As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar.
sysdeps/powerpc/soft-fp isn't quite such a case, as the Implies files
pointing to it are
sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies and
sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies (and
indeed there is a different sfp-machine.h used for powerpc64le).
However, the same principle applies: there is no need for this
directory because sfp-machine.h, the only file in it, can most
naturally go in sysdeps/powerpc/nofpu, which is used by exactly the
same configurations (and there is a close dependence between the files
there and the sfp-machine.h implementation). This patch eliminates
the sysdeps/powerpc/soft-fp directory accordingly.
Tested with build-many-glibcs.py that installed stripped shared
libraries for powerpc configurations are unchanged by this patch.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies: Remove
powerpc/soft-fp.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies:
Likewise.
* sysdeps/powerpc/soft-fp/sfp-machine.h: Move to ....
* sysdeps/powerpc/nofpu/sfp-machine.h: ... here.
The commit
commit c85e54ac6c
Author: Gabriel F. T. Gomes <gabriel@inconstante.eti.br>
Date: Fri Nov 3 10:44:36 2017 -0200
Provide a C++ version of iseqsig (bug 22377)
mistakenly used double parameters in the long double version of iseqsig,
thus causing spurious conversions to double, as reported on bug 23171.
Tested for powerpc64le and x86_64.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the sysdeps/sh/soft-fp
directory accordingly, merging its contents into sysdeps/sh.
Tested with build-many-glibcs.py that installed stripped shared
libraries for sh configurations are unchanged by this patch.
* sysdeps/sh/Implies: Remove sh/soft-fp.
* sysdeps/sh/soft-fp/sfp-machine.h: Move to ....
* sysdeps/sh/sfp-machine.h: ... here.
This patch skips zero length in __mempcpy_erms, __memmove_erms and
__memset_erms.
Tested on x86-64.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S
(__mempcpy_erms): Skip zero length.
(__memmove_erms): Likewise.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(__memset_erms): Likewise.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/alpha/soft-fp directory accordingly, merging its contents
into sysdeps/alpha.
Tested with build-many-glibcs.py that installed stripped shared
libraries for alpha-linux-gnu are unchanged by this patch.
* sysdeps/alpha/Implies: Remove alpha/soft-fp.
* sysdeps/alpha/Makefile [$(subdir) = soft-fp] (sysdep_routines):
Add functions moved from ....
[$(subdir) = math] (CPPFLAGS): Add -I../soft-fp. Moved from ....
* sysdeps/alpha/soft-fp/Makefile: ... here. Remove file.
* sysdeps/alpha/Versions (libc): Add GLIBC_2.3.4 symbols moved
from ....
* sysdeps/alpha/soft-fp/Versions: ... here. Remove file.
* sysdeps/alpha/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/alpha/e_sqrtl.c: ... here.
* sysdeps/alpha/soft-fp/local-soft-fp.h: Move to ....
* sysdeps/alpha/local-soft-fp.h: ... here.
* sysdeps/alpha/soft-fp/ots_add.c: Move to ....
* sysdeps/alpha/ots_add.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmp.c: Move to ....
* sysdeps/alpha/ots_cmp.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmpe.c: Move to ....
* sysdeps/alpha/ots_cmpe.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqux.c: Move to ....
* sysdeps/alpha/ots_cvtqux.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqx.c: Move to ....
* sysdeps/alpha/ots_cvtqx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvttx.c: Move to ....
* sysdeps/alpha/ots_cvttx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxq.c: Move to ....
* sysdeps/alpha/ots_cvtxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxt.c: Move to ....
* sysdeps/alpha/ots_cvtxt.c: ... here.
* sysdeps/alpha/soft-fp/ots_div.c: Move to ....
* sysdeps/alpha/ots_div.c: ... here.
* sysdeps/alpha/soft-fp/ots_mul.c: Move to ....
* sysdeps/alpha/ots_mul.c: ... here.
* sysdeps/alpha/soft-fp/ots_nintxq.c: Move to ....
* sysdeps/alpha/ots_nintxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_sub.c: Move to ....
* sysdeps/alpha/ots_sub.c: ... here.
* sysdeps/alpha/soft-fp/sfp-machine.h: Move to ....
* sysdeps/alpha/sfp-machine.h: ... here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/aarch64/soft-fp directory accordingly, merging its contents
into sysdeps/aarch64.
Tested with build-many-glibcs.py that installed stripped shared
libraries for aarch64 configurations are unchanged by this patch.
* sysdeps/aarch64/Implies: Remove aarch64/soft-fp.
* sysdeps/aarch64/Makefile [$(subdir) = math] (CPPFLAGS): Add
-I../soft-fp. Moved from ....
* sysdeps/aarch64/soft-fp/Makefile: ... here. Remove file.
* sysdeps/aarch64/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/aarch64/e_sqrtl.c: ... here.
* sysdeps/aarch64/soft-fp/sfp-machine.h: Move to ....
* sysdeps/aarch64/sfp-machine.h: ... here.
Building with recent GCC mainline for i686-linux-gnu is failing with:
../sysdeps/ieee754/flt-32/k_rem_pio2f.c: In function '__kernel_rem_pio2f':
../sysdeps/ieee754/flt-32/k_rem_pio2f.c:186:28: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0]-fv);
^
and
../sysdeps/ieee754/dbl-64/k_rem_pio2.c: In function '__kernel_rem_pio2':
../sysdeps/ieee754/dbl-64/k_rem_pio2.c:333:32: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0] - fv);
^
These are similar to -Warray-bounds cases for which the DIAG_* macros
are already used in those files: the array element is in fact always
initialized, but the reasoning that it is depends on another array not
having been all zero at an earlier point, which depends on the
functions not being called with zero arguments. Thus, this patch uses
DIAG_* to disable -Wmaybe-uninitialized for this code.
(The warning may be i686-specific because of math_narrow_eval somehow
perturbing what the compiler does with this code enough to cause the
warning. I don't know why it doesn't appear for i686-gnu.)
Tested with build-many-glibcs.py that this fixes the i686 build in
this configuration.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Ignore
-Wmaybe-uninitialized around access to fq[0].
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
The llseek function name is an obsolete, Linux-specific, unprototyped
name for lseek64 with a link-time warning. This patch completes the
obsoletion of this function name by making it into a compat symbol,
not available for newly linked programs and not included in the ABI
for new ports.
When a compat symbol is defined in syscalls.list, the code for that
function is not built at all for static linking unless some non-compat
symbol for that function is also defined with an explicit symbol
version, so an explicit symbol version for lseek64 is added to the
MIPS n32 syscalls.list. The case in make-syscalls.sh that handles
such explicit non-compat symbol versions then needs to be changed to
use weak_alias instead of strong_alias when the syscall is built
outside of libc, to avoid linknamespace failures from a strong lseek64
symbol in static libpthread.
The x32 llseek.S was as far as I could tell already unused (nothing
builds an llseek.* source file, at least since the lseek / lseek64 /
llseek consolidation), so is removed in this patch as well.
Tested for x86_64 and x86, and with build-many-glibcs.py.
[BZ #18471]
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use weak
aliases for non-libc case of versioned symbols.
* sysdeps/unix/sysv/linux/lseek64.c: Include <shlib-compat.h>.
(llseek): Define as compat symbol if
[SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_28)], not as weak alias
with link warning.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (llseek):
Make into a compat symbol, disabled for minimum symbol version
GLIBC_2.28 and later.
* sysdeps/unix/sysv/linux/x86_64/x32/llseek.S: Remove file.
Although the REP MOVSB implementations of memmove, memcpy and mempcpy
aren't used by the current processors, this patch adds Prefer_FSRM
check in ifunc-memmove.h so that they can be used in the future.
