v8/src/api.cc

7785 lines
262 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api.h"
#include <string.h> // For memcpy, strlen.
#ifdef V8_USE_ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif // V8_USE_ADDRESS_SANITIZER
#include <cmath> // For isnan.
#include "include/v8-debug.h"
#include "include/v8-profiler.h"
#include "include/v8-testing.h"
#include "src/api-natives.h"
#include "src/assert-scope.h"
#include "src/background-parsing-task.h"
#include "src/base/functional.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/utils/random-number-generator.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/compiler.h"
#include "src/conversions-inl.h"
#include "src/counters.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/deoptimizer.h"
#include "src/execution.h"
#include "src/global-handles.h"
#include "src/heap-profiler.h"
#include "src/heap-snapshot-generator-inl.h"
#include "src/icu_util.h"
#include "src/json-parser.h"
#include "src/messages.h"
#include "src/natives.h"
#include "src/parser.h"
#include "src/profile-generator-inl.h"
#include "src/property.h"
#include "src/property-details.h"
#include "src/prototype.h"
#include "src/runtime/runtime.h"
#include "src/runtime-profiler.h"
#include "src/sampler.h"
#include "src/scanner-character-streams.h"
#include "src/simulator.h"
#include "src/snapshot.h"
#include "src/unicode-inl.h"
#include "src/v8threads.h"
#include "src/version.h"
#include "src/vm-state-inl.h"
#define LOG_API(isolate, expr) LOG(isolate, ApiEntryCall(expr))
#define ENTER_V8(isolate) \
i::VMState<v8::OTHER> __state__((isolate))
namespace v8 {
#define ON_BAILOUT(isolate, location, code) \
if (IsExecutionTerminatingCheck(isolate)) { \
code; \
UNREACHABLE(); \
}
#define EXCEPTION_PREAMBLE(isolate) \
(isolate)->handle_scope_implementer()->IncrementCallDepth(); \
DCHECK(!(isolate)->external_caught_exception()); \
bool has_pending_exception = false
#define EXCEPTION_BAILOUT_CHECK_GENERIC(isolate, value, do_callback) \
do { \
i::HandleScopeImplementer* handle_scope_implementer = \
(isolate)->handle_scope_implementer(); \
handle_scope_implementer->DecrementCallDepth(); \
if (has_pending_exception) { \
bool call_depth_is_zero = handle_scope_implementer->CallDepthIsZero(); \
(isolate)->OptionalRescheduleException(call_depth_is_zero); \
do_callback \
return value; \
} \
do_callback \
} while (false)
#define EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, value) \
EXCEPTION_BAILOUT_CHECK_GENERIC( \
isolate, value, isolate->FireCallCompletedCallback();)
#define EXCEPTION_BAILOUT_CHECK(isolate, value) \
EXCEPTION_BAILOUT_CHECK_GENERIC(isolate, value, ;)
// --- E x c e p t i o n B e h a v i o r ---
void i::FatalProcessOutOfMemory(const char* location) {
i::V8::FatalProcessOutOfMemory(location, false);
}
// When V8 cannot allocated memory FatalProcessOutOfMemory is called.
// The default fatal error handler is called and execution is stopped.
void i::V8::FatalProcessOutOfMemory(const char* location, bool take_snapshot) {
i::HeapStats heap_stats;
int start_marker;
heap_stats.start_marker = &start_marker;
int new_space_size;
heap_stats.new_space_size = &new_space_size;
int new_space_capacity;
heap_stats.new_space_capacity = &new_space_capacity;
intptr_t old_pointer_space_size;
heap_stats.old_pointer_space_size = &old_pointer_space_size;
intptr_t old_pointer_space_capacity;
heap_stats.old_pointer_space_capacity = &old_pointer_space_capacity;
intptr_t old_data_space_size;
heap_stats.old_data_space_size = &old_data_space_size;
intptr_t old_data_space_capacity;
heap_stats.old_data_space_capacity = &old_data_space_capacity;
intptr_t code_space_size;
heap_stats.code_space_size = &code_space_size;
intptr_t code_space_capacity;
heap_stats.code_space_capacity = &code_space_capacity;
intptr_t map_space_size;
heap_stats.map_space_size = &map_space_size;
intptr_t map_space_capacity;
heap_stats.map_space_capacity = &map_space_capacity;
intptr_t cell_space_size;
heap_stats.cell_space_size = &cell_space_size;
intptr_t cell_space_capacity;
heap_stats.cell_space_capacity = &cell_space_capacity;
intptr_t property_cell_space_size;
heap_stats.property_cell_space_size = &property_cell_space_size;
intptr_t property_cell_space_capacity;
heap_stats.property_cell_space_capacity = &property_cell_space_capacity;
intptr_t lo_space_size;
heap_stats.lo_space_size = &lo_space_size;
int global_handle_count;
heap_stats.global_handle_count = &global_handle_count;
int weak_global_handle_count;
heap_stats.weak_global_handle_count = &weak_global_handle_count;
int pending_global_handle_count;
heap_stats.pending_global_handle_count = &pending_global_handle_count;
int near_death_global_handle_count;
heap_stats.near_death_global_handle_count = &near_death_global_handle_count;
int free_global_handle_count;
heap_stats.free_global_handle_count = &free_global_handle_count;
intptr_t memory_allocator_size;
heap_stats.memory_allocator_size = &memory_allocator_size;
intptr_t memory_allocator_capacity;
heap_stats.memory_allocator_capacity = &memory_allocator_capacity;
int objects_per_type[LAST_TYPE + 1] = {0};
heap_stats.objects_per_type = objects_per_type;
int size_per_type[LAST_TYPE + 1] = {0};
heap_stats.size_per_type = size_per_type;
int os_error;
heap_stats.os_error = &os_error;
int end_marker;
heap_stats.end_marker = &end_marker;
i::Isolate* isolate = i::Isolate::Current();
if (isolate->heap()->HasBeenSetUp()) {
// BUG(1718): Don't use the take_snapshot since we don't support
// HeapIterator here without doing a special GC.
isolate->heap()->RecordStats(&heap_stats, false);
}
Utils::ApiCheck(false, location, "Allocation failed - process out of memory");
// If the fatal error handler returns, we stop execution.
FATAL("API fatal error handler returned after process out of memory");
}
void Utils::ReportApiFailure(const char* location, const char* message) {
i::Isolate* isolate = i::Isolate::Current();
FatalErrorCallback callback = isolate->exception_behavior();
if (callback == NULL) {
base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location,
message);
base::OS::Abort();
} else {
callback(location, message);
}
isolate->SignalFatalError();
}
static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) {
if (isolate->has_scheduled_exception()) {
return isolate->scheduled_exception() ==
isolate->heap()->termination_exception();
}
return false;
}
void V8::SetNativesDataBlob(StartupData* natives_blob) {
i::V8::SetNativesBlob(natives_blob);
}
void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) {
i::V8::SetSnapshotBlob(snapshot_blob);
}
bool RunExtraCode(Isolate* isolate, char* utf8_source) {
// Run custom script if provided.
TryCatch try_catch;
Local<String> source_string = String::NewFromUtf8(isolate, utf8_source);
if (try_catch.HasCaught()) return false;
ScriptOrigin origin(String::NewFromUtf8(isolate, "<embedded script>"));
ScriptCompiler::Source source(source_string, origin);
Local<Script> script = ScriptCompiler::Compile(isolate, &source);
if (try_catch.HasCaught()) return false;
script->Run();
return !try_catch.HasCaught();
}
StartupData V8::CreateSnapshotDataBlob(char* custom_source) {
Isolate::CreateParams params;
params.enable_serializer = true;
Isolate* isolate = v8::Isolate::New(params);
StartupData result = {NULL, 0};
{
Isolate::Scope isolate_scope(isolate);
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
Persistent<Context> context;
i::Snapshot::Metadata metadata;
{
HandleScope handle_scope(isolate);
Handle<Context> new_context = Context::New(isolate);
context.Reset(isolate, new_context);
if (custom_source != NULL) {
metadata.set_embeds_script(true);
Context::Scope context_scope(new_context);
if (!RunExtraCode(isolate, custom_source)) context.Reset();
}
}
if (!context.IsEmpty()) {
// Make sure all builtin scripts are cached.
{
HandleScope scope(isolate);
for (int i = 0; i < i::Natives::GetBuiltinsCount(); i++) {
internal_isolate->bootstrapper()->NativesSourceLookup(i);
}
}
// If we don't do this then we end up with a stray root pointing at the
// context even after we have disposed of the context.
internal_isolate->heap()->CollectAllAvailableGarbage("mksnapshot");
i::Object* raw_context = *v8::Utils::OpenPersistent(context);
context.Reset();
i::SnapshotByteSink snapshot_sink;
i::StartupSerializer ser(internal_isolate, &snapshot_sink);
ser.SerializeStrongReferences();
i::SnapshotByteSink context_sink;
i::PartialSerializer context_ser(internal_isolate, &ser, &context_sink);
context_ser.Serialize(&raw_context);
ser.SerializeWeakReferences();
result = i::Snapshot::CreateSnapshotBlob(ser, context_ser, metadata);
}
}
isolate->Dispose();
return result;
}
void V8::SetFlagsFromString(const char* str, int length) {
i::FlagList::SetFlagsFromString(str, length);
}
void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) {
i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags);
}
RegisteredExtension* RegisteredExtension::first_extension_ = NULL;
RegisteredExtension::RegisteredExtension(Extension* extension)
: extension_(extension) { }
void RegisteredExtension::Register(RegisteredExtension* that) {
that->next_ = first_extension_;
first_extension_ = that;
}
void RegisteredExtension::UnregisterAll() {
RegisteredExtension* re = first_extension_;
while (re != NULL) {
RegisteredExtension* next = re->next();
delete re;
re = next;
}
first_extension_ = NULL;
}
void RegisterExtension(Extension* that) {
RegisteredExtension* extension = new RegisteredExtension(that);
RegisteredExtension::Register(extension);
}
Extension::Extension(const char* name,
const char* source,
int dep_count,
const char** deps,
int source_length)
: name_(name),
source_length_(source_length >= 0 ?
source_length :
(source ? static_cast<int>(strlen(source)) : 0)),
source_(source, source_length_),
dep_count_(dep_count),
deps_(deps),
auto_enable_(false) {
CHECK(source != NULL || source_length_ == 0);
}
ResourceConstraints::ResourceConstraints()
: max_semi_space_size_(0),
max_old_space_size_(0),
max_executable_size_(0),
stack_limit_(NULL),
max_available_threads_(0),
code_range_size_(0) { }
void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit,
uint32_t number_of_processors) {
#if V8_OS_ANDROID
// Android has higher physical memory requirements before raising the maximum
// heap size limits since it has no swap space.
const uint64_t low_limit = 512ul * i::MB;
const uint64_t medium_limit = 1ul * i::GB;
const uint64_t high_limit = 2ul * i::GB;
#else
const uint64_t low_limit = 512ul * i::MB;
const uint64_t medium_limit = 768ul * i::MB;
const uint64_t high_limit = 1ul * i::GB;
#endif
if (physical_memory <= low_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeLowMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeLowMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeLowMemoryDevice);
} else if (physical_memory <= medium_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeMediumMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeMediumMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeMediumMemoryDevice);
} else if (physical_memory <= high_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHighMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHighMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeHighMemoryDevice);
} else {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHugeMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHugeMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeHugeMemoryDevice);
}
set_max_available_threads(i::Max(i::Min(number_of_processors, 4u), 1u));
if (virtual_memory_limit > 0 && i::kRequiresCodeRange) {
// Reserve no more than 1/8 of the memory for the code range, but at most
// kMaximalCodeRangeSize.
set_code_range_size(
i::Min(i::kMaximalCodeRangeSize / i::MB,
static_cast<size_t>((virtual_memory_limit >> 3) / i::MB)));
}
}
void SetResourceConstraints(i::Isolate* isolate,
const ResourceConstraints& constraints) {
int semi_space_size = constraints.max_semi_space_size();
int old_space_size = constraints.max_old_space_size();
int max_executable_size = constraints.max_executable_size();
size_t code_range_size = constraints.code_range_size();
if (semi_space_size != 0 || old_space_size != 0 ||
max_executable_size != 0 || code_range_size != 0) {
isolate->heap()->ConfigureHeap(semi_space_size, old_space_size,
max_executable_size, code_range_size);
}
if (constraints.stack_limit() != NULL) {
uintptr_t limit = reinterpret_cast<uintptr_t>(constraints.stack_limit());
isolate->stack_guard()->SetStackLimit(limit);
}
isolate->set_max_available_threads(constraints.max_available_threads());
}
i::Object** V8::GlobalizeReference(i::Isolate* isolate, i::Object** obj) {
LOG_API(isolate, "Persistent::New");
i::Handle<i::Object> result = isolate->global_handles()->Create(*obj);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
(*obj)->ObjectVerify();
}
#endif // VERIFY_HEAP
return result.location();
}
i::Object** V8::CopyPersistent(i::Object** obj) {
i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(obj);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
(*obj)->ObjectVerify();
}
#endif // VERIFY_HEAP
return result.location();
}
void V8::MakeWeak(i::Object** object, void* parameter,
WeakCallback weak_callback) {
i::GlobalHandles::MakeWeak(object, parameter, weak_callback);
}
void V8::MakePhantom(i::Object** object, void* parameter,
int internal_field_index1, int internal_field_index2,
PhantomCallbackData<void>::Callback weak_callback) {
if (internal_field_index1 == 0) {
if (internal_field_index2 == 1) {
i::GlobalHandles::MakePhantom(object, parameter, 2, weak_callback);
} else {
DCHECK_EQ(internal_field_index2, kNoInternalFieldIndex);
i::GlobalHandles::MakePhantom(object, parameter, 1, weak_callback);
}
} else {
DCHECK_EQ(internal_field_index1, kNoInternalFieldIndex);
DCHECK_EQ(internal_field_index2, kNoInternalFieldIndex);
i::GlobalHandles::MakePhantom(object, parameter, 0, weak_callback);
}
}
void* V8::ClearWeak(i::Object** obj) {
return i::GlobalHandles::ClearWeakness(obj);
}
void V8::DisposeGlobal(i::Object** obj) {
i::GlobalHandles::Destroy(obj);
}
void V8::Eternalize(Isolate* v8_isolate, Value* value, int* index) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Object* object = *Utils::OpenHandle(value);
isolate->eternal_handles()->Create(isolate, object, index);
}
Local<Value> V8::GetEternal(Isolate* v8_isolate, int index) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return Utils::ToLocal(isolate->eternal_handles()->Get(index));
}
// --- H a n d l e s ---
HandleScope::HandleScope(Isolate* isolate) {
Initialize(isolate);
}
void HandleScope::Initialize(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
// We do not want to check the correct usage of the Locker class all over the
// place, so we do it only here: Without a HandleScope, an embedder can do
// almost nothing, so it is enough to check in this central place.
