Creating render nodes is fire-and-forget, so all one should do is create
a container, append, append, append and then send it off to the
renderer. So there's no need to replace, insert between or anything
else.
- Recognize "gl" as well as "opengl" for the GL renderer
- GSK_RENDERER=help now works
- g_warning() for an unrecognized renderer (typo detection!)
- g_print() the actual renderer that is used (and error messages when
selecting) when a GSK_RENDERER is given, so you'll notice if your
renderer isn't taken.
By creating unlimited render objects, we would never wait on the GPU.
This would mean that if the GPU was the bottleneck, we would fill its
queue with render commands faster than it could process them.
And because the nvidia binary driver and my code work surprisingly well
and bugfree, this lead to exhaustion of RAM. I had 50GB of swap
configured and my hard disk was quicker as swap storage than my GPU was
at processing the commands, so stuff still filled up.
At that point my computer became rather unresponsive and I decided to
reboot it, so I that could write this patch.
Add SURFACE and TEXTURE operations. This way, we actually render more
than one node every frame because not everything is a fallback node
anymore that gets composited with its children into a cairo surface.
Instead of pushing the root matrix, push the world matrix for the
current node. That way, the bounds we emit as vertices are actually
properly transformed.
First, we collect all the info about descriptor sets into a hash table,
then we use its size to determine the amount of sets and allocate those
before we finally go ahead and use the hash table's contents to
initialize the descriptor sets.
And then we're ready to render.
We can let the GPU do its stuff without waiting. The GPU knows what it's
doing.
Which means we now get a lot of time to spend on doing CPU things (read:
we're way better in benchmarks).
The old behavior is safer, so we want to keep it around for debugging.
It can be reenabled with GSK_RENDERING_MODE=sync.
And move the actual rendering code there.
A RenderPass is a collection of operations on the same target that
get executed one after another. It roughly targets VkRenderPass or
rather the subpasses of a VkRenderPass.
For now, only the infrastructure is there. No real stuff is happening.
This is refactoring work.
GskVulkanRender is supposed to be the global object for a render
operation, ie GskVulkanRenderer.render() will create this object for
what it does.
The object will be split into stages that perform the operations
necessary to create a drawing.
Instead of using a staging iamge, we require the final image to be
linearly allocated and have host-visible memory.
This improves performance quite a bit.
The old code is still there and can be enabled with a simple change
to a #define in gskvulkanimage.h
We can now upload vertices.
And we use this to draw a yellow background. Which is clearly superior
to not drawing anything.
Also, we have shaders now. If you modify them, you need glslc installed
so they can be recompiled into Spir-V bytecode.
This is a way to query the damaged area of the backbuffer.
The GL renderer uses this to compute the extents of that damage region
(computed via buffer age) and use them to minimize the area to redraw.
This changes the semantics of GL rendering to "When calling
gdk_window_begin_frame() with a GL context, the area by
gdk_gl_context_get_damage() needs to be redrawn and every other pixel of
the backbuffer is guaranteed to be correct.
After gdk_window_end_frame() on a GL-drawn window, the whole backbuffer
must be correct.
We can always glXBufferSwap() now because of this.