* sysdeps/x86/cpu-features.h (bit_arch_Prefer_FSRM): New.
(index_arch_Prefer_FSRM): Likewise.
* sysdeps/x86/cpu-tunables.c (TUNABLE_CALLBACK (set_hwcaps)):
Also check Prefer_FSRM.
* sysdeps/x86_64/multiarch/ifunc-memmove.h (IFUNC_SELECTOR):
Also return OPTIMIZE (erms) for Prefer_FSRM.
The newer Intel processors support Fast Short REP MOVSB which has a
feature bit in CPUID. This patch adds the Fast Short REP MOVSB (FSRM)
bit to x86 cpu-features.
* sysdeps/x86/cpu-features.h (bit_cpu_FSRM): New.
(index_cpu_FSRM): Likewise.
(reg_FSRM): Likewise.
It has been noted that test-tgmath3 is slow to compile, and to link on
some systems
<https://sourceware.org/ml/libc-alpha/2018-02/msg00477.html>, because
of the size of the test.
I'm working on tgmath.h support for the TS 18661-1 / 18661-3 functions
that round their results to a narrower type. For the functions
already present in glibc, this wouldn't make test-tgmath3 much bigger,
because those functions only have two arguments. For the narrowing
versions of fma (for which I've not yet added the functions to glibc),
however, it would result in many configurations building tests of the
type-generic macros f32fma, f64fma, f32xfma, f64xfma, each with 21
possible types for each of three arguments (float, double, long double
aren't valid argument types for these macros when they return a
_FloatN / _FloatNx type), so substantially increasing the size of the
testcase.
To avoid further increasing the size of a single test when adding the
type-generic narrowing fma macros, this patch arranges for the
test-tgmath3 tests to be run separately for each function tested. The
fma tests are still by far the largest (next is pow, as that has two
arguments that can be real or complex; after that, the two-argument
real-only functions), but each type-generic fma macro for a different
return type would end up with its tests being run separately, rather
than increasing the size of a single test.
To avoid accidentally missing testing a macro because
gen-tgmath-tests.py supports testing it but the makefile fails to call
it for that function, a test is also added that verifies that the
lists of macros in the makefile and gen-tgmath-tests.py agree.
Tested for x86_64.
* math/gen-tgmath-tests.py: Import sys.
(Tests.__init__): Initialize macros_seen.
(Tests.add_tests): Add macro to macros_seen. Only generate tests
if requested to do so for this macro.
(Tests.add_all_tests): Take argument for macro for which to
generate tests.
(Tests.check_macro_list): New function.
(main): Handle check-list argument and argument specifying macro
for which to generate tests.
* math/Makefile [PYTHON] (tgmath3-macros): New variable.
[PYTHON] (tgmath3-macro-tests): Likewise.
[PYTHON] (tests): Add $(tgmath3-macro-tests) not test-tgmath3.
[PYTHON] (generated): Add $(addsuffix .c,$(tgmath3-macro-tests))
not test-tgmath3.c.
[PYTHON] (CFLAGS-test-tgmath3.c): Remove.
[PYTHON] ($(tgmath3-macro-tests:%=$(objpfx)%.o): Add -fno-builtin
to CFLAGS.
[PYTHON] ($(objpfx)test-tgmath3.c): Replace rule by....
[PYTHON] ($(foreach
m,$(tgmath3-macros),$(objpfx)test-tgmath3-$(m).c): ... this. New
rule.
[PYTHON] (tests-special): Add
$(objpfx)test-tgmath3-macro-list.out.
[PYTHON] ($(objpfx)test-tgmath3-macro-list.out): New rule.
The Linux nfsservctl syscall was removed in Linux 3.1. Since the
minimum kernel version for use with glibc is 3.2, the glibc wrapper
for this syscall can no longer usefully be called. This patch makes
it into a compat symbol, not provided at all for static linking or new
ports. (It was already the case that there was no header declaration
of this function.)
Tested for x86_64.
* sysdeps/unix/sysv/linux/syscalls.list (nfsservctl): Make into a
compat symbol, disabled for minimum symbol version GLIBC_2.28 and
later.
Bug 22639 reports localtime failing to handle time offset transitions
correctly in 2039 and later on platforms with 64-bit time_t.
The problem is the use of SECSPERDAY (constant 86400) in calculations
such as
t = ((year - 1970) * 365
+ /* Compute the number of leapdays between 1970 and YEAR
(exclusive). There is a leapday every 4th year ... */
+ ((year - 1) / 4 - 1970 / 4)
/* ... except every 100th year ... */
- ((year - 1) / 100 - 1970 / 100)
/* ... but still every 400th year. */
+ ((year - 1) / 400 - 1970 / 400)) * SECSPERDAY;
where t is of type time_t and year is of type int. Before my commit
92bd70fb85 (an update from tzcode,
included in 2.26 and later releases), SECSPERDAY was obtained from a
file imported from tzcode, where the value included a cast to
int_fast32_t. On 64-bit platforms, glibc defines int_fast32_t to be
long int, so 64-bit, but my patch resulted in it changing to int.
(The bug would probably have existed even before my patch for x32,
which has 64-bit time_t but 32-bit int_fast32_t, but I haven't
verified that.)
This patch fixes the problem by including a cast to time_t in the
definition of SECSPERDAY. (64-bit time support for 32-bit systems
should move such code that isn't a public interface to using the
internal 64-bit version of time_t throughout.)
Tested for x86_64 and x86.
[BZ #22639]
* time/tzset.c (SECSPERDAY): Cast to time_t.
* time/tst-y2039.c: New file.
* time/Makefile (tests): Add tst-y2039.
_Float128 is defined for certain compilers indirectly from
<libm-alias-double.h>, and <ieee754_float128.h> (included from
<math-nan-payload-float128.h>) needs this definition.
As indicated by BZ#23178, concurrent access on some files read by nscd
may result non expected data send through service requisition. This is
due 'sendfile' Linux implementation where for sockets with zero-copy
support, callers must ensure the transferred portions of the the file
reffered by input file descriptor remain unmodified until the reader
on the other end of socket has consumed the transferred data.
I could not find any explicit documentation stating this behaviour on
Linux kernel documentation. However man-pages sendfile entry [1] states
in NOTES the aforementioned remark. It was initially pushed on man-pages
with an explicit testcase [2] that shows changing the file used in
'sendfile' call prior the socket input data consumption results in
previous data being lost.
From commit message it stated on tested Linux version (3.15) only TCP
socket showed this issues, however on recent kernels (4.4) I noticed the
same behaviour for local sockets as well.
Since sendfile on HURD is a read/write operation and the underlying
issue on Linux, the straightforward fix is just remove sendfile use
altogether. I am really skeptical it is hitting some hotstop (there
are indication over internet that sendfile is helpfull only for large
files, more than 10kb) here to justify that extra code complexity or
to pursuit other possible fix (through memory or file locks for
instance, which I am not sure it is doable).
Checked on x86_64-linux-gnu.
[BZ #23178]
* nscd/nscd-client.h (sendfileall): Remove prototype.
* nscd/connections.c [HAVE_SENDFILE] (sendfileall): Remove function.
(handle_request): Use writeall instead of sendfileall.
* nscd/aicache.c (addhstaiX): Likewise.
* nscd/grpcache.c (cache_addgr): Likewise.
* nscd/hstcache.c (cache_addhst): Likewise.
* nscd/initgrcache.c (addinitgroupsX): Likewise.
* nscd/netgroupcache.c (addgetnetgrentX, addinnetgrX): Likewise.
* nscd/pwdcache.c (cache_addpw): Likewise.
* nscd/servicescache.c (cache_addserv): Likewise.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) == nscd]
(sysdep-CFLAGS): Remove -DHAVE_SENDFILE.
* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_SENDFILE):
Remove define.
[1] http://man7.org/linux/man-pages/man2/sendfile.2.html
[2] 7b6a329977 (diff-efd6af3a70f0f07c578e85b51e83b3c3)
Unlike i386, we can call hidden IFUNC functions inside libc.so since
x86-64 PLT is always PIC.
Tested on x86-64.
* sysdeps/x86_64/multiarch/strncat-c.c (STRNCAT_PRIMARY): Removed.
Include <string/strncat.c>.
* sysdeps/x86_64/multiarch/strncat.c (__strncat): New strong
alias.
(__GI___strncat): New hidden alias.
Since we have loaded address of PREINIT_FUNCTION into %eax, we can
avoid extra branch to PLT slot.
* sysdeps/i386/crti.S (_init): Replace PREINIT_FUNCTION@PLT
with *%eax in call.
Acked-by: Christian Brauner (Ubuntu) <christian@brauner.io>
Since the result of testl is never used, this patch removes it.
Tested on 64-bit AVX2 machine.
* sysdeps/x86_64/multiarch/strlen-avx2.S (STRLEN): Remove the
unnecessary testl.
When compiling C++ code with -mabi=ieeelongdouble, KCtype is
unavailable and the long double type should be used instead.
This is also providing macro __HAVE_FLOAT128_UNLIKE_LDBL in order to
identify the kind of long double type is being used in the current
compilation unit.
Notice that bits/floatn.h cannot benefit from the new macro due to order
of header inclusion.
* bits/floatn-common.h: Define __HAVE_FLOAT128_UNLIKE_LDBL.
* math/math.h: Restrict the prototype definition for the functions
issignaling(_Float128) and iszero(_Float128); and template
__iseqsig_type<_Float128>, from __HAVE_DISTINCT_FLOAT128 to
__HAVE_FLOAT128_UNLIKE_LDBL.
* sysdeps/powerpc/bits/floatn.h [__HAVE_FLOAT128
&& (!__GNUC_PREREQ (7, 0) || defined __cplusplus)
&& __LDBL_MANT_DIG__ == 113]: Use long double suffix for
__f128() constants; define the type _Float128 as long double;
and reuse long double in __CFLOAT128.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch continues the math_private.h cleanup by stopping
math_private.h from including math-barriers.h and making the users of
the barrier macros include the latter header directly. No attempt is
made to remove any math_private.h includes that are now unused, except
in strtod_l.c where that is done to avoid line number changes in
assertions, so that installed stripped shared libraries can be
compared before and after the patch. (I think the floating-point
environment support in math_private.h should also move out - some
architectures already have fenv_private.h as an architecture-internal
header included from their math_private.h - and after moving that out
might be a better time to identify unused math_private.h includes.)
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/math_private.h: Do not include
<math-barriers.h>.
* stdlib/strtod_l.c: Include <math-barriers.h> instead of
<math_private.h>.
* math/fromfp.h: Include <math-barriers.h>.
* math/math-narrow.h: Likewise.
* math/s_nextafter.c: Likewise.
* math/s_nexttowardf.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_nextafterl.c: Likewise.
* sysdeps/i386/fpu/s_nexttoward.c: Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atanh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
This is needed to avoid a warning when linking against libtirpc:
/lib64/libc.so.6: warning: common of `rpc_createerr@@TIRPC_0.3.0' overridden by definition
/usr/lib64/libtirpc.so: warning: defined here
This ld warning is not enabled by default; -Wl,--warn-common enables it.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #23152]
* localedata/locales/gd_GB (abmon): Fix typo in May:
"Mhàrt" -> "Cèit". Adjust the comment according to the change.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
For smaller and medium sized copies, the effect of hardware
prefetching are not as dominant as instruction level parallelism.
Hence it makes more sense to load data into multiple registers than to
try and route them to the same prefetch unit. This is also the case
for the loop exit where we are unable to latch on to the same prefetch
unit anyway so it makes more sense to have data loaded in parallel.
The performance results are a bit mixed with memcpy-random, with
numbers jumping between -1% and +3%, i.e. the numbers don't seem
repeatable. memcpy-walk sees a 70% improvement (i.e. > 2x) for 128
bytes and that improvement reduces down as the impact of the tail copy
decreases in comparison to the loop.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use multiple registers to copy data in loop tail.
The tail of the copy loops are unable to train the falkor hardware
prefetcher because they load from a different base compared to the hot
loop. In this case avoid serializing the instructions by loading them
into different registers. Also peel the last iteration of the loop
into the tail (and have them use different registers) since it gives
better performance for medium sizes.
This results in performance improvements of between 3% and 20% over
the current falkor implementation for sizes between 128 bytes and 1K
on the memmove-walk benchmark, thus mostly covering the regressions
seen against the generic memmove.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memmove_falkor): Use multiple registers to move data in
loop tail.
This patch continues cleaning up math_private.h by moving the
math_opt_barrier and math_force_eval macros to a separate header
math-barriers.h.
At present, those macros are inside a "#ifndef math_opt_barrier" in
math_private.h to allow architectures to override them and then use
a separate math-barriers.h header, no such #ifndef or #include_next is
needed; architectures just have their own alternative version of
math-barriers.h when providing their own optimized versions that avoid
going through memory unnecessarily. The generic math-barriers.h has a
comment added to document these two macros.
In this patch, math_private.h is made to #include <math-barriers.h>,
so files using these macros do not need updating yet. That is because
of uses of math_force_eval in math_check_force_underflow and
math_check_force_underflow_nonneg, which are still defined in
math_private.h. Once those are moved out to a separate header, that
separate header can be made to include <math-barriers.h>, as can the
other files directly using these barrier macros, and then the include
of <math-barriers.h> from math_private.h can be removed.
Tested for x86_64 and x86. Also tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math-barriers.h: New file.
* sysdeps/generic/math_private.h [!math_opt_barrier]
(math_opt_barrier): Move to math-barriers.h.
[!math_opt_barrier] (math_force_eval): Likewise.
* sysdeps/aarch64/fpu/math-barriers.h: New file.
* sysdeps/aarch64/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/alpha/fpu/math-barriers.h: New file.
* sysdeps/alpha/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/x86/fpu/math-barriers.h: New file.
* sysdeps/i386/fpu/fenv_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/m68k/m680x0/fpu/math_private.h: Move to....
* sysdeps/m68k/m680x0/fpu/math-barriers.h: ... here. Adjust
multiple-include guard for rename.
* sysdeps/powerpc/fpu/math-barriers.h: New file.
* sysdeps/powerpc/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
when realpath() input length is close to SSIZE_MAX.
2018-05-09 Paul Pluzhnikov <ppluzhnikov@google.com>
[BZ #22786]
* stdlib/canonicalize.c (__realpath): Fix overflow in path length
computation.
* stdlib/Makefile (test-bz22786): New test.
* stdlib/test-bz22786.c: New test.
This patch continues cleaning up the math_private.h header, which
contains lots of different definitions many of which are only needed
by a limited subset of files using that header (and some of which are
overridden by architectures that only want to override selected parts
of the header), by moving the math_narrow_eval macro out to a separate
math-narrow-eval.h header, only included by those files that need it.
That header is placed in include/ (since it's used in stdlib/, not
just files built in math/, but no sysdeps variants are needed at
present).
Tested for x86_64, and with build-many-glibcs.py. (Installed stripped
shared libraries change because of line numbers in assertions in
strtod_l.c.)
* include/math-narrow-eval.h: New file. Contents moved from ....
* sysdeps/generic/math_private.h: ... here.
(math_narrow_eval): Remove macro. Moved to math-narrow-eval.h.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* math/s_fdim_template.c: Include <math-narrow-eval.h>.