Utils::ApiCheck(!v8::Locker::IsActive() ||
internal_isolate->thread_manager()->IsLockedByCurrentThread(),
"HandleScope::HandleScope",
"Entering the V8 API without proper locking in place");
i::HandleScopeData* current = internal_isolate->handle_scope_data();
isolate_ = internal_isolate;
prev_next_ = current->next;
prev_limit_ = current->limit;
current->level++;
}
HandleScope::~HandleScope() {
i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_);
}
int HandleScope::NumberOfHandles(Isolate* isolate) {
return i::HandleScope::NumberOfHandles(
reinterpret_cast<i::Isolate*>(isolate));
}
i::Object** HandleScope::CreateHandle(i::Isolate* isolate, i::Object* value) {
return i::HandleScope::CreateHandle(isolate, value);
}
i::Object** HandleScope::CreateHandle(i::HeapObject* heap_object,
i::Object* value) {
DCHECK(heap_object->IsHeapObject());
return i::HandleScope::CreateHandle(heap_object->GetIsolate(), value);
}
EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
escape_slot_ = CreateHandle(isolate, isolate->heap()->the_hole_value());
Initialize(v8_isolate);
}
i::Object** EscapableHandleScope::Escape(i::Object** escape_value) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap();
Utils::ApiCheck(*escape_slot_ == heap->the_hole_value(),
"EscapeableHandleScope::Escape",
"Escape value set twice");
if (escape_value == NULL) {
*escape_slot_ = heap->undefined_value();
return NULL;
}
*escape_slot_ = *escape_value;
return escape_slot_;
}
void Context::Enter() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
impl->EnterContext(env);
impl->SaveContext(isolate->context());
isolate->set_context(*env);
}
void Context::Exit() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
if (!Utils::ApiCheck(impl->LastEnteredContextWas(env),
"v8::Context::Exit()",
"Cannot exit non-entered context")) {
return;
}
impl->LeaveContext();
isolate->set_context(impl->RestoreContext());
}
static void* DecodeSmiToAligned(i::Object* value, const char* location) {
Utils::ApiCheck(value->IsSmi(), location, "Not a Smi");
return reinterpret_cast<void*>(value);
}
static i::Smi* EncodeAlignedAsSmi(void* value, const char* location) {
i::Smi* smi = reinterpret_cast<i::Smi*>(value);
Utils::ApiCheck(smi->IsSmi(), location, "Pointer is not aligned");
return smi;
}
static i::Handle<i::FixedArray> EmbedderDataFor(Context* context,
int index,
bool can_grow,
const char* location) {
i::Handle<i::Context> env = Utils::OpenHandle(context);
bool ok =
Utils::ApiCheck(env->IsNativeContext(),
location,
"Not a native context") &&
Utils::ApiCheck(index >= 0, location, "Negative index");
if (!ok) return i::Handle<i::FixedArray>();
i::Handle<i::FixedArray> data(env->embedder_data());
if (index < data->length()) return data;
if (!Utils::ApiCheck(can_grow, location, "Index too large")) {
return i::Handle<i::FixedArray>();
}
int new_size = i::Max(index, data->length() << 1) + 1;
data = i::FixedArray::CopySize(data, new_size);
env->set_embedder_data(*data);
return data;
}
v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) {
const char* location = "v8::Context::GetEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location);
if (data.is_null()) return Local<Value>();
i::Handle<i::Object> result(data->get(index), data->GetIsolate());
return Utils::ToLocal(result);
}
void Context::SetEmbedderData(int index, v8::Handle<Value> value) {
const char* location = "v8::Context::SetEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location);
if (data.is_null()) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
data->set(index, *val);
DCHECK_EQ(*Utils::OpenHandle(*value),
*Utils::OpenHandle(*GetEmbedderData(index)));
}
void* Context::SlowGetAlignedPointerFromEmbedderData(int index) {
const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location);
if (data.is_null()) return NULL;
return DecodeSmiToAligned(data->get(index), location);
}
void Context::SetAlignedPointerInEmbedderData(int index, void* value) {
const char* location = "v8::Context::SetAlignedPointerInEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location);
data->set(index, EncodeAlignedAsSmi(value, location));
DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index));
}
// --- N e a n d e r ---
// A constructor cannot easily return an error value, therefore it is necessary
// to check for a dead VM with ON_BAILOUT before constructing any Neander
// objects. To remind you about this there is no HandleScope in the
// NeanderObject constructor. When you add one to the site calling the
// constructor you should check that you ensured the VM was not dead first.
NeanderObject::NeanderObject(v8::internal::Isolate* isolate, int size) {
ENTER_V8(isolate);
value_ = isolate->factory()->NewNeanderObject();
i::Handle<i::FixedArray> elements = isolate->factory()->NewFixedArray(size);
value_->set_elements(*elements);
}
int NeanderObject::size() {
return i::FixedArray::cast(value_->elements())->length();
}
NeanderArray::NeanderArray(v8::internal::Isolate* isolate) : obj_(isolate, 2) {
obj_.set(0, i::Smi::FromInt(0));
}
int NeanderArray::length() {
return i::Smi::cast(obj_.get(0))->value();
}
i::Object* NeanderArray::get(int offset) {
DCHECK(0 <= offset);
DCHECK(offset < length());
return obj_.get(offset + 1);
}
// This method cannot easily return an error value, therefore it is necessary
// to check for a dead VM with ON_BAILOUT before calling it. To remind you
// about this there is no HandleScope in this method. When you add one to the
// site calling this method you should check that you ensured the VM was not
// dead first.
void NeanderArray::add(i::Isolate* isolate, i::Handle<i::Object> value) {
int length = this->length();
int size = obj_.size();
if (length == size - 1) {
i::Factory* factory = isolate->factory();
i::Handle<i::FixedArray> new_elms = factory->NewFixedArray(2 * size);
for (int i = 0; i < length; i++)
new_elms->set(i + 1, get(i));
obj_.value()->set_elements(*new_elms);
}
obj_.set(length + 1, *value);
obj_.set(0, i::Smi::FromInt(length + 1));
}
void NeanderArray::set(int index, i::Object* value) {
if (index < 0 || index >= this->length()) return;
obj_.set(index + 1, value);
}
// --- T e m p l a t e ---
static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) {
that->set_tag(i::Smi::FromInt(type));
}
void Template::Set(v8::Handle<Name> name,
v8::Handle<Data> value,
v8::PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* isolate = templ->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
// TODO(dcarney): split api to allow values of v8::Value or v8::TemplateInfo.
i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*value),
static_cast<PropertyAttributes>(attribute));
}
void Template::SetAccessorProperty(
v8::Local<v8::Name> name,
v8::Local<FunctionTemplate> getter,
v8::Local<FunctionTemplate> setter,
v8::PropertyAttribute attribute,
v8::AccessControl access_control) {
// TODO(verwaest): Remove |access_control|.
DCHECK_EQ(v8::DEFAULT, access_control);
auto templ = Utils::OpenHandle(this);
auto isolate = templ->GetIsolate();
ENTER_V8(isolate);
DCHECK(!name.IsEmpty());
DCHECK(!getter.IsEmpty() || !setter.IsEmpty());
i::HandleScope scope(isolate);
i::ApiNatives::AddAccessorProperty(
isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true),
static_cast<PropertyAttributes>(attribute));
}
// --- F u n c t i o n T e m p l a t e ---
static void InitializeFunctionTemplate(
i::Handle<i::FunctionTemplateInfo> info) {
info->set_tag(i::Smi::FromInt(Consts::FUNCTION_TEMPLATE));
info->set_flag(0);
}
Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(i_isolate);
i::Handle<i::Object> result(Utils::OpenHandle(this)->prototype_template(),
i_isolate);
if (result->IsUndefined()) {
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(i_isolate);
result = Utils::OpenHandle(*ObjectTemplate::New(isolate));
Utils::OpenHandle(this)->set_prototype_template(*result);
}
return ToApiHandle<ObjectTemplate>(result);
}
static void EnsureNotInstantiated(i::Handle<i::FunctionTemplateInfo> info,
const char* func) {
Utils::ApiCheck(!info->instantiated(), func,
"FunctionTemplate already instantiated");
}
void FunctionTemplate::Inherit(v8::Handle<FunctionTemplate> value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::Inherit");
i::Isolate* isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_parent_template(*Utils::OpenHandle(*value));
}
static Local<FunctionTemplate> FunctionTemplateNew(
i::Isolate* isolate,
FunctionCallback callback,
v8::Handle<Value> data,
v8::Handle<Signature> signature,
int length,
bool do_not_cache) {
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::FUNCTION_TEMPLATE_INFO_TYPE);
i::Handle<i::FunctionTemplateInfo> obj =
i::Handle<i::FunctionTemplateInfo>::cast(struct_obj);
InitializeFunctionTemplate(obj);
obj->set_do_not_cache(do_not_cache);
int next_serial_number = 0;
if (!do_not_cache) {
next_serial_number = isolate->next_serial_number() + 1;
isolate->set_next_serial_number(next_serial_number);
}
obj->set_serial_number(i::Smi::FromInt(next_serial_number));
if (callback != 0) {
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
Utils::ToLocal(obj)->SetCallHandler(callback, data);
}
obj->set_length(length);
obj->set_undetectable(false);
obj->set_needs_access_check(false);
if (!signature.IsEmpty())
obj->set_signature(*Utils::OpenHandle(*signature));
return Utils::ToLocal(obj);
}
Local<FunctionTemplate> FunctionTemplate::New(
Isolate* isolate,
FunctionCallback callback,
v8::Handle<Value> data,
v8::Handle<Signature> signature,
int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
// Changes to the environment cannot be captured in the snapshot. Expect no
// function templates when the isolate is created for serialization.
DCHECK(!i_isolate->serializer_enabled());
LOG_API(i_isolate, "FunctionTemplate::New");
ENTER_V8(i_isolate);
return FunctionTemplateNew(
i_isolate, callback, data, signature, length, false);
}
Local<Signature> Signature::New(Isolate* isolate,
Handle<FunctionTemplate> receiver) {
return Utils::SignatureToLocal(Utils::OpenHandle(*receiver));
}
Local<AccessorSignature> AccessorSignature::New(
Isolate* isolate,
Handle<FunctionTemplate> receiver) {
return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver));
}
Local<TypeSwitch> TypeSwitch::New(Handle<FunctionTemplate> type) {
Handle<FunctionTemplate> types[1] = { type };
return TypeSwitch::New(1, types);
}
Local<TypeSwitch> TypeSwitch::New(int argc, Handle<FunctionTemplate> types[]) {
i::Isolate* isolate = i::Isolate::Current();
LOG_API(isolate, "TypeSwitch::New");
ENTER_V8(isolate);
i::Handle<i::FixedArray> vector = isolate->factory()->NewFixedArray(argc);
for (int i = 0; i < argc; i++)
vector->set(i, *Utils::OpenHandle(*types[i]));
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::TYPE_SWITCH_INFO_TYPE);
i::Handle<i::TypeSwitchInfo> obj =
i::Handle<i::TypeSwitchInfo>::cast(struct_obj);
obj->set_types(*vector);
return Utils::ToLocal(obj);
}
int TypeSwitch::match(v8::Handle<Value> value) {
i::Handle<i::TypeSwitchInfo> info = Utils::OpenHandle(this);
LOG_API(info->GetIsolate(), "TypeSwitch::match");
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
i::FixedArray* types = i::FixedArray::cast(info->types());
for (int i = 0; i < types->length(); i++) {
if (i::FunctionTemplateInfo::cast(types->get(i))->IsTemplateFor(*obj))
return i + 1;
}
return 0;
}
#define SET_FIELD_WRAPPED(obj, setter, cdata) do { \
i::Handle<i::Object> foreign = FromCData(obj->GetIsolate(), cdata); \
(obj)->setter(*foreign); \
} while (false)
void FunctionTemplate::SetCallHandler(FunctionCallback callback,
v8::Handle<Value> data) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetCallHandler");
i::Isolate* isolate = info->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE);
i::Handle<i::CallHandlerInfo> obj =
i::Handle<i::CallHandlerInfo>::cast(struct_obj);
SET_FIELD_WRAPPED(obj, set_callback, callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
info->set_call_code(*obj);
}
static i::Handle<i::AccessorInfo> SetAccessorInfoProperties(
i::Handle<i::AccessorInfo> obj,
v8::Handle<Name> name,
v8::AccessControl settings,
v8::PropertyAttribute attributes,
v8::Handle<AccessorSignature> signature) {
obj->set_name(*Utils::OpenHandle(*name));
if (settings & ALL_CAN_READ) obj->set_all_can_read(true);
if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true);
obj->set_property_attributes(static_cast<PropertyAttributes>(attributes));
if (!signature.IsEmpty()) {
obj->set_expected_receiver_type(*Utils::OpenHandle(*signature));
}
return obj;
}
template<typename Getter, typename Setter>
static i::Handle<i::AccessorInfo> MakeAccessorInfo(
v8::Handle<Name> name,
Getter getter,
Setter setter,
v8::Handle<Value> data,
v8::AccessControl settings,
v8::PropertyAttribute attributes,
v8::Handle<AccessorSignature> signature) {
i::Isolate* isolate = Utils::OpenHandle(*name)->GetIsolate();
i::Handle<i::ExecutableAccessorInfo> obj =
isolate->factory()->NewExecutableAccessorInfo();
SET_FIELD_WRAPPED(obj, set_getter, getter);
SET_FIELD_WRAPPED(obj, set_setter, setter);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
return SetAccessorInfoProperties(obj, name, settings, attributes, signature);
}
Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() {
i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true);
if (!Utils::ApiCheck(!handle.is_null(),
"v8::FunctionTemplate::InstanceTemplate()",
"Reading from empty handle")) {
return Local<ObjectTemplate>();
}
i::Isolate* isolate = handle->GetIsolate();
ENTER_V8(isolate);
if (handle->instance_template()->IsUndefined()) {
Local<ObjectTemplate> templ =
ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle));
handle->set_instance_template(*Utils::OpenHandle(*templ));
}
i::Handle<i::ObjectTemplateInfo> result(
i::ObjectTemplateInfo::cast(handle->instance_template()));
return Utils::ToLocal(result);
}
void FunctionTemplate::SetLength(int length) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetLength");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_length(length);
}
void FunctionTemplate::SetClassName(Handle<String> name) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetClassName");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_class_name(*Utils::OpenHandle(*name));
}
void FunctionTemplate::SetHiddenPrototype(bool value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetHiddenPrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_hidden_prototype(value);
}
void FunctionTemplate::ReadOnlyPrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::ReadOnlyPrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_read_only_prototype(true);
}
void FunctionTemplate::RemovePrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::RemovePrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_remove_prototype(true);
}
// --- O b j e c t T e m p l a t e ---
Local<ObjectTemplate> ObjectTemplate::New(Isolate* isolate) {
return New(reinterpret_cast<i::Isolate*>(isolate), Local<FunctionTemplate>());
}
Local<ObjectTemplate> ObjectTemplate::New() {
return New(i::Isolate::Current(), Local<FunctionTemplate>());
}
Local<ObjectTemplate> ObjectTemplate::New(
i::Isolate* isolate,
v8::Handle<FunctionTemplate> constructor) {
// Changes to the environment cannot be captured in the snapshot. Expect no
// object templates when the isolate is created for serialization.
