This node essentially implements the feColorMatrix SVG filter. I got the
idea yesterday after looking at the opacity implementation.
It can be used for opacity (not sure if we want to) and to implement a
bunch of the CSS filters.
...but disable them for now. Configs will be added for the projects to
support Vulkan-enabled builds which will then enable the builds of these
sources. Extra commands and items will be needed for the GSK resources
along with ensuring GSK_RENDERER_GSK being defined for the build of GDK,
GDK-Win32 and GSK so that the builds of Vulkan-enabled builds can be done
properly.
Filter out the Vulkan sources from the 'dist hook' rules in
gsk/Makefile.am as we don't want to in turn include them twice in the
projects when the 'make dist' is performed on a system with Vulkan
builds enabled.
One cannot use #if...#endif within macro calls in Visual Studio and
possibly other compilers, and there are more uses of VLAs that need to be
replaced with g_newa().
There were also checks for the clip type in gskvulkanrenderpass.c which
were possibly not done right (using the address of the type value to check
for a type value), which triggered errors as one is attempting to compare
a pointer type to an enum/int type.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Use g_newa() instead of VLAs, as VLAs may never be supported by some
compilers as it became optional in C11 and there are concerns about their
implementations in compilers that do support it.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Forces a full redraw every frame.
This is done generically, so it's supported on every renderer.
For widget-factory first page (with the spinner spinning and progressbar
pulsing), I get these numbers per frame:
action clipped full redraw
snapshot 0ms 7-10ms
cairo rendering 0ms 10-15ms
Vulkan rendering 3-5ms 18-20ms
Vulkan expected * 0ms 1-2ms
GL rendering unsupported 55-62ms
* expected means disabling rendering of unsupported render nodes,
instead of doing fallback drawing. So it overestimates the performance,
because borders and box-shadows are disabled.
It's faster to render once for every rectangle in the clip region than
rendering the outline of the clip region.
Especially because this reduces the time necessary to build up the frame
data.
In widget-factory (where we have 3 rectangles), this leads to a 5x
speedup in the rendering time rendering alone.
Snapshotting time goes from 10ms to ~1ms, which is another huge
improvement.
Note: We interpolate premultiplied colors as per the CSS spec. This i
different from Cairo, which interpolates unpremultiplied.
So in testcases with translucent gradients, it's actually Cairo that is
wrong.
This is now tracking the clips added by the clip nodes.
If any particular node can't deal with a clip, it falls back to Cairo
rendering. But if it can, it will render it directly.
... and implement it for the Cairo renderer.
It's an API that instructs a renderer to render to a texture.
So far this is mostly meant to be used for testing, but I could imagine
it being useful for rendering DND icons.
That code doesn't do anything.
And what the code should be doing (clearing the abckground) isn't
necessary as cairo drawing is guaranteed to clear the surface.
This does a conversion to/from GBytes and is intended for writing tests.
It's really crude but it works.
And that probably means Alex will (ab)use it for broadway.
I had originally thought I'd use GskShadow for box-shadow, but didn't in
the end.
So now it's only used for text-shadow and icon-shadow, and those don't
have a spread.
Instead of a separate allocation for any arrays in the render node
we allocate these as part of the render node itself, using C99
flexible arrays.
This leads to less allocations, which is nice, but the major reason
for this is that it allows us to change the allocation scheme further
in the future. For instance, we want to do stack-like allocation so
that all the render-nodes for an entire frame are allocated in one
(or a few) chunks.
Instead of constantly recalculating this (especially recursively for
parents!) we do it only on construction, because everything is
immutable anyway. Also, most nodes had a bounds already and can
use the new parent member instead.
We also do direct access to the node bounds rather than calling
gsk_render_node_get_bounds in various places, which means
we do less copying.
... and make the icon rendering code use it.
This requires moving even more shadow renering code into GSK, but so be
it. At least the "shadows not implemented" warning is now gone!
The node draws a solid CSS border, which can be used to cover everything
but dashed and dotted borders (double, groove, inset, ...).
For different border styles, we overlay multiple nodes and set their
colors to transparent for sides with non-matching styles.