* stdlib/strtod_l.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c: Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c: Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c: Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c: Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c: Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c: Likewise.
* sysdeps/ieee754/flt-32/e_expf.c: Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c: Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c: Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/s_erff.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c: Likewise.
When MEMSET_SYMBOL (__memset, erms) is provided for debugger, mark it
as hidden so that it will be local to the library.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(MEMSET_SYMBOL (__memset, erms)): Mark the debugger symbol as
hidden.
This is a minor style change to move the definition of I to its usage
scope instead of at the top of the function. This is consistent with
glibc style guidelines and more importantly it was getting in the way
of my testing.
* benchtests/bench-memcpy-walk.c (do_test): Move declaration
of I into loop header.
* benchtests/bench-memmove-walk.c (do_test): Likewise.
2018-04-30 Raymond Nicholson <rain1@airmail.cc>
* manual/startup.texi (Aborting a Program): Remove inappropriate joke.
This complies with the decision of the project leader and primary and
ultimate maintainer, who partially delegated maintainership to myself
and others under certain constraints.
This is also in line with the community-agreed procedures.
It is obvious that we didn't have consensus on a decision to install
that patch, since both sides are still arguing over it.
As for the decision to reverse the deletion, if we even need one to
counter a move that did not have consensus, although nobody else offered
to install the reversal and restore the status prior to the fait
accompli, and some explicitly refused to do so themselves, nobody
objected when I offered to do so. Therefore, by the same reasoning that
led to the mistaken installation of the patch, and after a much longer
wait for objections, I understand there is consensus on my reverting it.
alloca for it may cause stack overflow. If the note is larger than
__MAX_ALLOCA_CUTOFF, use dynamically allocated memory to read it in.
2018-05-05 Paul Pluzhnikov <ppluzhnikov@google.com>
[BZ #20419]
* elf/dl-load.c (open_verify): Fix stack overflow.
* elf/Makefile (tst-big-note): New test.
* elf/tst-big-note-lib.S: New.
* elf/tst-big-note.c: New.
On s390 (31bit) if glibc is build with -Os, pthread_join sometimes
blocks indefinitely. This is e.g. observable with
testcase intl/tst-gettext6.
pthread_join is calling lll_wait_tid(tid), which performs the futex-wait
syscall in a loop as long as tid != 0 (thread is alive).
On s390 (and build with -Os), tid is loaded from memory before
comparing against zero and then the tid is loaded a second time
in order to pass it to the futex-wait-syscall.
If the thread exits in between, then the futex-wait-syscall is
called with the value zero and it waits until a futex-wake occurs.
As the thread is already exited, there won't be a futex-wake.
In lll_wait_tid, the tid is stored to the local variable __tid,
which is then used as argument for the futex-wait-syscall.
But unfortunately the compiler is allowed to reload the value
from memory.
With this patch, the tid is loaded with atomic_load_acquire.
Then the compiler is not allowed to reload the value for __tid from memory.
ChangeLog:
[BZ #23137]
* sysdeps/nptl/lowlevellock.h (lll_wait_tid):
Use atomic_load_acquire to load __tid.
To prepare for shadow stack support, pop the pointer into %rdx after
syscall and use %rdx, instead of %rsi, to restore context. There is
no functional change.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86_64/setcontext.S (__setcontext):
Pop the pointer into %rdx after syscall and use %rdx, instead
of %rsi, to restore context.
The pad array in struct pthread_unwind_buf is used by setjmp to save
shadow stack register. We assert that size of struct pthread_unwind_buf
is no less than offset of shadow stack pointer + shadow stack pointer
size.
Since functions, like LIBC_START_MAIN, START_THREAD_DEFN as well as
these with thread cancellation, call setjmp, but never return after
__libc_unwind_longjmp, __libc_unwind_longjmp, which is defined as
__libc_longjmp on x86, doesn't need to restore shadow stack register.
__libc_longjmp, which is a private interface for thread cancellation
implementation in libpthread, is changed to call __longjmp_cancel,
instead of __longjmp. __longjmp_cancel is a new internal function
in libc, which is similar to __longjmp, but doesn't restore shadow
stack register.
The compatibility longjmp and siglongjmp in libpthread.so are changed
to call __libc_siglongjmp, instead of __libc_longjmp, so that they will
restore shadow stack register.
Tested with build-many-glibcs.py.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* nptl/pthread_create.c (START_THREAD_DEFN): Clear previous
handlers after setjmp.
* setjmp/longjmp.c (__libc_longjmp): Don't define alias if
defined.
* sysdeps/unix/sysv/linux/x86/setjmpP.h: Include
<libc-pointer-arith.h>.
(_JUMP_BUF_SIGSET_BITS_PER_WORD): New.
(_JUMP_BUF_SIGSET_NSIG): Changed to 96.
(_JUMP_BUF_SIGSET_NWORDS): Changed to use ALIGN_UP and
_JUMP_BUF_SIGSET_BITS_PER_WORD.
* sysdeps/x86/Makefile (sysdep_routines): Add __longjmp_cancel.
* sysdeps/x86/__longjmp_cancel.S: New file.
* sysdeps/x86/longjmp.c: Likewise.
* sysdeps/x86/nptl/pt-longjmp.c: Likewise.
As for sysctl, ustat has been deprecated in favor of {f}statfs. Also
some newer ports which uses generic interface builds a stub version that
returns ENOSYS.
This patch deprecates ustat interface by removing ustat.h related headers,
adding a compatibility symbol, and avoiding new ports to build and provide
the symbol.
Checked on x86_64-linux-gnu and i686-linux-gnu. Also checked with a
check-abi on all affected ABIs.
* NEWS: Add ustat.h deprecation entry.
* bits/ustat.h: Remove file.
* misc/sys/ustat.h: Likewise.
* misc/ustat.h: Likewise.
* sysdeps/unix/sysv/linux/generic/ustat.c: Likewise.
* misc/Makefile (headers): Remove ustat.h and sys/ustat.h.
* misc/ustat.c (__ustat): Rename to __old_ustat and export only in
compatibility mode.
* sysdeps/unix/sysv/linux/ustat.c (__ustat): Likewise.
* sysdeps/unix/sysv/linux/mips/ustat.c: Define DEV_TO_KDEV and use
generic Linux implementation.
libm_hidden_def expand the parameters and do not require an extra layer
of macros.
These were the last 3 files in math/ still using hidden_def().
* math/w_exp_compat.c: Replace hidden_def with libm_hidden_def..
* math/w_expl_compat.c: Likewise.
* math/w_exp_template.c: Likewise. Remove hidden_def_x.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch consolidate Linux readahead implementation on generic
sysdeps/unix/sysv/linux/readahead.c one. The changes are:
- Assume __NR_readahead existence with current minimum kernel of 3.2
for all architectures.
- Use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG, and SYSCALL_LL64 to pass
the 64 bit offset. This allows architectures with different abis
to use the same implementation.
- Remove arch-specific readahead implementations.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* sysdeps/unix/sysv/linux/arm/readahead.c: Remove file.
* sysdeps/unix/sysv/linux/mips/mips32/readahead.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (readahead):
Remove.
* sysdeps/unix/sysv/linux/mips/mips64/n64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/readahead.c (__readahead): Assume
__NR_readahead existence, and use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG,
and SYSCALL_LL64.
According to math-type-macros.h, M_SUF should be used to paste the
suffix used by functions, while M_MLIT is used with macro constants.
* math/e_exp2_template.c: Replace M_SUF (M_LN2) with M_MLIT (M_LN2).
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
math-type-macros.h provides the macro M_FABS in order to reference
the correct fabs function for a specific type.
In most of the cases, M_FABS is identical to M_SUF (fabs), but that
may change in the future.
* math/w_acos_template.c: Replace M_SUF (fabs) with M_FABS.
* math/w_asin_template.c: Likewise.
* math/w_atanh_template.c: Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The creation of the divergent sysdeps directory for powerpc64le
commit 2f7f3cd8cd
Author: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
Date: Fri Jul 15 18:04:40 2016 -0500
powerpc64le: Create divergent sysdep directory for powerpc64le.
allowed float128 to be enabled for powerpc64le (little-endian) and not
for powerpc64 (big-endian). Since the only intended difference between
them was the presence or absence of the float128 interface, the sysdeps
directory for powerpc64le explicitly reused the files from powerpc64
(through the use of Implies files).
Although this works, it also means that files under the powerpc64
directory might be preferred over files under powerpc64le. For
instance, on a build for powerpc64le with target set to power9, a file
from powerpc64/power5 might get built, even though a file with the same
name exists in powerpc64le/power8. That happens because the processor
hierarchy was only defined in the sysdeps directory for powerpc64 (and
borrowed by powerpc64le).
This patch fixes this behavior, by creating new subdirectories under
powerpc64 (i.e.: powerpc64/be and powerpc64/le) and creating new Implies
files to provide the hierarchy of processors for powerpc64 and
powerpc64le separately. These changes have no effect on installed,
stripped binaries (which remain unchanged).
Tested that installed stripped binaries are unchanged and that there are
no regressions on powerpc64 and powerpc64le.
Since tile support has been removed from the Linux kernel for 4.17,
this patch removes the (unmaintained) port to tilegx from glibc (the
tilepro support having been previously removed). This reflects the
general principle that a glibc port needs upstream support for the
architecture in all the components it build-depends on (so binutils,
GCC and the Linux kernel, for the normal case of a port supporting the
Linux kernel but no other OS), in order to be maintainable.
Apart from removal of sysdeps/tile and sysdeps/unix/sysv/linux/tile,
there are updates to various comments referencing tile for which
removal of those references seemed appropriate. The configuration is
removed from README and from build-many-glibcs.py. contrib.texi keeps
mention of removed contributions, but I updated Chris Metcalf's entry
to reflect that he also contributed the non-removed support for the
generic Linux kernel syscall interface.
__ASSUME_FADVISE64_64_NO_ALIGN support is removed, as it was only used
by tile.
* sysdeps/tile: Remove.
* sysdeps/unix/sysv/linux/tile: Likewise.
* README (tilegx-*-linux-gnu): Remove from list of supported
configurations.
* manual/contrib.texi (Contributors): Mention Chris Metcalf's
contribution of support for generic Linux kernel syscall
interface.
* scripts/build-many-glibcs.py (Context.add_all_configs): Remove
tilegx configurations.
(Config.install_linux_headers): Do not handle tile.
* sysdeps/unix/sysv/linux/aarch64/ldsodefs.h: Do not mention Tile
in comment.
* sysdeps/unix/sysv/linux/nios2/Makefile: Likewise.
* sysdeps/unix/sysv/linux/posix_fadvise.c: Likewise.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
* sysdeps/unix/sysv/linux/posix_fadvise64.c: Do not mention Tile
in comment.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
This simple test uses sigaction to define a signal handler. It then
uses sigaction again to fetch the information about the same signal
handler, and check that they are consistent. This is enough to detect
mismatches between struct kernel_sigaction and the kernel version of
struct sigaction, like in BZ #23069.
Changelog:
* signal/tst-sigaction.c: New file to test BZ #23069.
* signal/Makefile (tests): Fix indentation. Add tst-sigaction.
Prevent random runtime crashes due to missing symbols caused by mixed
libnss_* versions.
[BZ #22766]
* include/dlfcn.h [__libc_dl_open]: Replace RTLD_LAZY with RTLD_NOW.
* sysdeps/gnu/unwind-resume.c (__lib_gcc_s_init): Replace
__libc_dlopen_mode() using RTLD_NOW with __libc_dlopen.
* sysdeps/nptl/unwind-forcedunwind.c: Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch consolidates Linux getdirentries{64} implementation on just
the default sysdeps/unix/sysv/linux/getdirentries{64} ones. The default
implementation handles the Linux requirements:
* getdirentries is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdirentries64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/getdirentries.c (getdirentries): Build iff
_DIRENT_MATCHES_DIRENT64 is not defined.
* sysdeps/unix/sysv/linux/getdirentries64.c (getdirentries64): Open
implementation and alias to getdirentries if _DIRENT_MATCHES_DIRENT64
is defined.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries.c: Remove file.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries64.c: Remove file.
Now that GCC 8 has branched, this patch makes build-many-glibcs.py
default to using GCC 8 branch instead of GCC 7. The effect should be
that all builds complete cleanly and the compilation parts of the
glibc testsuite complete cleanly except for on i686-gnu (with GCC 7
there were testsuite failures for some other configurations as well).
I've replaced my bot building using GCC 6 branch with one using GCC 8
branch. (Of course glibc should continue building with GCC 6 - and
for that matter GCC 5 and 4.9, which are no longer maintained, are
supported versions as well - but building with GCC 6 will no longer be
included in my bot testing.)
* scripts/build-many-glibcs.py (Context.checkout): Default GCC
version to GCC 8 branch.
The build of glibc for Hurd has been failing with GCC mainline because
of the checks that aliases have the same type as the symbol aliased;
the Hurd dl-sysdep.c has a macro that defines aliases without using
the proper type. When GCC 8 branches (soon), I intend to make it the
default version in build-many-glibcs.py, so these failures would mean
the default build-many-glibcs.py build fails for Hurd again.
This patch fixes the Hurd build with GCC 8 by changing the macro that
defines the problem aliases to use the correct type for them. An
include of <not-errno.h> is needed to avoid this use of typeof
resulting in an error for __access_noerrno not being declared.
Tested compilation for i686-gnu with build-many-glibcs.py.
* sysdeps/mach/hurd/dl-sysdep.c: Include <not-errno.h>.
(check_no_hidden): Use type of original function when declaring
alias.
This patch adds the PTRACE_SECCOMP_GET_METADATA constant from Linux
4.16 to all relevant sys/ptrace.h files. A type struct
__ptrace_seccomp_metadata, analogous to other such types, is also
added.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): New enum value and macro.
* sysdeps/unix/sysv/linux/bits/ptrace-shared.h
(struct __ptrace_seccomp_metadata): New type.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/arm/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/tile/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/x86/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
This patch consolidates both alphasort{64} and versionsort{64}
implementation on just the default dirent/alphasort{64}c and
dirent/versionsort{64} respectively. It changes the logic
to follow the conventions used on other code consolidation:
* the non-LFS variant is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* the LFS variant is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c. For powerpc32 and sparcv9
it requires to add specific arch-implementation to override the
generic Linux one because neither ABI exports an compat symbol for
non-LFS alphasort64 and versionsort64 variant. It is most likely a
bug and it is also not one that can be fixed (in that there would be
existing binaries expecting both meanings of that symbol at its single
existing version, with binaries expecting the new meaning probably much
more common than those expecting the original meaning of that symbol at
that version).
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/alphasort.c (alphasort): Build iff _DIRENT_MATCHES_DIRENT64 is
defined.
* dirent/versionsort.c (versionsort): Likewise.
* dirent/alphasort64.c (alphasort64): Build regardless and alias to
alphasort if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/versionsort64.c (versionsort64): Likewise.
* sysdeps/unix/sysv/linux/i386/alphasort64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/alphasort64.c: New file.
* sysdeps/unix/sysv/linux/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/versionsort64.c: Likewise.
This patch makes the alpha bits/termios.h define XTABS to TAB3, so
matching a change made in Linux 4.16 as well as matching other
architectures where the values are already equal.
Tested with build-many-glibcs.py for alpha-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h [__USE_MISC]
(XTABS): Define to TAB3.
This patch consolidates scandir{at}{64} implementation on just
the default dirent/scandir{at}{64}{_r}.c ones. It changes the logic
to follow the conventions used on other code consolidation:
* scandir{at} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* scandir{at}{64} is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/scandir-tail-common.c: New file.
* dirent/scandir-tail.c: Use scandir-tail-common.c.
(__scandir_tail): Build iff _DIRENT_MATCHES_DIRENT64 is not defined.
* dirent/scandir.c: Use scandir-tail-common.c.
* dirent/scandirat.c: Likewise.
* dirent/scandir64-tail.c: Use scandir-tail-common.c.
* dirent/scandir64.c (scandir64): Always build and alias to scandir
if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/scandirat64.c (scandirat64): Likewise.
* include/dirent.h (__scandir_tail): Only define iff
_DIRENT_MATCHES_DIRENT64 is not defined.
(__scandir64_tail): Define regardless.
(__scandirat, scandirat64): Remove libc_hidden_proto.
* sysdeps/unix/sysv/linux/arm/scandir64.c: Remove file.
* sysdeps/unix/sysv/linux/m68k/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/scandir64.c: New file.
This patch updates the aarch64 bits/hwcap.h and dl-procinfo.c for the
new HWCAP_ASIMDFHM value in Linux 4.16.
Tested with build-many-glibcs.py for aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_ASIMDFHM):
New macro.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 24.
(_dl_aarch64_cap_flags): Add asimdfhm.
* sysdeps/pthread/bits/types/sigevent_t.h: New file, based on the
generic version but include <bits/pthreadtypes.h> to make struct
sigevent's sigev_notify_attributes field a pthread_attr_t*.
* bits/sched.h: Include <bits/types/struct_sched_param.h> and move struct
sched_param definition to it.
* sysdeps/unix/sysv/linux/bits/sched.h: Likewise.
* bits/types/struct_sched_param.h: New file.
* sysdeps/htl/bits/types/struct___pthread_attr.h: Include
<bits/types/struct_sched_param.h> instead of <sched.h>.
* posix/Makefile (headers): Add bits/types/struct_sched_param.h.
Fix commit 298d0e3 for mips64n32, checked on a mips64n32-linux-gnu build.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c (__getdents64):
Only alias to __getdents for _DIRENT_MATCHES_DIRENT64.
* bits/in.h [!__USE_MISC]: Do not define struct ip_opts.
* conform/data/netinet/in.h-data: Allow sin_ and sin6_ prefix.
* sysdeps/gnu/bits/msq.h (struct msqid_ds): Use __wait_queue struct
instead of wait_queue.
* sysdeps/gnu/bits/shm.h (struct shmid_ds): Use __vm_area_struct
instead of vm_area_struct.
This patch consolidates Linux getdents{64} implementation on just
the default sysdeps/unix/sysv/linux/getdents{64}{_r}.c ones.
Although this symbol is used only internally, the non-LFS version
still need to be build due the non-LFS getdirentries which requires
its semantic.
The non-LFS default implementation now uses the wordsize-32 as base
which uses getdents64 syscall plus adjustment for overflow (it allows
to use the same code for architectures that does not support non-LFS
getdents syscall). It has two main differences to wordsize-32 one:
- DIRENT_SET_DP_INO is added to handle alpha requirement to zero
the padding.
- alloca is removed by allocating a bounded temporary buffer (it
increases stack usage by roughly 276 bytes).
The default implementation handle the Linux requirements:
* getdents is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdents64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
* A compat symbol is added for getdents64 for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/getdents.c: Add comments with alpha
requirements.
(_DIRENT_MATCHES_DIRENT64): Undef
* sysdeps/unix/sysv/linux/alpha/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/getdents64.c: Remove file.
* sysdeps/unix/sysv/linux/generic/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/generic/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/getdents.c: Simplify implementation by
use getdents64 syscalls as base.
* sysdeps/unix/sysv/linux/getdents64.c: Likewise and add compatibility
symbol if required.
* sysdeps/unix/sysv/linux/hppa/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c
(__get_clockfreq_via_proc_openprom): Use __getdents64.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c: New file.
If e.g. the testcase nptl/test-mutex-printers is run
with enabled lock-elision, it fails on s390x with:
Error: Response does not match the expected pattern.
Command: print *mutex
Expected pattern: pthread_mutex_t
Response: No symbol "mutex" in current context.
(gdb)
See https://www.sourceware.org/ml/libc-alpha/2018-03/msg00583.html
for more details.
In fact the mutex pretty printer tests rely on looking at the
internal details of the lock, thus we disable it by setting up
the GLIB_TUNABLES environment variable inside gdb.
ChangeLog:
* scripts/test_printers_common.py (init_test): Disable lock elision.
If build with -Os on s390x, the test-tgmath fails with:
float functions not called often enough (-10000)
Within compile_testf(), the counter (count_float) is saved
before the complex functions are called.
Afterwards the saved counter differs to the current-counter.
But the tests with the complex functions do not increment count_float!
Instead count_float is saved to a register before calling totalorder
and totalordermag which both increment count_float.
The compiler is allowed to do that as totalorderf and totalordermagf
is declared with __attribute__ ((__const__)) in math/bits/mathcalls.h.
Thus this patch adjusts the global counters to be volatile.
Then count_float is saved after totalordermag.
ChangeLog:
* math/test-tgmath.c (count_double, count_float,
count_ldouble, count_cdouble, count_cfloat,
count_cldouble): Use volatile int.
* sysdeps/mach/hurd/bits/statfs.h (struct statfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statfs64): Likewise.
Standards require that the f_bsize, f_frsize, f_flag and f_namemax fields be
unsigned long. They used to be only unsigned on hurd, which happens to be
compatible with unsigned long on the only existing, 32bit, port. We can
thus merely fix the type.
* sysdeps/mach/hurd/bits/statvfs.h (struct statvfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statvfs64): Likewise.
The powerpcspe GCC port has been obsoleted in GCC 8 for not having had
the removal of code for non-SPE processors completed. This patch
accordingly arranges for build-many-glibcs.py to configure GCC with
--enable-obsolete for affected configurations. This is temporary;
either the port gets cleaned up and unobsoleted in GCC and the
configure option can be removed, or the port gets removed in GCC and
we should remove the corresponding glibc support.
Tested with build-many-glibcs.py for the affected configurations.
* scripts/build-many-glibcs.py (Context.add_all_configs): Use
--enable-obsolete for powerpc-linux-gnuspe.
* sysdeps/mach/include/lock-intern.h: Move to include/.
* sysdeps/mach/include/mach.h: Move to include/.
* sysdeps/mach/include/mach/mig_support.h: Move to include/mach/.
* sysdeps/mach/include/mach_error.h: Move to include/.
This patch removes the ununsed ARM code path for armv6t2 memchr and
strlen and armv7 memch and strcmp. In all implementation, the ARM
code is not used in any possible build (unless glibc is explicit
build with the non-documented NO_THUMB compiler flag) and for armv7
the resulting code either produces wrong results (memchr) and throw
build error (strcmp).
Checked on arm-linux-gnueabihf built targeting both armv6 and
armv7.
* sysdeps/arm/armv6t2/memchr.S (memchr): Remove ARM code path.
* sysdeps/arm/armv6t2/strlen.S (memchr): Likewise.
* sysdeps/arm/armv7/multiarch/memchr_neon.S (memchr): Likewise.
* sysdeps/arm/armv7/strcmp.S (strcmp): Likewise.
Adds a fast path to e_exp.c when |x| < 1.03972053527832.
When values are tested in isolation, reduction in execution
time is: aarch 30%, sparc 18%, x86 37%.
When comparing benchtests/bench.out which includes values
outside that range, the gains are:
aarch 8%, sparc 5%, x86 9%.
make check is clean (no increase in ulp for any math test).
Testing 20M values for each rounding mode in that range shows
approximately one in 200 values is off by 1 ulp. No value tested
for exp(x) changed by 2 or more ulp.
No observed change in performance or accuracy for x outside
fast path range.
These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.
Linux 4.16 does not add any new syscalls; this patch updates the
version number in syscall-names.list to reflect that it's still
current for 4.16.
Tested for x86_64 (compilation with build-many-glibcs.py, using Linux
4.16).
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.16.
The recent commit b4a5d26d88
"linux: Consolidate sigaction implementation" changed the definition
of struct sigaction for s390 (31bit). Unfortunately the order of the
fields were wrong.
This leads to blocking testcases e.g. nptl/tst-sem11.
A thread which blocks due to sem_wait() is cancelled via pthread_cancel()
and the signal-handler sigcancel_handler (see <glibc-src>/nptl/nptl-init.c
is called.
But it just returns as the siginfo_t argument is not setup by the kernel.
Then the main-thread is blocking due to pthread_join().
The flag SA_SIGINFO is set in sa_flags in struct sigaction and
is copied to the "kernel_sigaction.h" struct by the sigaction() call,
but due to the wrong ordering of the struct fields,
the kernel does not recognize it.
This patch consolidates Linux readdir{64}{_r} implementation on just
the default sysdeps/unix/sysv/linux/readdir{64}{_r}.c ones. The
default implementation handle the Linux requirements:
* readdir{_r} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* readdir64{_r} is always built and aliased to readdir{_r} for
ABI that define _DIRENT_MATCHES_DIRENT64.
* A compat symbol is added for readdir64{_r} for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/readdir.c (__READDIR, __GETDENTS, DIRENTY_TYPE,
__READDIR_ALIAS): Undefine after usage.
* sysdeps/posix/readdir_r.c (__READDIR_R, __GETDENTS, DIRENT_TYPE,
__READDIR_R_ALIAS): Likewise.
* sysdeps/unix/sysv/linux/arm/readdir64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir.c: New file.
* sysdeps/unix/sysv/linux/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir64.c: Add compat symbol if required.
* sysdeps/unix/sysv/linux/readdir64_r.c: Likewise.
This patch consolidates all Linux sigaction implementations on the default
sysdeps/unix/sysv/linux/sigaction.c. The idea is remove redundant code
and simplify new ports addition by following the current generic
Linux User API (UAPI).
The UAPI for new ports defines a generic extensible sigaction struct as:
struct sigaction
{
__sighandler_t sa_handler;
unsigned long sa_flags;
#ifdef SA_RESTORER
void (*sa_restorer) (void);
#endif
sigset_t sa_mask;
};
Where SA_RESTORER is just placed for compatibility reasons (news ports
should not add it). A similar definition is used on generic
kernel_sigaction.h.
The user exported sigaction definition is not changed, so for most
architectures it requires an adjustment to kernel expected one for the
syscall.
The main changes are:
- All architectures now define and use a kernel_sigaction struct meant
for the syscall, even for the architectures where the user sigaction
has the same layout of the kernel expected one (s390-64 and ia64).
Although it requires more work for these architectures, it simplifies
the generic implementation. Also, sigaction is hardly a hotspot where
micro optimization would play an important role.
- The generic kernel_sigaction definition is now aligned with expected
UAPI one for newer ports, where SA_RESTORER and sa_restorer are not
expected to be defined. This means adding kernel_sigaction for
current architectures that does define it (m68k, nios2, powerpc, s390,
sh, sparc, and tile) and which rely on previous generic definition.
- Remove old MIPS usage of sa_restorer. This was removed since 2.6.27
(2957c9e61ee9c - "[MIPS] IRIX: Goodbye and thanks for all the fish").
- The remaining arch-specific sigaction.c are to handle ABI idiosyncrasies
(like SPARC kernel ABI for rt_sigaction that requires an additional
stub argument).
So for new ports the generic implementation should work if its uses
Linux UAPI. If SA_RESTORER is still required (due some architecture
limitation), it should define its own kernel_sigaction.h, define it and
include generic header (assuming it still uses the default generic kernel
layout).
Checked on x86_64-linux-gnu, i686-linux-gnu, arm-linux-gnueabihf,
aarch64-linux-gnu, sparc64-linux-gnu, sparcv9-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, ia64-linux-gnu and alpha-linux-gnu. I also checked the
build on all remaining affected ABIs.
* sysdeps/unix/sysv/linux/aarch64/sigaction.c: Use default Linux version
as base implementation.
* sysdeps/unix/sysv/linux/arm/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/i386/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h: Add include guards,
remove unrequired definitions and update comments.
* sysdeps/unix/sysv/linux/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/mips/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: New file.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction: Likewise.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sh/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/tile/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/mips/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sigaction.c: Add STUB, SET_SA_RESTORER,
and RESET_SA_RESTORER hooks.
The example did not work because the null byte was not converted, and
mbrtowc was called with a zero-length input string. This results in a
(size_t) -2 return value, so the function always returns NULL.
The size computation for the heap allocation of the result was
incorrect because it did not deal with integer overflow.
Error checking was missing, and the allocated memory was not freed on
error paths. All error returns now set errno. (Note that there is an
assumption that free does not clobber errno.)
The slightly unportable comparision against (size_t) -2 to catch both
(size_t) -1 and (size_t) -2 return values is gone as well.
A null wide character needs to be stored in the result explicitly, to
terminate it.
The description in the manual is updated to deal with these finer
points. The (size_t) -2 behavior (consuming the input bytes) matches
what is specified in ISO C11.
* sysdeps/powerpc/fpu/libm-test-ulps: Increase double-precision
sin, cos and sincos to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Do not relocate absolute symbols by the base address. Such symbols have
SHN_ABS as the section index and their value is not supposed to be
affected by relocation as per the ELF gABI[1]:
"SHN_ABS
The symbol has an absolute value that will not change because of
relocation."
The reason for our non-conformance here seems to be an old SysV linker
bug causing symbols like _DYNAMIC to be incorrectly emitted as absolute
symbols[2]. However in a previous discussion it was pointed that this
is seriously flawed by preventing the lone purpose of the existence of
absolute symbols from being used[3]:
"On the contrary, the only interpretation that makes sense to me is that
it will not change because of relocation at link time or at load time.
Absolute symbols, from the days of the earliest linking loaders, have
been used to represent addresses that are outside the address space of
the module (e.g., memory-mapped addresses or kernel gateway pages).
They've even been used to represent true symbolic constants (e.g.,
system entry point numbers, sizes, version numbers). There's no other
way to represent a true absolute symbol, while the meaning you seek is
easily represented by giving the symbol a non-negative st_shndx value."
and we ought to stop supporting our current broken interpretation.
Update processing for dladdr(3) and dladdr1(3) so that SHN_ABS symbols
are ignored, because under the corrected interpretation they do not
represent addresses within a mapped file and therefore are not supposed
to be considered.
References:
[1] "System V Application Binary Interface - DRAFT - 19 October 2010",
The SCO Group, Section "Symbol Table",
<http://www.sco.com/developers/gabi/2012-12-31/ch4.symtab.html>
[2] Alan Modra, "Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00019.html>
[3] Cary Coutant, "Re: Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00020.html>
[BZ #19818]
* sysdeps/generic/ldsodefs.h (SYMBOL_ADDRESS): Handle SHN_ABS
symbols.
* elf/dl-addr.c (determine_info): Ignore SHN_ABS symbols.
* elf/tst-absolute-sym.c: New file.
* elf/tst-absolute-sym-lib.c: New file.
* elf/tst-absolute-sym-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-sym'.
(modules-names): Add `tst-absolute-sym-lib'.
(LDLIBS-tst-absolute-sym-lib.so): New variable.
($(objpfx)tst-absolute-sym-lib.so): New dependency.
($(objpfx)tst-absolute-sym): New dependency.
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Three of the functions defined by internal-signals.h were not actually
fulfilling their contracts when the sysdeps/generic version of that
file was used. Also, the Linux version included several more headers
than the generic version, which is the root cause of a build failure
on Hurd (already addressed in another way, but I think it is proper to
make the headers match).
* sysdeps/generic/internal-signals.h: Include signal.h,
sigsetops.h, and stdbool.h.
(__libc_signal_block_all): Actually block all signals.
(__libc_signal_block_app): Likewise.
(__libc_signal_restore_set): Actually restore the signal mask.
This patch filters out the internal NPTL signals (SIGCANCEL/SIGTIMER and
SIGSETXID) from signal functions. GLIBC on Linux requires both signals to
proper implement pthread cancellation, posix timers, and set*id posix
thread synchronization.
And not filtering out the internal signal is troublesome:
- A conformant program on a architecture that does not filter out the
signals might inadvertently disable pthread asynchronous cancellation,
set*id synchronization or posix timers.
- It might also to security issues if SIGSETXID is masked and set*id
functions are called (some threads might have effective user or group
id different from the rest).
The changes are basically:
- Change __is_internal_signal to bool and used on all signal function
that has a signal number as input. Also for signal function which accepts
signals sets (sigset_t) it assumes that canonical function were used to
add/remove signals which lead to some input simplification.
- Fix tst-sigset.c to avoid check for SIGCANCEL/SIGTIMER and SIGSETXID.
It is rewritten to check each signal indidually and to check realtime
signals using canonical macros.
- Add generic __clear_internal_signals and __is_internal_signal
version since both symbols are used on generic implementations.
- Remove superflous sysdeps/nptl/sigfillset.c.
- Remove superflous SIGTIMER handling on Linux __is_internal_signal
since it is the same of SIGCANCEL.
- Remove dangling define and obvious comment on nptl/sigaction.c.
Checked on x86_64-linux-gnu.
[BZ #22391]
* nptl/sigaction.c (__sigaction): Use __is_internal_signal to
check for internal nptl signals.
* nptl/sigaction.c (__sigaction): Likewise.
* signal/sigaddset.c (sigaddset): Likewise.
* signal/sigdelset.c (sigdelset): Likewise.
* sysdeps/posix/signal.c (__bsd_signal): Likewise.
* sysdeps/posix/sigset.c (sigset): Call and check sigaddset return
value.
* signal/sigfillset.c (sigfillset): User __clear_internal_signals
to filter out internal nptl signals.
* signal/tst-sigset.c (do_test): Check ech signal indidually and
also check realtime signals using standard macros.
* sysdeps/generic/internal-signals.h (__clear_internal_signals,
__is_internal_signal, __libc_signal_block_all,
__libc_signal_block_app, __libc_signal_restore_set): New functions.
* sysdeps/nptl/sigfillset.c: Remove file.
* sysdeps/unix/sysv/linux/internal-signals.h (__is_internal_signal):
Change return to bool.
(__clear_internal_signals): Remove SIGTIMER clean since it is
equal to SIGCANEL on Linux.
* sysdeps/unix/sysv/linux/sigtimedwait.c (__sigtimedwait): Assume
signal set was constructed using standard functions.
Reported-by: Yury Norov <ynorov@caviumnetworks.com>
Refactor the sincos implementation - rather than rely on odd partial inlining
of preprocessed portions from sin and cos, explicitly write out the cases.
This makes sincos much easier to maintain and provides an additional 16-20%
speedup between 0 and 2^27. The overall speedup of sincos is 48% over this range.
Between 0 and PI it is 66% faster.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Cleanup ifdefs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (__sincos): Refactor using the same
logic as sin and cos.
Refactor duplicated code into do_sin. Since all calls to do_sin use copysign to
set the sign of the result, move it inside do_sin. Small inputs use a separate
polynomial, so move this into do_sin as well (the check is based on the more
conservative case when doing large range reduction, but could be relaxed).
* sysdeps/ieee754/dbl-64/s_sin.c (do_sin): Use TAYLOR_SIN for small
inputs. Return correct sign.
(do_sincos): Remove small input check before do_sin, let do_sin set
the sign.
(__sin): Likewise.
(__cos): Likewise.
For huge inputs use the improved do_sincos function as well. Now no cases use
the correction factor returned by do_sin, do_cos and TAYLOR_SIN, so remove it.
* sysdeps/ieee754/dbl-64/s_sin.c (TAYLOR_SIN): Remove cor parameter.
(do_cos): Remove corp parameter and calculations.
(do_sin): Likewise.
(do_sincos): Remove cor variable.
(__sin): Use do_sincos for huge inputs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
(reduce_and_compute_sincos): Remove unused function.
This patch improves the accuracy of the range reduction. When the input is
large (2^27) and very close to a multiple of PI/2, using 110 bits of PI is not
enough. Improve range reduction accuracy to 136 bits. As a result the special
checks for results close to zero can be removed. The ULP of the polynomials is
at worst 0.55ULP, so there is no reason for the slow functions, and they can be
removed.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_1): Rename to
reduce_sincos, improve accuracy to 136 bits.
(do_sincos_1): Rename to do_sincos, remove fallbacks to slow functions.
(__sin): Use improved reduction and simplified do_sincos calculation.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
This patch removes the large range reduction code and defers to the huge range
reduction code. The first level range reducer supports inputs up to 2^27,
which is way too large given that inputs for sin/cos are typically small
(< 10), and optimizing for a smaller range would give a significant speedup.
Input values above 2^27 are practically never used, so there is no reason for
supporting range reduction between 2^27 and 2^48. Removing it significantly
simplifies code and enables further speedups. There is about a 2.3x slowdown
in this range due to __branred being extremely slow (a better algorithm could
easily more than double performance).
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function.
(do_sincos_2): Likewise.
(__sin): Remove middle range reduction case.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range
reduction case.
This series of patches removes the slow patchs from sin, cos and sincos.
Besides greatly simplifying the implementation, the new version is also much
faster for inputs up to PI (41% faster) and for large inputs needing range
reduction (27% faster).
ULP is ~0.55 with no errors found after testing 1.6 billion inputs across most
of the range with mpsin and mpcos. The number of incorrectly rounded results
(ie. ULP >0.5) is at most ~2750 per million inputs between 0.125 and 0.5,
the average is ~850 per million between 0 and PI.
Tested on AArch64 and x86_64 with no regressions.
The first patch removes the slow paths for the cases where the input is small
and doesn't require range reduction. Update ULP tables for sin, cos and sincos
on AArch64 and x86_64.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sin, cos, sincos.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Remove slow paths for small
inputs.
(__cos): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sin, cos, sincos.
This patch assumes O_DIRECTORY works as defined by POSIX on opendir
implementation (aligning with other glibc code, for instance pwd). This
allows remove both the fallback code to handle system with missing or
broken O_DIRECTORY along with the Linux specific opendir.c which just
advertise the working flag.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/opendir.c (o_directory_works, tryopen_o_directory):
Remove definitions.
(opendir_oflags): Use O_DIRECTORY regardless.
(__opendir, __opendirat): Remove need_isdir_precheck usage.
* sysdeps/unix/sysv/linux/opendir.c: Remove file.