DCHECK(!isolate->serializer_enabled());
LOG_API(isolate, "ObjectTemplate::New");
ENTER_V8(isolate);
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::OBJECT_TEMPLATE_INFO_TYPE);
i::Handle<i::ObjectTemplateInfo> obj =
i::Handle<i::ObjectTemplateInfo>::cast(struct_obj);
InitializeTemplate(obj, Consts::OBJECT_TEMPLATE);
if (!constructor.IsEmpty())
obj->set_constructor(*Utils::OpenHandle(*constructor));
obj->set_internal_field_count(i::Smi::FromInt(0));
return Utils::ToLocal(obj);
}
// Ensure that the object template has a constructor. If no
// constructor is available we create one.
static i::Handle<i::FunctionTemplateInfo> EnsureConstructor(
i::Isolate* isolate,
ObjectTemplate* object_template) {
i::Object* obj = Utils::OpenHandle(object_template)->constructor();
if (!obj ->IsUndefined()) {
i::FunctionTemplateInfo* info = i::FunctionTemplateInfo::cast(obj);
return i::Handle<i::FunctionTemplateInfo>(info, isolate);
}
Local<FunctionTemplate> templ =
FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ);
constructor->set_instance_template(*Utils::OpenHandle(object_template));
Utils::OpenHandle(object_template)->set_constructor(*constructor);
return constructor;
}
static inline i::Handle<i::TemplateInfo> GetTemplateInfo(
i::Isolate* isolate,
Template* template_obj) {
return Utils::OpenHandle(template_obj);
}
// TODO(dcarney): remove this with ObjectTemplate::SetAccessor
static inline i::Handle<i::TemplateInfo> GetTemplateInfo(
i::Isolate* isolate,
ObjectTemplate* object_template) {
EnsureConstructor(isolate, object_template);
return Utils::OpenHandle(object_template);
}
template<typename Getter, typename Setter, typename Data, typename Template>
static bool TemplateSetAccessor(
Template* template_obj,
v8::Local<Name> name,
Getter getter,
Setter setter,
Data data,
AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature) {
auto isolate = Utils::OpenHandle(template_obj)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto obj = MakeAccessorInfo(name, getter, setter, data, settings, attribute,
signature);
if (obj.is_null()) return false;
auto info = GetTemplateInfo(isolate, template_obj);
i::ApiNatives::AddNativeDataProperty(isolate, info, obj);
return true;
}
void Template::SetNativeDataProperty(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Handle<Value> data,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
AccessControl settings) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void Template::SetNativeDataProperty(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Handle<Value> data,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
AccessControl settings) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void ObjectTemplate::SetAccessor(v8::Handle<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Handle<Value> data,
AccessControl settings,
PropertyAttribute attribute,
v8::Handle<AccessorSignature> signature) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void ObjectTemplate::SetAccessor(v8::Handle<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Handle<Value> data,
AccessControl settings,
PropertyAttribute attribute,
v8::Handle<AccessorSignature> signature) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
template <typename Getter, typename Setter, typename Query, typename Deleter,
typename Enumerator>
static void ObjectTemplateSetNamedPropertyHandler(
ObjectTemplate* templ, Getter getter, Setter setter, Query query,
Deleter remover, Enumerator enumerator, Handle<Value> data,
bool can_intercept_symbols, PropertyHandlerFlags flags) {
i::Isolate* isolate = Utils::OpenHandle(templ)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, templ);
EnsureNotInstantiated(cons, "ObjectTemplateSetNamedPropertyHandler");
auto obj = i::Handle<i::InterceptorInfo>::cast(
isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE));
if (getter != 0) SET_FIELD_WRAPPED(obj, set_getter, getter);
if (setter != 0) SET_FIELD_WRAPPED(obj, set_setter, setter);
if (query != 0) SET_FIELD_WRAPPED(obj, set_query, query);
if (remover != 0) SET_FIELD_WRAPPED(obj, set_deleter, remover);
if (enumerator != 0) SET_FIELD_WRAPPED(obj, set_enumerator, enumerator);
obj->set_flags(0);
obj->set_can_intercept_symbols(can_intercept_symbols);
obj->set_all_can_read(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_named_property_handler(*obj);
}
void ObjectTemplate::SetNamedPropertyHandler(
NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter,
NamedPropertyQueryCallback query, NamedPropertyDeleterCallback remover,
NamedPropertyEnumeratorCallback enumerator, Handle<Value> data) {
ObjectTemplateSetNamedPropertyHandler(this, getter, setter, query, remover,
enumerator, data, false,
PropertyHandlerFlags::kNone);
}
void ObjectTemplate::SetHandler(
const NamedPropertyHandlerConfiguration& config) {
ObjectTemplateSetNamedPropertyHandler(
this, config.getter, config.setter, config.query, config.deleter,
config.enumerator, config.data, true, config.flags);
}
void ObjectTemplate::MarkAsUndetectable() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::MarkAsUndetectable");
cons->set_undetectable(true);
}
void ObjectTemplate::SetAccessCheckCallbacks(
NamedSecurityCallback named_callback,
IndexedSecurityCallback indexed_callback,
Handle<Value> data,
bool turned_on_by_default) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallbacks");
i::Handle<i::Struct> struct_info =
isolate->factory()->NewStruct(i::ACCESS_CHECK_INFO_TYPE);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(info, set_named_callback, named_callback);
SET_FIELD_WRAPPED(info, set_indexed_callback, indexed_callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
info->set_data(*Utils::OpenHandle(*data));
cons->set_access_check_info(*info);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
cons->set_needs_access_check(turned_on_by_default);
}
void ObjectTemplate::SetHandler(
const IndexedPropertyHandlerConfiguration& config) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetHandler");
auto obj = i::Handle<i::InterceptorInfo>::cast(
isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE));
if (config.getter != 0) SET_FIELD_WRAPPED(obj, set_getter, config.getter);
if (config.setter != 0) SET_FIELD_WRAPPED(obj, set_setter, config.setter);
if (config.query != 0) SET_FIELD_WRAPPED(obj, set_query, config.query);
if (config.deleter != 0) SET_FIELD_WRAPPED(obj, set_deleter, config.deleter);
if (config.enumerator != 0) {
SET_FIELD_WRAPPED(obj, set_enumerator, config.enumerator);
}
obj->set_flags(0);
obj->set_all_can_read(static_cast<int>(config.flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
v8::Local<v8::Value> data = config.data;
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_indexed_property_handler(*obj);
}
void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback,
Handle<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler");
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE);
i::Handle<i::CallHandlerInfo> obj =
i::Handle<i::CallHandlerInfo>::cast(struct_obj);
SET_FIELD_WRAPPED(obj, set_callback, callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_instance_call_handler(*obj);
}
int ObjectTemplate::InternalFieldCount() {
return i::Smi::cast(Utils::OpenHandle(this)->internal_field_count())->value();
}
void ObjectTemplate::SetInternalFieldCount(int value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
if (!Utils::ApiCheck(i::Smi::IsValid(value),
"v8::ObjectTemplate::SetInternalFieldCount()",
"Invalid internal field count")) {
return;
}
ENTER_V8(isolate);
if (value > 0) {
// The internal field count is set by the constructor function's
// construct code, so we ensure that there is a constructor
// function to do the setting.
EnsureConstructor(isolate, this);
}
Utils::OpenHandle(this)->set_internal_field_count(i::Smi::FromInt(value));
}
// --- S c r i p t s ---
// Internally, UnboundScript is a SharedFunctionInfo, and Script is a
// JSFunction.
ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_,
BufferPolicy buffer_policy_)
: data(data_),
length(length_),
rejected(false),
buffer_policy(buffer_policy_) {}
ScriptCompiler::CachedData::~CachedData() {
if (buffer_policy == BufferOwned) {
delete[] data;
}
}
ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream,
Encoding encoding)
: impl_(new i::StreamedSource(stream, encoding)) {}
ScriptCompiler::StreamedSource::~StreamedSource() { delete impl_; }
const ScriptCompiler::CachedData*
ScriptCompiler::StreamedSource::GetCachedData() const {
return impl_->cached_data.get();
}
Local<Script> UnboundScript::BindToCurrentContext() {
i::Handle<i::HeapObject> obj =
i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this));
i::Handle<i::SharedFunctionInfo>
function_info(i::SharedFunctionInfo::cast(*obj), obj->GetIsolate());
i::Handle<i::JSFunction> function =
obj->GetIsolate()->factory()->NewFunctionFromSharedFunctionInfo(
function_info, obj->GetIsolate()->native_context());
return ToApiHandle<Script>(function);
}
int UnboundScript::GetId() {
i::Handle<i::HeapObject> obj =
i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
ON_BAILOUT(isolate, "v8::UnboundScript::GetId()", return -1);
LOG_API(isolate, "v8::UnboundScript::GetId");
{
i::HandleScope scope(isolate);
i::Handle<i::SharedFunctionInfo> function_info(
i::SharedFunctionInfo::cast(*obj));
i::Handle<i::Script> script(i::Script::cast(function_info->script()));
return script->id()->value();
}
}
int UnboundScript::GetLineNumber(int code_pos) {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
ON_BAILOUT(isolate, "v8::UnboundScript::GetLineNumber()", return -1);
LOG_API(isolate, "UnboundScript::GetLineNumber");
if (obj->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(obj->script()));
return i::Script::GetLineNumber(script, code_pos);
} else {
return -1;
}
}
Handle<Value> UnboundScript::GetScriptName() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
ON_BAILOUT(isolate, "v8::UnboundScript::GetName()",
return Handle<String>());
LOG_API(isolate, "UnboundScript::GetName");
if (obj->script()->IsScript()) {
i::Object* name = i::Script::cast(obj->script())->name();
return Utils::ToLocal(i::Handle<i::Object>(name, isolate));
} else {
return Handle<String>();
}
}
Handle<Value> UnboundScript::GetSourceURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
ON_BAILOUT(isolate, "v8::UnboundScript::GetSourceURL()",
return Handle<String>());
LOG_API(isolate, "UnboundScript::GetSourceURL");
if (obj->script()->IsScript()) {
i::Object* url = i::Script::cast(obj->script())->source_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Handle<String>();
}
}
Handle<Value> UnboundScript::GetSourceMappingURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
ON_BAILOUT(isolate, "v8::UnboundScript::GetSourceMappingURL()",
return Handle<String>());
LOG_API(isolate, "UnboundScript::GetSourceMappingURL");
if (obj->script()->IsScript()) {
i::Object* url = i::Script::cast(obj->script())->source_mapping_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Handle<String>();
}
}
Local<Value> Script::Run() {
i::Handle<i::Object> obj = Utils::OpenHandle(this, true);
// If execution is terminating, Compile(..)->Run() requires this
// check.
if (obj.is_null()) return Local<Value>();
i::Isolate* isolate = i::Handle<i::HeapObject>::cast(obj)->GetIsolate();
ON_BAILOUT(isolate, "v8::Script::Run()", return Local<Value>());
LOG_API(isolate, "Script::Run");
ENTER_V8(isolate);
i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy());
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(obj);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> receiver(isolate->global_proxy(), isolate);
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate, fun, receiver, 0, NULL).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Value>());
return Utils::ToLocal(scope.CloseAndEscape(result));
}
Local<UnboundScript> Script::GetUnboundScript() {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return ToApiHandle<UnboundScript>(
i::Handle<i::SharedFunctionInfo>(i::JSFunction::cast(*obj)->shared()));
}
Local<UnboundScript> ScriptCompiler::CompileUnboundInternal(
Isolate* v8_isolate, Source* source, CompileOptions options,
bool is_module) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ON_BAILOUT(isolate, "v8::ScriptCompiler::CompileUnbound()",
return Local<UnboundScript>());
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
// Support the old API for a transition period:
// - kProduceToCache -> kProduceParserCache
// - kNoCompileOptions + cached_data != NULL -> kConsumeParserCache
if (options == kProduceDataToCache) {
options = kProduceParserCache;
} else if (options == kNoCompileOptions && source->cached_data) {
options = kConsumeParserCache;
}
// Don't try to produce any kind of cache when the debugger is loaded.
if (isolate->debug()->is_loaded() &&
(options == kProduceParserCache || options == kProduceCodeCache)) {
options = kNoCompileOptions;
}
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
i::ScriptData* script_data = NULL;
if (options == kConsumeParserCache || options == kConsumeCodeCache) {
DCHECK(source->cached_data);
// ScriptData takes care of pointer-aligning the data.
script_data = new i::ScriptData(source->cached_data->data,
source->cached_data->length);
}
i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string));
LOG_API(isolate, "ScriptCompiler::CompileUnbound");
ENTER_V8(isolate);
i::SharedFunctionInfo* raw_result = NULL;
{ i::HandleScope scope(isolate);
i::HistogramTimerScope total(isolate->counters()->compile_script(), true);
i::Handle<i::Object> name_obj;
int line_offset = 0;
int column_offset = 0;
bool is_embedder_debug_script = false;
bool is_shared_cross_origin = false;
if (!source->resource_name.IsEmpty()) {
name_obj = Utils::OpenHandle(*(source->resource_name));
}
if (!source->resource_line_offset.IsEmpty()) {
line_offset = static_cast<int>(source->resource_line_offset->Value());
}
if (!source->resource_column_offset.IsEmpty()) {
column_offset =
static_cast<int>(source->resource_column_offset->Value());
}
if (!source->resource_is_shared_cross_origin.IsEmpty()) {
is_shared_cross_origin =
source->resource_is_shared_cross_origin->IsTrue();
}
if (!source->resource_is_embedder_debug_script.IsEmpty()) {
is_embedder_debug_script =
source->resource_is_embedder_debug_script->IsTrue();
}
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::SharedFunctionInfo> result = i::Compiler::CompileScript(
str, name_obj, line_offset, column_offset, is_embedder_debug_script,
is_shared_cross_origin, isolate->native_context(), NULL, &script_data,
options, i::NOT_NATIVES_CODE, is_module);
has_pending_exception = result.is_null();
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
if (has_pending_exception && script_data != NULL) {
// This case won't happen during normal operation; we have compiled
// successfully and produced cached data, and but the second compilation
// of the same source code fails.
delete script_data;
script_data = NULL;
}
EXCEPTION_BAILOUT_CHECK(isolate, Local<UnboundScript>());
raw_result = *result;
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
if ((options == kProduceParserCache || options == kProduceCodeCache) &&
script_data != NULL) {
// script_data now contains the data that was generated. source will
// take the ownership.
source->cached_data = new CachedData(
script_data->data(), script_data->length(), CachedData::BufferOwned);
script_data->ReleaseDataOwnership();
} else if (options == kConsumeParserCache || options == kConsumeCodeCache) {
source->cached_data->rejected = script_data->rejected();
}
delete script_data;
}
i::Handle<i::SharedFunctionInfo> result(raw_result, isolate);
return ToApiHandle<UnboundScript>(result);
}
Local<UnboundScript> ScriptCompiler::CompileUnbound(Isolate* v8_isolate,
Source* source,
CompileOptions options) {
return CompileUnboundInternal(v8_isolate, source, options, false);
}
Local<Script> ScriptCompiler::Compile(
Isolate* v8_isolate,
Source* source,
CompileOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ON_BAILOUT(isolate, "v8::ScriptCompiler::Compile()", return Local<Script>());
LOG_API(isolate, "ScriptCompiler::CompileBound()");
ENTER_V8(isolate);
Local<UnboundScript> generic = CompileUnbound(v8_isolate, source, options);
if (generic.IsEmpty()) return Local<Script>();
return generic->BindToCurrentContext();
}
Local<Script> ScriptCompiler::CompileModule(Isolate* v8_isolate, Source* source,
CompileOptions options) {
CHECK(i::FLAG_harmony_modules);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ON_BAILOUT(isolate, "v8::ScriptCompiler::CompileModule()",
return Local<Script>());
LOG_API(isolate, "ScriptCompiler::CompileModule()");
ENTER_V8(isolate);
Local<UnboundScript> generic =
CompileUnboundInternal(v8_isolate, source, options, true);
if (generic.IsEmpty()) return Local<Script>();
return generic->BindToCurrentContext();
}
class IsIdentifierHelper {
public:
IsIdentifierHelper() : is_identifier_(false), first_char_(true) {}
bool Check(i::String* string) {
i::ConsString* cons_string = i::String::VisitFlat(this, string, 0);
if (cons_string == NULL) return is_identifier_;
// We don't support cons strings here.
return false;
}
void VisitOneByteString(const uint8_t* chars, int length) {
for (int i = 0; i < length; ++i) {
if (first_char_) {
first_char_ = false;
is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]);
} else {
is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]);
}
}
}
void VisitTwoByteString(const uint16_t* chars, int length) {
for (int i = 0; i < length; ++i) {
if (first_char_) {
first_char_ = false;
is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]);
} else {
is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]);
}
}
}
private:
bool is_identifier_;
bool first_char_;
i::UnicodeCache unicode_cache_;
DISALLOW_COPY_AND_ASSIGN(IsIdentifierHelper);
};
Local<Function> ScriptCompiler::CompileFunctionInContext(
Isolate* v8_isolate, Source* source, Local<Context> v8_context,
size_t arguments_count, Local<String> arguments[],
size_t context_extension_count, Local<Object> context_extensions[]) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ON_BAILOUT(isolate, "v8::ScriptCompiler::CompileFunctionInContext()",
return Local<Function>());
LOG_API(isolate, "ScriptCompiler::CompileFunctionInContext()");
ENTER_V8(isolate);
i::Handle<i::String> source_string;
if (arguments_count) {
source_string =
Utils::OpenHandle(*v8::String::NewFromUtf8(v8_isolate, "(function("));
for (size_t i = 0; i < arguments_count; ++i) {
IsIdentifierHelper helper;
if (!helper.Check(*Utils::OpenHandle(*arguments[i]))) {
return Local<Function>();
}
i::MaybeHandle<i::String> maybe_source =
isolate->factory()->NewConsString(source_string,
Utils::OpenHandle(*arguments[i]));
if (!maybe_source.ToHandle(&source_string)) {
return Local<Function>();
}
if (i + 1 == arguments_count) continue;
maybe_source = isolate->factory()->NewConsString(
source_string,
isolate->factory()->LookupSingleCharacterStringFromCode(','));
if (!maybe_source.ToHandle(&source_string)) {
return Local<Function>();
}
}
i::Handle<i::String> brackets =
Utils::OpenHandle(*v8::String::NewFromUtf8(v8_isolate, "){"));
i::MaybeHandle<i::String> maybe_source =
isolate->factory()->NewConsString(source_string, brackets);
if (!maybe_source.ToHandle(&source_string)) {
return Local<Function>();
}
} else {
source_string =
Utils::OpenHandle(*v8::String::NewFromUtf8(v8_isolate, "(function(){"));
}
int scope_position = source_string->length();
i::MaybeHandle<i::String> maybe_source = isolate->factory()->NewConsString(
source_string, Utils::OpenHandle(*source->source_string));
if (!maybe_source.ToHandle(&source_string)) {
return Local<Function>();
}
// Include \n in case the source contains a line end comment.
i::Handle<i::String> brackets =
Utils::OpenHandle(*v8::String::NewFromUtf8(v8_isolate, "\n})"));
maybe_source = isolate->factory()->NewConsString(source_string, brackets);
if (!maybe_source.ToHandle(&source_string)) {
return Local<Function>();
}
i::Handle<i::Context> context = Utils::OpenHandle(*v8_context);
i::Handle<i::SharedFunctionInfo> outer_info(context->closure()->shared(),
isolate);
for (size_t i = 0; i < context_extension_count; ++i) {
i::Handle<i::JSObject> extension =
Utils::OpenHandle(*context_extensions[i]);
i::Handle<i::JSFunction> closure(context->closure(), isolate);
context = isolate->factory()->NewWithContext(closure, context, extension);
}
EXCEPTION_PREAMBLE(isolate);
i::MaybeHandle<i::JSFunction> maybe_fun = i::Compiler::GetFunctionFromEval(
source_string, outer_info, context, i::SLOPPY,
i::ONLY_SINGLE_FUNCTION_LITERAL, scope_position);
i::Handle<i::JSFunction> fun;
has_pending_exception = !maybe_fun.ToHandle(&fun);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Function>());
i::MaybeHandle<i::Object> result = i::Execution::Call(
isolate, fun, Utils::OpenHandle(*v8_context->Global()), 0, NULL);
i::Handle<i::Object> final_result;
has_pending_exception = !result.ToHandle(&final_result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Function>());
return Utils::ToLocal(i::Handle<i::JSFunction>::cast(final_result));
}
ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript(
Isolate* v8_isolate, StreamedSource* source, CompileOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return new i::BackgroundParsingTask(source->impl(), options,
i::FLAG_stack_size, isolate);
}
Local<Script> ScriptCompiler::Compile(Isolate* v8_isolate,
StreamedSource* v8_source,
Handle<String> full_source_string,
const ScriptOrigin& origin) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::StreamedSource* source = v8_source->impl();
ON_BAILOUT(isolate, "v8::ScriptCompiler::Compile()", return Local<Script>());
LOG_API(isolate, "ScriptCompiler::Compile()");
ENTER_V8(isolate);
i::SharedFunctionInfo* raw_result = NULL;
{
i::HandleScope scope(isolate);
i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string));
i::Handle<i::Script> script = isolate->factory()->NewScript(str);
if (!origin.ResourceName().IsEmpty()) {
script->set_name(*Utils::OpenHandle(*(origin.ResourceName())));
}
if (!origin.ResourceLineOffset().IsEmpty()) {
script->set_line_offset(i::Smi::FromInt(
static_cast<int>(origin.ResourceLineOffset()->Value())));
}
if (!origin.ResourceColumnOffset().IsEmpty()) {
script->set_column_offset(i::Smi::FromInt(
static_cast<int>(origin.ResourceColumnOffset()->Value())));
}
if (!origin.ResourceIsSharedCrossOrigin().IsEmpty()) {
script->set_is_shared_cross_origin(
origin.ResourceIsSharedCrossOrigin()->IsTrue());
}
if (!origin.ResourceIsEmbedderDebugScript().IsEmpty()) {
script->set_is_embedder_debug_script(
origin.ResourceIsEmbedderDebugScript()->IsTrue());
}
source->info->set_script(script);
source->info->SetContext(isolate->native_context());
EXCEPTION_PREAMBLE(isolate);
// Do the parsing tasks which need to be done on the main thread. This will
// also handle parse errors.
source->parser->Internalize(isolate, script,
source->info->function() == NULL);
source->parser->HandleSourceURLComments(isolate, script);
i::Handle<i::SharedFunctionInfo> result =
i::Handle<i::SharedFunctionInfo>::null();
if (source->info->function() != NULL) {
// Parsing has succeeded.
result =
i::Compiler::CompileStreamedScript(source->info.get(), str->length());
}
has_pending_exception = result.is_null();
if (has_pending_exception) isolate->ReportPendingMessages();
EXCEPTION_BAILOUT_CHECK(isolate, Local<Script>());
raw_result = *result;
// The Handle<Script> will go out of scope soon; make sure CompilationInfo
// doesn't point to it.
source->info->set_script(i::Handle<i::Script>());
} // HandleScope goes out of scope.
i::Handle<i::SharedFunctionInfo> result(raw_result, isolate);
Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result);
if (generic.IsEmpty()) {
return Local<Script>();
}
return generic->BindToCurrentContext();
}
uint32_t ScriptCompiler::CachedDataVersionTag() {
return static_cast<uint32_t>(base::hash_combine(
internal::Version::Hash(), internal::FlagList::Hash(),
static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures())));
}
Local<Script> Script::Compile(v8::Handle<String> source,
v8::ScriptOrigin* origin) {
i::Handle<i::String> str = Utils::OpenHandle(*source);
if (origin) {
ScriptCompiler::Source script_source(source, *origin);
return ScriptCompiler::Compile(
reinterpret_cast<v8::Isolate*>(str->GetIsolate()),
&script_source);
}
ScriptCompiler::Source script_source(source);
return ScriptCompiler::Compile(
reinterpret_cast<v8::Isolate*>(str->GetIsolate()),
&script_source);
}
Local<Script> Script::Compile(v8::Handle<String> source,
v8::Handle<String> file_name) {
ScriptOrigin origin(file_name);
return Compile(source, &origin);
}
// --- E x c e p t i o n s ---
v8::TryCatch::TryCatch()
: isolate_(i::Isolate::Current()),
next_(isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ =
reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch(
v8::internal::GetCurrentStackPosition()));
isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::TryCatch(v8::Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
next_(isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ =
reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch(
v8::internal::GetCurrentStackPosition()));
isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::~TryCatch() {
if (rethrow_) {
v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_);
v8::HandleScope scope(isolate);
v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception());
if (HasCaught() && capture_message_) {
// If an exception was caught and rethrow_ is indicated, the saved
// message, script, and location need to be restored to Isolate TLS
// for reuse. capture_message_ needs to be disabled so that DoThrow()
// does not create a new message.
isolate_->thread_local_top()->rethrowing_message_ = true;
isolate_->RestorePendingMessageFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
v8::internal::SimulatorStack::UnregisterCTryCatch();
reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc);
DCHECK(!isolate_->thread_local_top()->rethrowing_message_);
} else {
if (HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
v8::internal::SimulatorStack::UnregisterCTryCatch();
}
}
bool v8::TryCatch::HasCaught() const {
return !reinterpret_cast<i::Object*>(exception_)->IsTheHole();
}
bool v8::TryCatch::CanContinue() const {
return can_continue_;
}
bool v8::TryCatch::HasTerminated() const {
return has_terminated_;
}
v8::Handle<v8::Value> v8::TryCatch::ReThrow() {
if (!HasCaught()) return v8::Local<v8::Value>();
rethrow_ = true;
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_));
}
v8::Local<Value> v8::TryCatch::Exception() const {
if (HasCaught()) {
// Check for out of memory exception.
i::Object* exception = reinterpret_cast<i::Object*>(exception_);
return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_));
} else {
return v8::Local<Value>();
}
}
v8::Local<Value> v8::TryCatch::StackTrace() const {
if (HasCaught()) {
i::Object* raw_obj = reinterpret_cast<i::Object*>(exception_);
if (!raw_obj->IsJSObject()) return v8::Local<Value>();
i::HandleScope scope(isolate_);
i::Handle<i::JSObject> obj(i::JSObject::cast(raw_obj), isolate_);
i::Handle<i::String> name = isolate_->factory()->stack_string();
{
EXCEPTION_PREAMBLE(isolate_);
Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name);
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate_, v8::Local<Value>());
if (!maybe.value) return v8::Local<Value>();
}
i::Handle<i::Object> value;
EXCEPTION_PREAMBLE(isolate_);
has_pending_exception = !i::Object::GetProperty(obj, name).ToHandle(&value);
EXCEPTION_BAILOUT_CHECK(isolate_, v8::Local<Value>());
return v8::Utils::ToLocal(scope.CloseAndEscape(value));
} else {
return v8::Local<Value>();
}
}
v8::Local<v8::Message> v8::TryCatch::Message() const {
i::Object* message = reinterpret_cast<i::Object*>(message_obj_);
DCHECK(message->IsJSMessageObject() || message->IsTheHole());
if (HasCaught() && !message->IsTheHole()) {
return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_));
} else {
return v8::Local<v8::Message>();
}
}
void v8::TryCatch::Reset() {
if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
ResetInternal();
}
void v8::TryCatch::ResetInternal() {
i::Object* the_hole = isolate_->heap()->the_hole_value();
exception_ = the_hole;
message_obj_ = the_hole;
message_script_ = the_hole;
message_start_pos_ = 0;
message_end_pos_ = 0;
}
void v8::TryCatch::SetVerbose(bool value) {
is_verbose_ = value;
}
void v8::TryCatch::SetCaptureMessage(bool value) {
capture_message_ = value;
}
// --- M e s s a g e ---
Local<String> Message::Get() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Message::Get()", return Local<String>());
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::String> raw_result = i::MessageHandler::GetMessage(isolate, obj);
Local<String> result = Utils::ToLocal(raw_result);
return scope.Escape(result);
}
ScriptOrigin Message::GetScriptOrigin() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> script_wraper =
i::Handle<i::Object>(message->script(), isolate);
i::Handle<i::JSValue> script_value =
i::Handle<i::JSValue>::cast(script_wraper);
i::Handle<i::Script> script(i::Script::cast(script_value->value()));
i::Handle<i::Object> scriptName(i::Script::GetNameOrSourceURL(script));
v8::Isolate* v8_isolate =
reinterpret_cast<v8::Isolate*>(script->GetIsolate());
v8::ScriptOrigin origin(
Utils::ToLocal(scriptName),
v8::Integer::New(v8_isolate, script->line_offset()->value()),
v8::Integer::New(v8_isolate, script->column_offset()->value()),
v8::Boolean::New(v8_isolate, script->is_shared_cross_origin()),
v8::Integer::New(v8_isolate, script->id()->value()),
v8::Boolean::New(v8_isolate, script->is_embedder_debug_script()));
return origin;
}
v8::Handle<Value> Message::GetScriptResourceName() const {
return GetScriptOrigin().ResourceName();
}
v8::Handle<v8::StackTrace> Message::GetStackTrace() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> stackFramesObj(message->stack_frames(), isolate);
if (!stackFramesObj->IsJSArray()) return v8::Handle<v8::StackTrace>();
i::Handle<i::JSArray> stackTrace =
i::Handle<i::JSArray>::cast(stackFramesObj);
return scope.Escape(Utils::StackTraceToLocal(stackTrace));
}
MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction(
i::Isolate* isolate, const char* name, i::Handle<i::Object> recv, int argc,
i::Handle<i::Object> argv[]) {
i::Handle<i::Object> object_fun =
i::Object::GetProperty(
isolate, isolate->js_builtins_object(), name).ToHandleChecked();
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(object_fun);
return i::Execution::Call(isolate, fun, recv, argc, argv);
}
MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction(
i::Isolate* isolate, const char* name, i::Handle<i::Object> data) {
i::Handle<i::Object> argv[] = { data };
return CallV8HeapFunction(isolate, name, isolate->js_builtins_object(),
arraysize(argv), argv);
}
int Message::GetLineNumber() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Message::GetLineNumber()", return kNoLineNumberInfo);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "GetLineNumber", Utils::OpenHandle(this))
.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
return static_cast<int>(result->Number());
}
int Message::GetStartPosition() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
return message->start_position();
}
int Message::GetEndPosition() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
return message->end_position();
}
int Message::GetStartColumn() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Message::GetStartColumn()", return kNoColumnInfo);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> data_obj = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> start_col_obj;
has_pending_exception =
!CallV8HeapFunction(isolate, "GetPositionInLine", data_obj)
.ToHandle(&start_col_obj);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
return static_cast<int>(start_col_obj->Number());
}
int Message::GetEndColumn() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Message::GetEndColumn()", return kNoColumnInfo);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> data_obj = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> start_col_obj;
has_pending_exception =
!CallV8HeapFunction(isolate, "GetPositionInLine", data_obj)
.ToHandle(&start_col_obj);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(data_obj);
int start = message->start_position();
int end = message->end_position();
return static_cast<int>(start_col_obj->Number()) + (end - start);
}
bool Message::IsSharedCrossOrigin() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSMessageObject> message =
i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
i::Handle<i::JSValue> script =
i::Handle<i::JSValue>::cast(i::Handle<i::Object>(message->script(),
isolate));
return i::Script::cast(script->value())->is_shared_cross_origin();
}
Local<String> Message::GetSourceLine() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Message::GetSourceLine()", return Local<String>());
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "GetSourceLine", Utils::OpenHandle(this))
.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::String>());
if (result->IsString()) {
return scope.Escape(Utils::ToLocal(i::Handle<i::String>::cast(result)));
} else {
return Local<String>();
}
}
void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
i_isolate->PrintCurrentStackTrace(out);
}
// --- S t a c k T r a c e ---
Local<StackFrame> StackTrace::GetFrame(uint32_t index) const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSArray> self = Utils::OpenHandle(this);
i::Handle<i::Object> obj =
i::Object::GetElement(isolate, self, index).ToHandleChecked();
i::Handle<i::JSObject> jsobj = i::Handle<i::JSObject>::cast(obj);
return scope.Escape(Utils::StackFrameToLocal(jsobj));
}
int StackTrace::GetFrameCount() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
return i::Smi::cast(Utils::OpenHandle(this)->length())->value();
}
Local<Array> StackTrace::AsArray() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
return Utils::ToLocal(Utils::OpenHandle(this));
}
Local<StackTrace> StackTrace::CurrentStackTrace(
Isolate* isolate,
int frame_limit,
StackTraceOptions options) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
// TODO(dcarney): remove when ScriptDebugServer is fixed.
options = static_cast<StackTraceOptions>(
static_cast<int>(options) | kExposeFramesAcrossSecurityOrigins);
i::Handle<i::JSArray> stackTrace =
i_isolate->CaptureCurrentStackTrace(frame_limit, options);
return Utils::StackTraceToLocal(stackTrace);
}
// --- S t a c k F r a m e ---
static int getIntProperty(const StackFrame* f, const char* propertyName,
int defaultValue) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsSmi() ? i::Smi::cast(*obj)->value() : defaultValue;
}
int StackFrame::GetLineNumber() const {
return getIntProperty(this, "lineNumber", Message::kNoLineNumberInfo);
}
int StackFrame::GetColumn() const {
return getIntProperty(this, "column", Message::kNoColumnInfo);
}
int StackFrame::GetScriptId() const {
return getIntProperty(this, "scriptId", Message::kNoScriptIdInfo);
}
static Local<String> getStringProperty(const StackFrame* f,
const char* propertyName) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsString()
? scope.Escape(Local<String>::Cast(Utils::ToLocal(obj)))
: Local<String>();
}
Local<String> StackFrame::GetScriptName() const {
return getStringProperty(this, "scriptName");
}
Local<String> StackFrame::GetScriptNameOrSourceURL() const {
return getStringProperty(this, "scriptNameOrSourceURL");
}
Local<String> StackFrame::GetFunctionName() const {
return getStringProperty(this, "functionName");
}
static bool getBoolProperty(const StackFrame* f, const char* propertyName) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsTrue();
}
bool StackFrame::IsEval() const { return getBoolProperty(this, "isEval"); }
bool StackFrame::IsConstructor() const {
return getBoolProperty(this, "isConstructor");
}
// --- N a t i v e W e a k M a p ---
Local<NativeWeakMap> NativeWeakMap::New(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8(isolate);
i::Handle<i::JSWeakMap> weakmap = isolate->factory()->NewJSWeakMap();
i::Runtime::WeakCollectionInitialize(isolate, weakmap);
return Utils::NativeWeakMapToLocal(weakmap);
}
void NativeWeakMap::Set(Handle<Value> v8_key, Handle<Value> v8_value) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
i::Handle<i::Object> value = Utils::OpenHandle(*v8_value);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return;
}
i::Runtime::WeakCollectionSet(weak_collection, key, value);
}
Local<Value> NativeWeakMap::Get(Handle<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
i::Handle<i::Object> lookup(table->Lookup(key), isolate);
if (lookup->IsTheHole())
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
return Utils::ToLocal(lookup);
}
bool NativeWeakMap::Has(Handle<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return false;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return false;
}
i::Handle<i::Object> lookup(table->Lookup(key), isolate);
return !lookup->IsTheHole();
}
bool NativeWeakMap::Delete(Handle<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return false;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return false;
}
return i::Runtime::WeakCollectionDelete(weak_collection, key);
}
// --- J S O N ---
Local<Value> JSON::Parse(Local<String> json_string) {
i::Handle<i::String> string = Utils::OpenHandle(*json_string);
i::Isolate* isolate = string->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::String> source = i::String::Flatten(string);
EXCEPTION_PREAMBLE(isolate);
i::MaybeHandle<i::Object> maybe_result =
source->IsSeqOneByteString() ? i::JsonParser<true>::Parse(source)
: i::JsonParser<false>::Parse(source);
i::Handle<i::Object> result;
has_pending_exception = !maybe_result.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>());
return Utils::ToLocal(
i::Handle<i::Object>::cast(scope.CloseAndEscape(result)));
}
// --- D a t a ---
bool Value::FullIsUndefined() const {
bool result = Utils::OpenHandle(this)->IsUndefined();
DCHECK_EQ(result, QuickIsUndefined());
return result;
}
bool Value::FullIsNull() const {
bool result = Utils::OpenHandle(this)->IsNull();
DCHECK_EQ(result, QuickIsNull());
return result;
}
bool Value::IsTrue() const {
return Utils::OpenHandle(this)->IsTrue();
}
bool Value::IsFalse() const {
return Utils::OpenHandle(this)->IsFalse();
}
bool Value::IsFunction() const {
return Utils::OpenHandle(this)->IsJSFunction();
}
bool Value::IsName() const {
return Utils::OpenHandle(this)->IsName();
}
bool Value::FullIsString() const {
bool result = Utils::OpenHandle(this)->IsString();
DCHECK_EQ(result, QuickIsString());
return result;
}
bool Value::IsSymbol() const {
return Utils::OpenHandle(this)->IsSymbol();
}
bool Value::IsArray() const {
return Utils::OpenHandle(this)->IsJSArray();
}
bool Value::IsArrayBuffer() const {
return Utils::OpenHandle(this)->IsJSArrayBuffer();
}
bool Value::IsArrayBufferView() const {
return Utils::OpenHandle(this)->IsJSArrayBufferView();
}
bool Value::IsTypedArray() const {
return Utils::OpenHandle(this)->IsJSTypedArray();
}
#define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype, size) \
bool Value::Is##Type##Array() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj)->type() == kExternal##Type##Array; \
}
TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY)
#undef VALUE_IS_TYPED_ARRAY
bool Value::IsDataView() const {
return Utils::OpenHandle(this)->IsJSDataView();
}
bool Value::IsObject() const {
return Utils::OpenHandle(this)->IsJSObject();
}
bool Value::IsNumber() const {
return Utils::OpenHandle(this)->IsNumber();
}
#define VALUE_IS_SPECIFIC_TYPE(Type, Class) \
bool Value::Is##Type() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
if (!obj->IsHeapObject()) return false; \
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); \
return obj->HasSpecificClassOf(isolate->heap()->Class##_string()); \
}
VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, Arguments)
VALUE_IS_SPECIFIC_TYPE(BooleanObject, Boolean)
VALUE_IS_SPECIFIC_TYPE(NumberObject, Number)
VALUE_IS_SPECIFIC_TYPE(StringObject, String)
VALUE_IS_SPECIFIC_TYPE(SymbolObject, Symbol)
VALUE_IS_SPECIFIC_TYPE(Date, Date)
VALUE_IS_SPECIFIC_TYPE(Map, Map)
VALUE_IS_SPECIFIC_TYPE(Set, Set)
VALUE_IS_SPECIFIC_TYPE(WeakMap, WeakMap)
VALUE_IS_SPECIFIC_TYPE(WeakSet, WeakSet)
#undef VALUE_IS_SPECIFIC_TYPE
bool Value::IsBoolean() const {
return Utils::OpenHandle(this)->IsBoolean();
}
bool Value::IsExternal() const {
return Utils::OpenHandle(this)->IsExternal();
}
bool Value::IsInt32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return true;
if (obj->IsNumber()) {
return i::IsInt32Double(obj->Number());
}
return false;
}
bool Value::IsUint32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return i::Smi::cast(*obj)->value() >= 0;
if (obj->IsNumber()) {
double value = obj->Number();
return !i::IsMinusZero(value) &&
value >= 0 &&
value <= i::kMaxUInt32 &&
value == i::FastUI2D(i::FastD2UI(value));
}
return false;
}
static bool CheckConstructor(i::Isolate* isolate,
i::Handle<i::JSObject> obj,
const char* class_name) {
i::Handle<i::Object> constr(obj->map()->constructor(), isolate);
if (!constr->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(constr);
return func->shared()->native() && constr.is_identical_to(
i::Object::GetProperty(isolate,
isolate->js_builtins_object(),
class_name).ToHandleChecked());
}
bool Value::IsNativeError() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsJSObject()) {
i::Handle<i::JSObject> js_obj(i::JSObject::cast(*obj));
i::Isolate* isolate = js_obj->GetIsolate();
return CheckConstructor(isolate, js_obj, "$Error") ||
CheckConstructor(isolate, js_obj, "$EvalError") ||
CheckConstructor(isolate, js_obj, "$RangeError") ||
CheckConstructor(isolate, js_obj, "$ReferenceError") ||
CheckConstructor(isolate, js_obj, "$SyntaxError") ||
CheckConstructor(isolate, js_obj, "$TypeError") ||
CheckConstructor(isolate, js_obj, "$URIError");
} else {
return false;
}
}
bool Value::IsRegExp() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSRegExp();
}
bool Value::IsGeneratorFunction() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (!obj->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj);
return func->shared()->is_generator();
}
bool Value::IsGeneratorObject() const {
return Utils::OpenHandle(this)->IsJSGeneratorObject();
}
bool Value::IsMapIterator() const {
return Utils::OpenHandle(this)->IsJSMapIterator();
}
bool Value::IsSetIterator() const {
return Utils::OpenHandle(this)->IsJSSetIterator();
}
Local<String> Value::ToString(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> str;
if (obj->IsString()) {
str = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToString");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToString(
isolate, obj).ToHandle(&str);
EXCEPTION_BAILOUT_CHECK(isolate, Local<String>());
}
return ToApiHandle<String>(str);
}
Local<String> Value::ToDetailString(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> str;
if (obj->IsString()) {
str = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToDetailString");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToDetailString(
isolate, obj).ToHandle(&str);
EXCEPTION_BAILOUT_CHECK(isolate, Local<String>());
}
return ToApiHandle<String>(str);
}
Local<v8::Object> Value::ToObject(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> val;
if (obj->IsJSObject()) {
val = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToObject");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToObject(
isolate, obj).ToHandle(&val);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>());
}
return ToApiHandle<Object>(val);
}
Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsBoolean()) {
return ToApiHandle<Boolean>(obj);
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToBoolean");
ENTER_V8(isolate);
i::Handle<i::Object> val =
isolate->factory()->ToBoolean(obj->BooleanValue());
return ToApiHandle<Boolean>(val);
}
}
Local<Number> Value::ToNumber(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsNumber()) {
num = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToNumber");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToNumber(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Number>());
}
return ToApiHandle<Number>(num);
}
Local<Integer> Value::ToInteger(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsSmi()) {
num = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToInteger");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToInteger(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Integer>());
}
return ToApiHandle<Integer>(num);
}
void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
Utils::ApiCheck(isolate != NULL &&
!isolate->IsDead(),
"v8::internal::Internals::CheckInitialized()",
"Isolate is not initialized or V8 has died");
}
void External::CheckCast(v8::Value* that) {
Utils::ApiCheck(Utils::OpenHandle(that)->IsExternal(),
"v8::External::Cast()",
"Could not convert to external");
}
void v8::Object::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSObject(),
"v8::Object::Cast()",
"Could not convert to object");
}
void v8::Function::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSFunction(),
"v8::Function::Cast()",
"Could not convert to function");
}
void v8::Name::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsName(),
"v8::Name::Cast()",
"Could not convert to name");
}
void v8::String::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsString(),
"v8::String::Cast()",
"Could not convert to string");
}
void v8::Symbol::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsSymbol(),
"v8::Symbol::Cast()",
"Could not convert to symbol");
}
void v8::Number::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(),
"v8::Number::Cast()",
"Could not convert to number");
}
void v8::Integer::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(),
"v8::Integer::Cast()",
"Could not convert to number");
}
void v8::Array::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArray(),
"v8::Array::Cast()",
"Could not convert to array");
}
void v8::Promise::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(),
"v8::Promise::Cast()",
"Could not convert to promise");
}
void v8::Promise::Resolver::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(),
"v8::Promise::Resolver::Cast()",
"Could not convert to promise resolver");
}
void v8::ArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArrayBuffer(),
"v8::ArrayBuffer::Cast()",
"Could not convert to ArrayBuffer");
}
void v8::ArrayBufferView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArrayBufferView(),
"v8::ArrayBufferView::Cast()",
"Could not convert to ArrayBufferView");
}
void v8::TypedArray::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSTypedArray(),
"v8::TypedArray::Cast()",
"Could not convert to TypedArray");
}
#define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype, size) \
void v8::Type##Array::CheckCast(Value* that) { \
i::Handle<i::Object> obj = Utils::OpenHandle(that); \
Utils::ApiCheck(obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj)->type() == \
kExternal##Type##Array, \
"v8::" #Type "Array::Cast()", \
"Could not convert to " #Type "Array"); \
}
TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST)
#undef CHECK_TYPED_ARRAY_CAST
void v8::DataView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSDataView(),
"v8::DataView::Cast()",
"Could not convert to DataView");
}
void v8::Date::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Date_string()),
"v8::Date::Cast()",
"Could not convert to date");
}
void v8::StringObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->String_string()),
"v8::StringObject::Cast()",
"Could not convert to StringObject");
}
void v8::SymbolObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Symbol_string()),
"v8::SymbolObject::Cast()",
"Could not convert to SymbolObject");
}
void v8::NumberObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Number_string()),
"v8::NumberObject::Cast()",
"Could not convert to NumberObject");
}
void v8::BooleanObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Boolean_string()),
"v8::BooleanObject::Cast()",
"Could not convert to BooleanObject");
}
void v8::RegExp::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSRegExp(),
"v8::RegExp::Cast()",
"Could not convert to regular expression");
}
bool Value::BooleanValue() const {
return Utils::OpenHandle(this)->BooleanValue();
}
double Value::NumberValue() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsNumber()) {
num = obj;
} else {
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "NumberValue");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToNumber(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, std::numeric_limits<double>::quiet_NaN());
}
return num->Number();
}
int64_t Value::IntegerValue() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsNumber()) {
num = obj;
} else {
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "IntegerValue");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToInteger(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
}
if (num->IsSmi()) {
return i::Smi::cast(*num)->value();
} else {
return static_cast<int64_t>(num->Number());
}
}
Local<Int32> Value::ToInt32(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsSmi()) {
num = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToInt32");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToInt32(isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Int32>());
}
return ToApiHandle<Int32>(num);
}
Local<Uint32> Value::ToUint32(Isolate* v8_isolate) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsSmi()) {
num = obj;
} else {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "ToUInt32");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToUint32(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Uint32>());
}
return ToApiHandle<Uint32>(num);
}
Local<Uint32> Value::ToArrayIndex() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
if (i::Smi::cast(*obj)->value() >= 0) return Utils::Uint32ToLocal(obj);
return Local<Uint32>();
}
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "ToArrayIndex");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> string_obj;
has_pending_exception = !i::Execution::ToString(
isolate, obj).ToHandle(&string_obj);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Uint32>());
i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj);
uint32_t index;
if (str->AsArrayIndex(&index)) {
i::Handle<i::Object> value;
if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) {
value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate);
} else {
value = isolate->factory()->NewNumber(index);
}
return Utils::Uint32ToLocal(value);
}
return Local<Uint32>();
}
int32_t Value::Int32Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsNumber()) {
return NumberToInt32(*obj);
} else {
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "Int32Value (slow)");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> num;
has_pending_exception = !i::Execution::ToInt32(isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
if (num->IsSmi()) {
return i::Smi::cast(*num)->value();
} else {
return static_cast<int32_t>(num->Number());
}
}
}
bool Value::Equals(Handle<Value> that) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this, true);
i::Handle<i::Object> other = Utils::OpenHandle(*that);
if (obj->IsSmi() && other->IsSmi()) {
return obj->Number() == other->Number();
}
i::Object* ho = obj->IsSmi() ? *other : *obj;
i::Isolate* isolate = i::HeapObject::cast(ho)->GetIsolate();
if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(),
"v8::Value::Equals()",
"Reading from empty handle")) {
return false;
}
LOG_API(isolate, "Equals");
ENTER_V8(isolate);
// If both obj and other are JSObjects, we'd better compare by identity
// immediately when going into JS builtin. The reason is Invoke
// would overwrite global object receiver with global proxy.
if (obj->IsJSObject() && other->IsJSObject()) {
return *obj == *other;
}
i::Handle<i::Object> args[] = { other };
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "EQUALS", obj, arraysize(args), args)
.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, false);
return *result == i::Smi::FromInt(i::EQUAL);
}
bool Value::StrictEquals(Handle<Value> that) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this, true);
i::Handle<i::Object> other = Utils::OpenHandle(*that);
if (obj->IsSmi()) {
return other->IsNumber() && obj->Number() == other->Number();
}
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(),
"v8::Value::StrictEquals()",
"Reading from empty handle")) {
return false;
}
LOG_API(isolate, "StrictEquals");
// Must check HeapNumber first, since NaN !== NaN.
if (obj->IsHeapNumber()) {
if (!other->IsNumber()) return false;
double x = obj->Number();
double y = other->Number();
// Must check explicitly for NaN:s on Windows, but -0 works fine.
return x == y && !std::isnan(x) && !std::isnan(y);
} else if (*obj == *other) { // Also covers Booleans.
return true;
} else if (obj->IsSmi()) {
return other->IsNumber() && obj->Number() == other->Number();
} else if (obj->IsString()) {
return other->IsString() &&
i::String::Equals(i::Handle<i::String>::cast(obj),
i::Handle<i::String>::cast(other));
} else if (obj->IsUndefined() || obj->IsUndetectableObject()) {
return other->IsUndefined() || other->IsUndetectableObject();
} else {
return false;
}
}
bool Value::SameValue(Handle<Value> that) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this, true);
if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(),
"v8::Value::SameValue()",
"Reading from empty handle")) {
return false;
}
i::Handle<i::Object> other = Utils::OpenHandle(*that);
return obj->SameValue(*other);
}
uint32_t Value::Uint32Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsNumber()) {
return NumberToUint32(*obj);
} else {
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "Uint32Value");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> num;
has_pending_exception = !i::Execution::ToUint32(
isolate, obj).ToHandle(&num);
EXCEPTION_BAILOUT_CHECK(isolate, 0);
if (num->IsSmi()) {
return i::Smi::cast(*num)->value();
} else {
return static_cast<uint32_t>(num->Number());
}
}
}
bool v8::Object::Set(v8::Handle<Value> key, v8::Handle<Value> value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Set()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception =
i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj,
i::SLOPPY).is_null();
EXCEPTION_BAILOUT_CHECK(isolate, false);
return true;
}
bool v8::Object::Set(uint32_t index, v8::Handle<Value> value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Set()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = i::JSObject::SetElement(
self, index, value_obj, NONE, i::SLOPPY).is_null();
EXCEPTION_BAILOUT_CHECK(isolate, false);
return true;
}
bool v8::Object::ForceSet(v8::Handle<Value> key,
v8::Handle<Value> value,
v8::PropertyAttribute attribs) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::ForceSet()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = i::Runtime::DefineObjectProperty(
self,
key_obj,
value_obj,
static_cast<PropertyAttributes>(attribs)).is_null();
EXCEPTION_BAILOUT_CHECK(isolate, false);
return true;
}
bool v8::Object::SetPrivate(v8::Handle<Private> key, v8::Handle<Value> value) {
return ForceSet(v8::Handle<Value>(reinterpret_cast<Value*>(*key)),
value, DontEnum);
}
i::MaybeHandle<i::Object> DeleteObjectProperty(
i::Isolate* isolate, i::Handle<i::JSReceiver> receiver,
i::Handle<i::Object> key, i::LanguageMode language_mode) {
// Check if the given key is an array index.
uint32_t index;
if (key->ToArrayIndex(&index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the
// characters of a string using [] notation. In the case of a
// String object we just need to redirect the deletion to the
// underlying string if the index is in range. Since the
// underlying string does nothing with the deletion, we can ignore
// such deletions.
if (receiver->IsStringObjectWithCharacterAt(index)) {
return isolate->factory()->true_value();
}
return i::JSReceiver::DeleteElement(receiver, index, language_mode);
}
i::Handle<i::Name> name;
if (key->IsName()) {
name = i::Handle<i::Name>::cast(key);
} else {
// Call-back into JavaScript to convert the key to a string.
i::Handle<i::Object> converted;
if (!i::Execution::ToString(isolate, key).ToHandle(&converted)) {
return i::MaybeHandle<i::Object>();
}
name = i::Handle<i::String>::cast(converted);
}
if (name->IsString()) {
name = i::String::Flatten(i::Handle<i::String>::cast(name));
}
return i::JSReceiver::DeleteProperty(receiver, name, language_mode);
}
Local<Value> v8::Object::Get(v8::Handle<Value> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Get()", return Local<v8::Value>());
ENTER_V8(isolate);
i::Handle<i::Object> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
return Utils::ToLocal(result);
}
Local<Value> v8::Object::Get(uint32_t index) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Get()", return Local<v8::Value>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!i::Object::GetElement(isolate, self, index).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
return Utils::ToLocal(result);
}
Local<Value> v8::Object::GetPrivate(v8::Handle<Private> key) {
return Get(v8::Handle<Value>(reinterpret_cast<Value*>(*key)));
}
PropertyAttribute v8::Object::GetPropertyAttributes(v8::Handle<Value> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetPropertyAttributes()",
return static_cast<PropertyAttribute>(NONE));
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
if (!key_obj->IsName()) {
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !i::Execution::ToString(
isolate, key_obj).ToHandle(&key_obj);
EXCEPTION_BAILOUT_CHECK(isolate, static_cast<PropertyAttribute>(NONE));
}
i::Handle<i::Name> key_name = i::Handle<i::Name>::cast(key_obj);
EXCEPTION_PREAMBLE(isolate);
Maybe<PropertyAttributes> result =
i::JSReceiver::GetPropertyAttributes(self, key_name);
has_pending_exception = !result.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, static_cast<PropertyAttribute>(NONE));
if (result.value == ABSENT) return static_cast<PropertyAttribute>(NONE);
return static_cast<PropertyAttribute>(result.value);
}
Local<Value> v8::Object::GetOwnPropertyDescriptor(Local<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetOwnPropertyDescriptor()",
return Local<Value>());
ENTER_V8(isolate);
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
i::Handle<i::Name> key_name = Utils::OpenHandle(*key);
i::Handle<i::Object> args[] = { obj, key_name };
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "ObjectGetOwnPropertyDescriptor",
isolate->factory()->undefined_value(),
arraysize(args), args).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
return Utils::ToLocal(result);
}
Local<Value> v8::Object::GetPrototype() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetPrototype()", return Local<v8::Value>());
ENTER_V8(isolate);
i::Handle<i::Object> self = Utils::OpenHandle(this);
i::PrototypeIterator iter(isolate, self);
return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter));
}
bool v8::Object::SetPrototype(Handle<Value> value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::SetPrototype()", return false);
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
// We do not allow exceptions thrown while setting the prototype
// to propagate outside.
TryCatch try_catch;
EXCEPTION_PREAMBLE(isolate);
i::MaybeHandle<i::Object> result =
i::JSObject::SetPrototype(self, value_obj, false);
has_pending_exception = result.is_null();
EXCEPTION_BAILOUT_CHECK(isolate, false);
return true;
}
Local<Object> v8::Object::FindInstanceInPrototypeChain(
v8::Handle<FunctionTemplate> tmpl) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate,
"v8::Object::FindInstanceInPrototypeChain()",
return Local<v8::Object>());
ENTER_V8(isolate);
i::PrototypeIterator iter(isolate, *Utils::OpenHandle(this),
i::PrototypeIterator::START_AT_RECEIVER);
i::FunctionTemplateInfo* tmpl_info = *Utils::OpenHandle(*tmpl);
while (!tmpl_info->IsTemplateFor(iter.GetCurrent())) {
iter.Advance();
if (iter.IsAtEnd()) {
return Local<Object>();
}
}
return Utils::ToLocal(
i::handle(i::JSObject::cast(iter.GetCurrent()), isolate));
}
Local<Array> v8::Object::GetPropertyNames() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetPropertyNames()",
return Local<v8::Array>());
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::FixedArray> value;
has_pending_exception = !i::JSReceiver::GetKeys(
self, i::JSReceiver::INCLUDE_PROTOS).ToHandle(&value);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Array>());
// Because we use caching to speed up enumeration it is important
// to never change the result of the basic enumeration function so
// we clone the result.
i::Handle<i::FixedArray> elms = isolate->factory()->CopyFixedArray(value);
i::Handle<i::JSArray> result =
isolate->factory()->NewJSArrayWithElements(elms);
return Utils::ToLocal(scope.CloseAndEscape(result));
}
Local<Array> v8::Object::GetOwnPropertyNames() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetOwnPropertyNames()",
return Local<v8::Array>());
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::FixedArray> value;
has_pending_exception = !i::JSReceiver::GetKeys(
self, i::JSReceiver::OWN_ONLY).ToHandle(&value);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Array>());
// Because we use caching to speed up enumeration it is important
// to never change the result of the basic enumeration function so
// we clone the result.
i::Handle<i::FixedArray> elms = isolate->factory()->CopyFixedArray(value);
i::Handle<i::JSArray> result =
isolate->factory()->NewJSArrayWithElements(elms);
return Utils::ToLocal(scope.CloseAndEscape(result));
}
Local<String> v8::Object::ObjectProtoToString() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
Isolate* isolate = reinterpret_cast<Isolate*>(i_isolate);
ON_BAILOUT(i_isolate, "v8::Object::ObjectProtoToString()",
return Local<v8::String>());
ENTER_V8(i_isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> name(self->class_name(), i_isolate);
i::Handle<i::Object> tag;
// Native implementation of Object.prototype.toString (v8natives.js):
// var c = %_ClassOf(this);
// if (c === 'Arguments') c = 'Object';
// return "[object " + c + "]";
if (!name->IsString()) {
return v8::String::NewFromUtf8(isolate, "[object ]");
} else {
i::Handle<i::String> class_name = i::Handle<i::String>::cast(name);
if (i::String::Equals(class_name,
i_isolate->factory()->Arguments_string())) {
return v8::String::NewFromUtf8(isolate, "[object Object]");
} else {
if (internal::FLAG_harmony_tostring) {
i::Handle<i::Symbol> toStringTag =
Utils::OpenHandle(*Symbol::GetToStringTag(isolate));
EXCEPTION_PREAMBLE(i_isolate);
has_pending_exception =
!i::Runtime::GetObjectProperty(i_isolate, self, toStringTag)
.ToHandle(&tag);
EXCEPTION_BAILOUT_CHECK(i_isolate, Local<v8::String>());
if (tag->IsString()) {
class_name = i::Handle<i::String>::cast(tag);
}
}
const char* prefix = "[object ";
Local<String> str = Utils::ToLocal(class_name);
const char* postfix = "]";
int prefix_len = i::StrLength(prefix);
int str_len = str->Utf8Length();
int postfix_len = i::StrLength(postfix);
int buf_len = prefix_len + str_len + postfix_len;
i::ScopedVector<char> buf(buf_len);
// Write prefix.
char* ptr = buf.start();
i::MemCopy(ptr, prefix, prefix_len * v8::internal::kCharSize);
ptr += prefix_len;
// Write real content.
str->WriteUtf8(ptr, str_len);
ptr += str_len;
// Write postfix.
i::MemCopy(ptr, postfix, postfix_len * v8::internal::kCharSize);
// Copy the buffer into a heap-allocated string and return it.
Local<String> result = v8::String::NewFromUtf8(
isolate, buf.start(), String::kNormalString, buf_len);
return result;
}
}
}
Local<String> v8::Object::GetConstructorName() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetConstructorName()",
return Local<v8::String>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> name(self->constructor_name());
return Utils::ToLocal(name);
}
bool v8::Object::Delete(v8::Handle<Value> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Delete()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> obj;
has_pending_exception =
!DeleteObjectProperty(isolate, self, key_obj, i::SLOPPY).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(isolate, false);
return obj->IsTrue();
}
bool v8::Object::DeletePrivate(v8::Handle<Private> key) {
return Delete(v8::Handle<Value>(reinterpret_cast<Value*>(*key)));
}
bool v8::Object::Has(v8::Handle<Value> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Has()", return false);
ENTER_V8(isolate);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe;
// Check if the given key is an array index.
uint32_t index;
if (key_obj->ToArrayIndex(&index)) {
maybe = i::JSReceiver::HasElement(self, index);
} else {
// Convert the key to a name - possibly by calling back into JavaScript.
i::Handle<i::Name> name;
if (i::Runtime::ToName(isolate, key_obj).ToHandle(&name)) {
maybe = i::JSReceiver::HasProperty(self, name);
}
}
if (!maybe.has_value) has_pending_exception = true;
EXCEPTION_BAILOUT_CHECK(isolate, false);
DCHECK(maybe.has_value);
return maybe.value;
}
bool v8::Object::HasPrivate(v8::Handle<Private> key) {
// TODO(rossberg): this should use HasOwnProperty, but we'd need to
// generalise that to a (noy yet existant) Name argument first.
return Has(v8::Handle<Value>(reinterpret_cast<Value*>(*key)));
}
bool v8::Object::Delete(uint32_t index) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::DeleteProperty()",
return false);
ENTER_V8(isolate);
HandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> obj;
has_pending_exception =
!i::JSReceiver::DeleteElement(self, index).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(isolate, false);
return obj->IsTrue();
}
bool v8::Object::Has(uint32_t index) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasProperty()", return false);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe = i::JSReceiver::HasElement(self, index);
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, false);
return maybe.value;
}
template<typename Getter, typename Setter, typename Data>
static inline bool ObjectSetAccessor(Object* obj,
Handle<Name> name,
Getter getter,
Setter setter,
Data data,
AccessControl settings,
PropertyAttribute attributes) {
i::Isolate* isolate = Utils::OpenHandle(obj)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::SetAccessor()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
v8::Handle<AccessorSignature> signature;
i::Handle<i::AccessorInfo> info = MakeAccessorInfo(
name, getter, setter, data, settings, attributes, signature);
if (info.is_null()) return false;
bool fast = Utils::OpenHandle(obj)->HasFastProperties();
i::Handle<i::Object> result;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, result,
i::JSObject::SetAccessor(Utils::OpenHandle(obj), info),
false);
if (result->IsUndefined()) return false;
if (fast) {
i::JSObject::MigrateSlowToFast(Utils::OpenHandle(obj), 0, "APISetAccessor");
}
return true;
}
bool Object::SetAccessor(Handle<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Handle<Value> data,
AccessControl settings,
PropertyAttribute attributes) {
return ObjectSetAccessor(
this, name, getter, setter, data, settings, attributes);
}
bool Object::SetAccessor(Handle<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Handle<Value> data,
AccessControl settings,
PropertyAttribute attributes) {
return ObjectSetAccessor(
this, name, getter, setter, data, settings, attributes);
}
void Object::SetAccessorProperty(Local<Name> name,
Local<Function> getter,
Handle<Function> setter,
PropertyAttribute attribute,
AccessControl settings) {
// TODO(verwaest): Remove |settings|.
DCHECK_EQ(v8::DEFAULT, settings);
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::SetAccessorProperty()", return);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter);
i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true);
if (setter_i.is_null()) setter_i = isolate->factory()->null_value();
i::JSObject::DefineAccessor(v8::Utils::OpenHandle(this),
v8::Utils::OpenHandle(*name),
getter_i,
setter_i,
static_cast<PropertyAttributes>(attribute));
}
bool v8::Object::HasOwnProperty(Handle<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasOwnProperty()",
return false);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe = i::JSReceiver::HasOwnProperty(Utils::OpenHandle(this),
Utils::OpenHandle(*key));
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, false);
return maybe.value;
}
bool v8::Object::HasRealNamedProperty(Handle<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasRealNamedProperty()",
return false);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe = i::JSObject::HasRealNamedProperty(
Utils::OpenHandle(this), Utils::OpenHandle(*key));
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, false);
return maybe.value;
}
bool v8::Object::HasRealIndexedProperty(uint32_t index) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasRealIndexedProperty()",
return false);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe =
i::JSObject::HasRealElementProperty(Utils::OpenHandle(this), index);
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, false);
return maybe.value;
}
bool v8::Object::HasRealNamedCallbackProperty(Handle<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate,
"v8::Object::HasRealNamedCallbackProperty()",
return false);
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
Maybe<bool> maybe = i::JSObject::HasRealNamedCallbackProperty(
Utils::OpenHandle(this), Utils::OpenHandle(*key));
has_pending_exception = !maybe.has_value;
EXCEPTION_BAILOUT_CHECK(isolate, false);
return maybe.value;
}
bool v8::Object::HasNamedLookupInterceptor() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasNamedLookupInterceptor()",
return false);
return Utils::OpenHandle(this)->HasNamedInterceptor();
}
bool v8::Object::HasIndexedLookupInterceptor() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::HasIndexedLookupInterceptor()",
return false);
return Utils::OpenHandle(this)->HasIndexedInterceptor();
}
static Local<Value> GetPropertyByLookup(i::LookupIterator* it) {
// If the property being looked up is a callback, it can throw an exception.
EXCEPTION_PREAMBLE(it->isolate());
i::Handle<i::Object> result;
has_pending_exception = !i::Object::GetProperty(it).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(it->isolate(), Local<Value>());
if (it->IsFound()) return Utils::ToLocal(result);
return Local<Value>();
}
Local<Value> v8::Object::GetRealNamedPropertyInPrototypeChain(
Handle<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate,
"v8::Object::GetRealNamedPropertyInPrototypeChain()",
return Local<Value>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self_obj = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(isolate, self_obj);
if (iter.IsAtEnd()) return Local<Value>();
i::Handle<i::Object> proto = i::PrototypeIterator::GetCurrent(iter);
i::LookupIterator it(self_obj, key_obj, i::Handle<i::JSReceiver>::cast(proto),
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
return GetPropertyByLookup(&it);
}
Local<Value> v8::Object::GetRealNamedProperty(Handle<String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetRealNamedProperty()",
return Local<Value>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self_obj = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::LookupIterator it(self_obj, key_obj,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
return GetPropertyByLookup(&it);
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Turns on access checks by copying the map and setting the check flag.
// Because the object gets a new map, existing inline cache caching
// the old map of this object will fail.
void v8::Object::TurnOnAccessCheck() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::TurnOnAccessCheck()", return);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
// When turning on access checks for a global object deoptimize all functions
// as optimized code does not always handle access checks.
i::Deoptimizer::DeoptimizeGlobalObject(*obj);
i::Handle<i::Map> new_map =
i::Map::Copy(i::Handle<i::Map>(obj->map()), "APITurnOnAccessCheck");
new_map->set_is_access_check_needed(true);
i::JSObject::MigrateToMap(obj, new_map);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
}
Local<v8::Object> v8::Object::Clone() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::Clone()", return Local<Object>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::JSObject> result = isolate->factory()->CopyJSObject(self);
has_pending_exception = result.is_null();
EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>());
return Utils::ToLocal(result);
}
Local<v8::Context> v8::Object::CreationContext() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate,
"v8::Object::CreationContext()", return Local<v8::Context>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Context* context = self->GetCreationContext();
return Utils::ToLocal(i::Handle<i::Context>(context));
}
int v8::Object::GetIdentityHash() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetIdentityHash()", return 0);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
return i::JSReceiver::GetOrCreateIdentityHash(self)->value();
}
bool v8::Object::SetHiddenValue(v8::Handle<v8::String> key,
v8::Handle<v8::Value> value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::SetHiddenValue()", return false);
if (value.IsEmpty()) return DeleteHiddenValue(key);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::Handle<i::Object> result =
i::JSObject::SetHiddenProperty(self, key_string, value_obj);
return *result == *self;
}
v8::Local<v8::Value> v8::Object::GetHiddenValue(v8::Handle<v8::String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::GetHiddenValue()",
return Local<v8::Value>());
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::Handle<i::Object> result(self->GetHiddenProperty(key_string), isolate);
if (result->IsTheHole()) return v8::Local<v8::Value>();
return Utils::ToLocal(result);
}
bool v8::Object::DeleteHiddenValue(v8::Handle<v8::String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::DeleteHiddenValue()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::JSObject::DeleteHiddenProperty(self, key_string);
return true;
}
namespace {
static i::ElementsKind GetElementsKindFromExternalArrayType(
ExternalArrayType array_type) {
switch (array_type) {
#define ARRAY_TYPE_TO_ELEMENTS_KIND(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return i::EXTERNAL_##TYPE##_ELEMENTS;
TYPED_ARRAYS(ARRAY_TYPE_TO_ELEMENTS_KIND)
#undef ARRAY_TYPE_TO_ELEMENTS_KIND
}
UNREACHABLE();
return i::DICTIONARY_ELEMENTS;
}
void PrepareExternalArrayElements(i::Handle<i::JSObject> object,
void* data,
ExternalArrayType array_type,
int length) {
i::Isolate* isolate = object->GetIsolate();
i::Handle<i::ExternalArray> array =
isolate->factory()->NewExternalArray(length, array_type, data);
i::Handle<i::Map> external_array_map =
i::JSObject::GetElementsTransitionMap(
object,
GetElementsKindFromExternalArrayType(array_type));
i::JSObject::SetMapAndElements(object, external_array_map, array);
}
} // namespace
void v8::Object::SetIndexedPropertiesToPixelData(uint8_t* data, int length) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::SetElementsToPixelData()", return);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
if (!Utils::ApiCheck(length >= 0 &&
length <= i::ExternalUint8ClampedArray::kMaxLength,
"v8::Object::SetIndexedPropertiesToPixelData()",
"length exceeds max acceptable value")) {
return;
}
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
if (!Utils::ApiCheck(!self->IsJSArray(),
"v8::Object::SetIndexedPropertiesToPixelData()",
"JSArray is not supported")) {
return;
}
PrepareExternalArrayElements(self, data, kExternalUint8ClampedArray, length);
}
bool v8::Object::HasIndexedPropertiesInPixelData() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(), "v8::HasIndexedPropertiesInPixelData()",
return false);
return self->HasExternalUint8ClampedElements();
}
uint8_t* v8::Object::GetIndexedPropertiesPixelData() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesPixelData()",
return NULL);
if (self->HasExternalUint8ClampedElements()) {
return i::ExternalUint8ClampedArray::cast(self->elements())->
external_uint8_clamped_pointer();
} else {
return NULL;
}
}
int v8::Object::GetIndexedPropertiesPixelDataLength() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesPixelDataLength()",
return -1);
if (self->HasExternalUint8ClampedElements()) {
return i::ExternalUint8ClampedArray::cast(self->elements())->length();
} else {
return -1;
}
}
void v8::Object::SetIndexedPropertiesToExternalArrayData(
void* data,
ExternalArrayType array_type,
int length) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::SetIndexedPropertiesToExternalArrayData()", return);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
if (!Utils::ApiCheck(length >= 0 && length <= i::ExternalArray::kMaxLength,
"v8::Object::SetIndexedPropertiesToExternalArrayData()",
"length exceeds max acceptable value")) {
return;
}
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
if (!Utils::ApiCheck(!self->IsJSArray(),
"v8::Object::SetIndexedPropertiesToExternalArrayData()",
"JSArray is not supported")) {
return;
}
PrepareExternalArrayElements(self, data, array_type, length);
}
bool v8::Object::HasIndexedPropertiesInExternalArrayData() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(),
"v8::HasIndexedPropertiesInExternalArrayData()",
return false);
return self->HasExternalArrayElements();
}
void* v8::Object::GetIndexedPropertiesExternalArrayData() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(),
"v8::GetIndexedPropertiesExternalArrayData()",
return NULL);
if (self->HasExternalArrayElements()) {
return i::ExternalArray::cast(self->elements())->external_pointer();
} else {
return NULL;
}
}
ExternalArrayType v8::Object::GetIndexedPropertiesExternalArrayDataType() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(),
"v8::GetIndexedPropertiesExternalArrayDataType()",
return static_cast<ExternalArrayType>(-1));
switch (self->elements()->map()->instance_type()) {
#define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size) \
case i::EXTERNAL_##TYPE##_ARRAY_TYPE: \
return kExternal##Type##Array;
TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE)
#undef INSTANCE_TYPE_TO_ARRAY_TYPE
default:
return static_cast<ExternalArrayType>(-1);
}
}
int v8::Object::GetIndexedPropertiesExternalArrayDataLength() {
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
ON_BAILOUT(self->GetIsolate(),
"v8::GetIndexedPropertiesExternalArrayDataLength()",
return 0);
if (self->HasExternalArrayElements()) {
return i::ExternalArray::cast(self->elements())->length();
} else {
return -1;
}
}
bool v8::Object::IsCallable() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::IsCallable()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
return obj->IsCallable();
}
Local<v8::Value> Object::CallAsFunction(v8::Handle<v8::Value> recv,
int argc,
v8::Handle<v8::Value> argv[]) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::CallAsFunction()",
return Local<v8::Value>());
LOG_API(isolate, "Object::CallAsFunction");
ENTER_V8(isolate);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>();
if (obj->IsJSFunction()) {
fun = i::Handle<i::JSFunction>::cast(obj);
} else {
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> delegate;
has_pending_exception = !i::Execution::TryGetFunctionDelegate(
isolate, obj).ToHandle(&delegate);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
fun = i::Handle<i::JSFunction>::cast(delegate);
recv_obj = obj;
}
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> returned;
has_pending_exception = !i::Execution::Call(
isolate, fun, recv_obj, argc, args, true).ToHandle(&returned);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Value>());
return Utils::ToLocal(scope.CloseAndEscape(returned));
}
Local<v8::Value> Object::CallAsConstructor(int argc,
v8::Handle<v8::Value> argv[]) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Object::CallAsConstructor()",
return Local<v8::Object>());
LOG_API(isolate, "Object::CallAsConstructor");
ENTER_V8(isolate);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
if (obj->IsJSFunction()) {
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(obj);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> returned;
has_pending_exception = !i::Execution::New(
fun, argc, args).ToHandle(&returned);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>());
return Utils::ToLocal(scope.CloseAndEscape(
i::Handle<i::JSObject>::cast(returned)));
}
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> delegate;
has_pending_exception = !i::Execution::TryGetConstructorDelegate(
isolate, obj).ToHandle(&delegate);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>());
if (!delegate->IsUndefined()) {
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(delegate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> returned;
has_pending_exception = !i::Execution::Call(
isolate, fun, obj, argc, args).ToHandle(&returned);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>());
DCHECK(!delegate->IsUndefined());
return Utils::ToLocal(scope.CloseAndEscape(returned));
}
return Local<v8::Object>();
}
Local<Function> Function::New(Isolate* v8_isolate,
FunctionCallback callback,
Local<Value> data,
int length) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "Function::New");
ENTER_V8(isolate);
return FunctionTemplateNew(
isolate, callback, data, Local<Signature>(), length, true)->
GetFunction();
}
Local<v8::Object> Function::NewInstance() const {
return NewInstance(0, NULL);
}
Local<v8::Object> Function::NewInstance(int argc,
v8::Handle<v8::Value> argv[]) const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Function::NewInstance()",
return Local<v8::Object>());
LOG_API(isolate, "Function::NewInstance");
ENTER_V8(isolate);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSFunction> function = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> returned;
has_pending_exception = !i::Execution::New(
function, argc, args).ToHandle(&returned);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>());
return scope.Escape(Utils::ToLocal(i::Handle<i::JSObject>::cast(returned)));
}
Local<v8::Value> Function::Call(v8::Handle<v8::Value> recv, int argc,
v8::Handle<v8::Value> argv[]) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Function::Call()", return Local<v8::Value>());
LOG_API(isolate, "Function::Call");
ENTER_V8(isolate);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSFunction> fun = Utils::OpenHandle(this);
i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> returned;
has_pending_exception = !i::Execution::Call(
isolate, fun, recv_obj, argc, args, true).ToHandle(&returned);
EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Object>());
return Utils::ToLocal(scope.CloseAndEscape(returned));
}
void Function::SetName(v8::Handle<v8::String> name) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
USE(isolate);
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
func->shared()->set_name(*Utils::OpenHandle(*name));
}
Handle<Value> Function::GetName() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::Object>(func->shared()->name(),
func->GetIsolate()));
}
Handle<Value> Function::GetInferredName() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::Object>(func->shared()->inferred_name(),
func->GetIsolate()));
}
Handle<Value> Function::GetDisplayName() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Function::GetDisplayName()",
return ToApiHandle<Primitive>(
isolate->factory()->undefined_value()));
ENTER_V8(isolate);
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
i::Handle<i::String> property_name =
isolate->factory()->InternalizeOneByteString(
STATIC_CHAR_VECTOR("displayName"));
i::Handle<i::Object> value =
i::JSObject::GetDataProperty(func, property_name);
if (value->IsString()) {
i::Handle<i::String> name = i::Handle<i::String>::cast(value);
if (name->length() > 0) return Utils::ToLocal(name);
}
return ToApiHandle<Primitive>(isolate->factory()->undefined_value());
}
ScriptOrigin Function::GetScriptOrigin() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
i::Handle<i::Object> scriptName = i::Script::GetNameOrSourceURL(script);
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(func->GetIsolate());
v8::ScriptOrigin origin(
Utils::ToLocal(scriptName),
v8::Integer::New(isolate, script->line_offset()->value()),
v8::Integer::New(isolate, script->column_offset()->value()),
v8::Boolean::New(isolate, script->is_shared_cross_origin()),
v8::Integer::New(isolate, script->id()->value()),
v8::Boolean::New(isolate, script->is_embedder_debug_script()));
return origin;
}
return v8::ScriptOrigin(Handle<Value>());
}
const int Function::kLineOffsetNotFound = -1;
int Function::GetScriptLineNumber() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return i::Script::GetLineNumber(script, func->shared()->start_position());
}
return kLineOffsetNotFound;
}
int Function::GetScriptColumnNumber() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return i::Script::GetColumnNumber(script, func->shared()->start_position());
}
return kLineOffsetNotFound;
}
bool Function::IsBuiltin() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return func->IsBuiltin();
}
int Function::ScriptId() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (!func->shared()->script()->IsScript()) {
return v8::UnboundScript::kNoScriptId;
}
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return script->id()->value();
}
Local<v8::Value> Function::GetBoundFunction() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (!func->shared()->bound()) {
return v8::Undefined(reinterpret_cast<v8::Isolate*>(func->GetIsolate()));
}
i::Handle<i::FixedArray> bound_args = i::Handle<i::FixedArray>(
i::FixedArray::cast(func->function_bindings()));
i::Handle<i::Object> original(
bound_args->get(i::JSFunction::kBoundFunctionIndex),
func->GetIsolate());
return Utils::ToLocal(i::Handle<i::JSFunction>::cast(original));
}
int Name::GetIdentityHash() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Name::GetIdentityHash()", return 0);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Name> self = Utils::OpenHandle(this);
return static_cast<int>(self->Hash());
}
int String::Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->length();
}
bool String::IsOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->HasOnlyOneByteChars();
}
// Helpers for ContainsOnlyOneByteHelper
template<size_t size> struct OneByteMask;
template<> struct OneByteMask<4> {
static const uint32_t value = 0xFF00FF00;
};
template<> struct OneByteMask<8> {
static const uint64_t value = V8_2PART_UINT64_C(0xFF00FF00, FF00FF00);
};
static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value;
static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1;
static inline bool Unaligned(const uint16_t* chars) {
return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask;
}
static inline const uint16_t* Align(const uint16_t* chars) {
return reinterpret_cast<uint16_t*>(
reinterpret_cast<uintptr_t>(chars) & ~kAlignmentMask);
}
class ContainsOnlyOneByteHelper {
public:
ContainsOnlyOneByteHelper() : is_one_byte_(true) {}
bool Check(i::String* string) {
i::ConsString* cons_string = i::String::VisitFlat(this, string, 0);
if (cons_string == NULL) return is_one_byte_;
return CheckCons(cons_string);
}
void VisitOneByteString(const uint8_t* chars, int length) {
// Nothing to do.
}
void VisitTwoByteString(const uint16_t* chars, int length) {
// Accumulated bits.
uintptr_t acc = 0;
// Align to uintptr_t.
const uint16_t* end = chars + length;
while (Unaligned(chars) && chars != end) {
acc |= *chars++;
}
// Read word aligned in blocks,
// checking the return value at the end of each block.
const uint16_t* aligned_end = Align(end);
const int increment = sizeof(uintptr_t)/sizeof(uint16_t);
const int inner_loops = 16;
while (chars + inner_loops*increment < aligned_end) {
for (int i = 0; i < inner_loops; i++) {
acc |= *reinterpret_cast<const uintptr_t*>(chars);
chars += increment;
}
// Check for early return.
if ((acc & kOneByteMask) != 0) {
is_one_byte_ = false;
return;
}
}
// Read the rest.
while (chars != end) {
acc |= *chars++;
}
// Check result.
if ((acc & kOneByteMask) != 0) is_one_byte_ = false;
}
private:
bool CheckCons(i::ConsString* cons_string) {
while (true) {
// Check left side if flat.
i::String* left = cons_string->first();
i::ConsString* left_as_cons =
i::String::VisitFlat(this, left, 0);
if (!is_one_byte_) return false;
// Check right side if flat.
i::String* right = cons_string->second();
i::ConsString* right_as_cons =
i::String::VisitFlat(this, right, 0);
if (!is_one_byte_) return false;
// Standard recurse/iterate trick.
if (left_as_cons != NULL && right_as_cons != NULL) {
if (left->length() < right->length()) {
CheckCons(left_as_cons);
cons_string = right_as_cons;
} else {
CheckCons(right_as_cons);
cons_string = left_as_cons;
}
// Check fast return.
if (!is_one_byte_) return false;
continue;
}
// Descend left in place.
if (left_as_cons != NULL) {
cons_string = left_as_cons;
continue;
}
// Descend right in place.
if (right_as_cons != NULL) {
cons_string = right_as_cons;
continue;
}
// Terminate.
break;
}
return is_one_byte_;
}
bool is_one_byte_;
DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper);
};
bool String::ContainsOnlyOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (str->HasOnlyOneByteChars()) return true;
ContainsOnlyOneByteHelper helper;
return helper.Check(*str);
}
class Utf8LengthHelper : public i::AllStatic {
public:
enum State {
kEndsWithLeadingSurrogate = 1 << 0,
kStartsWithTrailingSurrogate = 1 << 1,
kLeftmostEdgeIsCalculated = 1 << 2,
kRightmostEdgeIsCalculated = 1 << 3,
kLeftmostEdgeIsSurrogate = 1 << 4,
kRightmostEdgeIsSurrogate = 1 << 5
};
static const uint8_t kInitialState = 0;
static inline bool EndsWithSurrogate(uint8_t state) {
return state & kEndsWithLeadingSurrogate;
}
static inline bool StartsWithSurrogate(uint8_t state) {
return state & kStartsWithTrailingSurrogate;
}
class Visitor {
public:
Visitor() : utf8_length_(0), state_(kInitialState) {}
void VisitOneByteString(const uint8_t* chars, int length) {
int utf8_length = 0;
// Add in length 1 for each non-Latin1 character.
for (int i = 0; i < length; i++) {
utf8_length += *chars++ >> 7;
}
// Add in length 1 for each character.
utf8_length_ = utf8_length + length;
state_ = kInitialState;
}
void VisitTwoByteString(const uint16_t* chars, int length) {
int utf8_length = 0;
int last_character = unibrow::Utf16::kNoPreviousCharacter;
for (int i = 0; i < length; i++) {
uint16_t c = chars[i];
utf8_length += unibrow::Utf8::Length(c, last_character);
last_character = c;
}
utf8_length_ = utf8_length;
uint8_t state = 0;
if (unibrow::Utf16::IsTrailSurrogate(chars[0])) {
state |= kStartsWithTrailingSurrogate;
}
if (unibrow::Utf16::IsLeadSurrogate(chars[length-1])) {
state |= kEndsWithLeadingSurrogate;
}
state_ = state;
}
static i::ConsString* VisitFlat(i::String* string,
int* length,
uint8_t* state) {
Visitor visitor;
i::ConsString* cons_string = i::String::VisitFlat(&visitor, string);
*length = visitor.utf8_length_;
*state = visitor.state_;
return cons_string;
}
private:
int utf8_length_;
uint8_t state_;
DISALLOW_COPY_AND_ASSIGN(Visitor);
};
static inline void MergeLeafLeft(int* length,
uint8_t* state,
uint8_t leaf_state) {
bool edge_surrogate = StartsWithSurrogate(leaf_state);
if (!(*state & kLeftmostEdgeIsCalculated)) {
DCHECK(!(*state & kLeftmostEdgeIsSurrogate));
*state |= kLeftmostEdgeIsCalculated
| (edge_surrogate ? kLeftmostEdgeIsSurrogate : 0);
} else if (EndsWithSurrogate(*state) && edge_surrogate) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
if (EndsWithSurrogate(leaf_state)) {
*state |= kEndsWithLeadingSurrogate;
} else {
*state &= ~kEndsWithLeadingSurrogate;
}
}
static inline void MergeLeafRight(int* length,
uint8_t* state,
uint8_t leaf_state) {
bool edge_surrogate = EndsWithSurrogate(leaf_state);
if (!(*state & kRightmostEdgeIsCalculated)) {
DCHECK(!(*state & kRightmostEdgeIsSurrogate));
*state |= (kRightmostEdgeIsCalculated
| (edge_surrogate ? kRightmostEdgeIsSurrogate : 0));
} else if (edge_surrogate && StartsWithSurrogate(*state)) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
if (StartsWithSurrogate(leaf_state)) {
*state |= kStartsWithTrailingSurrogate;
} else {
*state &= ~kStartsWithTrailingSurrogate;
}
}
static inline void MergeTerminal(int* length,
uint8_t state,
uint8_t* state_out) {
DCHECK((state & kLeftmostEdgeIsCalculated) &&
(state & kRightmostEdgeIsCalculated));
if (EndsWithSurrogate(state) && StartsWithSurrogate(state)) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
*state_out = kInitialState |
(state & kLeftmostEdgeIsSurrogate ? kStartsWithTrailingSurrogate : 0) |
(state & kRightmostEdgeIsSurrogate ? kEndsWithLeadingSurrogate : 0);
}
static int Calculate(i::ConsString* current, uint8_t* state_out) {
using namespace internal;
int total_length = 0;
uint8_t state = kInitialState;
while (true) {
i::String* left = current->first();
i::String* right = current->second();
uint8_t right_leaf_state;
uint8_t left_leaf_state;
int leaf_length;
ConsString* left_as_cons =
Visitor::VisitFlat(left, &leaf_length, &left_leaf_state);
if (left_as_cons == NULL) {
total_length += leaf_length;
MergeLeafLeft(&total_length, &state, left_leaf_state);
}
ConsString* right_as_cons =
Visitor::VisitFlat(right, &leaf_length, &right_leaf_state);
if (right_as_cons == NULL) {
total_length += leaf_length;
MergeLeafRight(&total_length, &state, right_leaf_state);
if (left_as_cons != NULL) {
// 1 Leaf node. Descend in place.
current = left_as_cons;
continue;
} else {
// Terminal node.
MergeTerminal(&total_length, state, state_out);
return total_length;
}
} else if (left_as_cons == NULL) {
// 1 Leaf node. Descend in place.
current = right_as_cons;
continue;
}
// Both strings are ConsStrings.
// Recurse on smallest.
if (left->length() < right->length()) {
total_length += Calculate(left_as_cons, &left_leaf_state);
MergeLeafLeft(&total_length, &state, left_leaf_state);
current = right_as_cons;
} else {
total_length += Calculate(right_as_cons, &right_leaf_state);
MergeLeafRight(&total_length, &state, right_leaf_state);
current = left_as_cons;
}
}
UNREACHABLE();
return 0;
}
static inline int Calculate(i::ConsString* current) {
uint8_t state = kInitialState;
return Calculate(current, &state);
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8LengthHelper);
};
static int Utf8Length(i::String* str, i::Isolate* isolate) {
int length = str->length();
if (length == 0) return 0;
uint8_t state;
i::ConsString* cons_string =
Utf8LengthHelper::Visitor::VisitFlat(str, &length, &state);
if (cons_string == NULL) return length;
return Utf8LengthHelper::Calculate(cons_string);
}
int String::Utf8Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
i::Isolate* isolate = str->GetIsolate();
return v8::Utf8Length(*str, isolate);
}
class Utf8WriterVisitor {
public:
Utf8WriterVisitor(
char* buffer,
int capacity,
bool skip_capacity_check,
bool replace_invalid_utf8)
: early_termination_(false),
last_character_(unibrow::Utf16::kNoPreviousCharacter),
buffer_(buffer),
start_(buffer),
capacity_(capacity),
skip_capacity_check_(capacity == -1 || skip_capacity_check),
replace_invalid_utf8_(replace_invalid_utf8),
utf16_chars_read_(0) {
}
static int WriteEndCharacter(uint16_t character,
int last_character,
int remaining,
char* const buffer,
bool replace_invalid_utf8) {
using namespace unibrow;
DCHECK(remaining > 0);
// We can't use a local buffer here because Encode needs to modify
// previous characters in the stream. We know, however, that
// exactly one character will be advanced.
if (Utf16::IsSurrogatePair(last_character, character)) {
int written = Utf8::Encode(buffer,
character,
last_character,
replace_invalid_utf8);
DCHECK(written == 1);
return written;
}
// Use a scratch buffer to check the required characters.
char temp_buffer[Utf8::kMaxEncodedSize];
// Can't encode using last_character as gcc has array bounds issues.
int written = Utf8::Encode(temp_buffer,
character,
Utf16::kNoPreviousCharacter,
replace_invalid_utf8);
// Won't fit.
if (written > remaining) return 0;
// Copy over the character from temp_buffer.
for (int j = 0; j < written; j++) {
buffer[j] = temp_buffer[j];
}
return written;
}
// Visit writes out a group of code units (chars) of a v8::String to the
// internal buffer_. This is done in two phases. The first phase calculates a
// pesimistic estimate (writable_length) on how many code units can be safely
// written without exceeding the buffer capacity and without writing the last
// code unit (it could be a lead surrogate). The estimated number of code
// units is then written out in one go, and the reported byte usage is used
// to correct the estimate. This is repeated until the estimate becomes <= 0
// or all code units have been written out. The second phase writes out code
// units until the buffer capacity is reached, would be exceeded by the next
// unit, or all units have been written out.
template<typename Char>
void Visit(const Char* chars, const int length) {
using namespace unibrow;
DCHECK(!early_termination_);
if (length == 0) return;
// Copy state to stack.
char* buffer = buffer_;
int last_character =
sizeof(Char) == 1 ? Utf16::kNoPreviousCharacter : last_character_;
int i = 0;
// Do a fast loop where there is no exit capacity check.
while (true) {
int fast_length;
if (skip_capacity_check_) {
fast_length = length;
} else {
int remaining_capacity = capacity_ - static_cast<int>(buffer - start_);
// Need enough space to write everything but one character.
STATIC_ASSERT(Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3);
int max_size_per_char = sizeof(Char) == 1 ? 2 : 3;
int writable_length =
(remaining_capacity - max_size_per_char)/max_size_per_char;
// Need to drop into slow loop.
if (writable_length <= 0) break;
fast_length = i + writable_length;
if (fast_length > length) fast_length = length;
}
// Write the characters to the stream.
if (sizeof(Char) == 1) {
for (; i < fast_length; i++) {
buffer +=
Utf8::EncodeOneByte(buffer, static_cast<uint8_t>(*chars++));
DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_);
}
} else {
for (; i < fast_length; i++) {
uint16_t character = *chars++;
buffer += Utf8::Encode(buffer,
character,
last_character,
replace_invalid_utf8_);
last_character = character;
DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_);
}
}
// Array is fully written. Exit.
if (fast_length == length) {
// Write state back out to object.
last_character_ = last_character;
buffer_ = buffer;
utf16_chars_read_ += length;
return;
}
}
DCHECK(!skip_capacity_check_);
// Slow loop. Must check capacity on each iteration.
int remaining_capacity = capacity_ - static_cast<int>(buffer - start_);
DCHECK(remaining_capacity >= 0);
for (; i < length && remaining_capacity > 0; i++) {
uint16_t character = *chars++;
// remaining_capacity is <= 3 bytes at this point, so we do not write out
// an umatched lead surrogate.
if (replace_invalid_utf8_ && Utf16::IsLeadSurrogate(character)) {
early_termination_ = true;
break;
}
int written = WriteEndCharacter(character,
last_character,
remaining_capacity,
buffer,
replace_invalid_utf8_);
if (written == 0) {
early_termination_ = true;
break;
}
buffer += written;
remaining_capacity -= written;
last_character = character;
}
// Write state back out to object.
last_character_ = last_character;
buffer_ = buffer;
utf16_chars_read_ += i;
}
inline bool IsDone() {
return early_termination_;
}
inline void VisitOneByteString(const uint8_t* chars, int length) {
Visit(chars, length);
}
inline void VisitTwoByteString(const uint16_t* chars, int length) {
Visit(chars, length);
}
int CompleteWrite(bool write_null, int* utf16_chars_read_out) {
// Write out number of utf16 characters written to the stream.
if (utf16_chars_read_out != NULL) {
*utf16_chars_read_out = utf16_chars_read_;
}
// Only null terminate if all of the string was written and there's space.
if (write_null &&
!early_termination_ &&
(capacity_ == -1 || (buffer_ - start_) < capacity_)) {
*buffer_++ = '\0';
}
return static_cast<int>(buffer_ - start_);
}
private:
bool early_termination_;
int last_character_;
char* buffer_;
char* const start_;
int capacity_;
bool const skip_capacity_check_;
bool const replace_invalid_utf8_;
int utf16_chars_read_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8WriterVisitor);
};
static bool RecursivelySerializeToUtf8(i::String* current,
Utf8WriterVisitor* writer,
int recursion_budget) {
while (!writer->IsDone()) {
i::ConsString* cons_string = i::String::VisitFlat(writer, current);
if (cons_string == NULL) return true; // Leaf node.
if (recursion_budget <= 0) return false;
// Must write the left branch first.
i::String* first = cons_string->first();
bool success = RecursivelySerializeToUtf8(first,
writer,
recursion_budget - 1);
if (!success) return false;
// Inline tail recurse for right branch.
current = cons_string->second();
}
return true;
}
int String::WriteUtf8(char* buffer,
int capacity,
int* nchars_ref,
int options) const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
LOG_API(isolate, "String::WriteUtf8");
ENTER_V8(isolate);
i::Handle<i::String> str = Utils::OpenHandle(this);
if (options & HINT_MANY_WRITES_EXPECTED) {
str = i::String::Flatten(str); // