_NEW_THREAD_STATE_FLAVOR): New macro, defined to
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FLAVOR): Define to i386_REGS_SEGS_STATE instead of
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FIX_NEW): New macro, reads segments.
* sysdeps/mach/hurd/i386/trampoline.c (_hurd_setup_sighandler): Use
i386_REGS_SEGS_STATE instead of i386_THREAD_STATE.
* sysdeps/mach/hurd/i386/tls.h (TCB_ALIGNMENT, HURD_SEL_LDT): New
macros.
(_hurd_tls_fork): Add original thread parameter, Duplicate existing LDT
descriptor instead of creating a new one.
(_hurd_tls_new): New function, creates a new descriptor and updates tcb.
* mach/setup-thread.c: Include <ldsodefs.h>.
(__mach_setup_thread): Call _dl_allocate_tls, pass
MACHINE_NEW_THREAD_STATE_FLAVOR to __thread_set_state instead of
MACHINE_THREAD_STATE_FLAVOR, before getting
MACHINE_THREAD_STATE_FLAVOR, calling _hurd_tls_new, and setting
MACHINE_THREAD_STATE_FLAVOR with the result.
* hurd/hurdfault.c (_hurdsig_fault_init): Call
MACHINE_THREAD_STATE_FIX_NEW.
* sysdeps/mach/hurd/fork.c (__fork): Call _hurd_tls_fork for sigthread
too. Add original thread parameter.
Continuing the removals of inline functions from the x86
bits/mathinline.h, this patch removes an inline of __finite (which was
not actually architecture-specific at all beyond its
endianness-dependence).
This inline is not normally used with GCC 4.4 or later, because
isfinite now uses __builtin_isfinite except for -fsignaling-nans.
Allowing __builtin_isfinite etc. to work properly even for
-fsignaling-nans, by implementing versions of those built-in functions
that use integer arithmetic in GCC, is
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66462> (a patch was
committed but had to be reverted because it caused problems, and that
patch didn't address all formats for all architectures, only some, so
by itself would not have been sufficient to allow glibc to use
__builtin_isfinite unconditionally for new-enough GCC).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [__USE_MISC] (__finite):
Remove inline function.
I found the i386 libm-test-ulps files needed updating (probably the
sqrt changes perturbed exactly when excess precision was used by the
compiler).
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
Revert m68k __ieee754_sqrt change as it causes a build failure in one
m68k configuration. m68k-linux-gnu now passes again.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Revert previous
commit.
Remove the now unused target specific__ieee754_sqrt(f/l) inlines.
Also remove inlines of sqrt which are for really old GCC versions.
Removing these is desirable, under the general principle of leaving
such inlining to the compiler rather than trying to do it in installed
headers, especially when only very old compilers are affected.
Note that removing inlines for __ieee754_sqrt disables inlining in the
sqrt wrapper functions. Given the sqrt function will typically only be
called for negative arguments, it doesn't matter whether the inlining
happens or not.
* sysdeps/aarch64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/alpha/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/generic/math-type-macros.h (M_SQRT): Use sqrt.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/powerpc/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/s390/fpu/bits/mathinline.h: Remove file.
* sysdeps/sparc/fpu/bits/mathinline.h (sqrt) Remove.
(sqrtf): Remove.
(sqrtl): Remove.
(__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/x86/fpu/math_private.h (__ieee754_sqrt): Remove.
* sysdeps/x86_64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
This patch series cleans up the many uses of __ieee754_sqrt(f/l) in GLIBC.
The goal is to enable GCC to do the inlining, and if this fails call the
__ieee754_sqrt function. This is done by internally declaring sqrt with asm
redirects. The compat symbols and sqrt wrappers need to disable the redirect.
The redirect is also disabled if there are already redirects defined when
using -ffinite-math-only.
All math functions (but not math tests, non-library code and libnldbl) are
built with -fno-math-errno which means GCC will typically inline sqrt as a
single instruction. This means targets are no longer forced to add a special
inline for sqrt.
* include/math.h (sqrt): Declare with asm redirect.
(sqrtf): Likewise.
(sqrtl): Likewise.
(sqrtf128): Likewise.
* Makeconfig: Add -fno-math-errno for libc/libm, but build testsuite,
nonlib and libnldbl with -fmath-errno.
* math/w_sqrt_compat.c: Define NO_MATH_REDIRECT.
* math/w_sqrt_template.c: Likewise.
* math/w_sqrtf_compat.c: Likewise.
* math/w_sqrtl_compat.c: Likewise.
* sysdeps/i386/fpu/w_sqrt.c: Likewise.
* sysdeps/i386/fpu/w_sqrt_compat.c: Likewise.
* sysdeps/generic/math-type-macros-float128.h: Remove math.h and
complex.h.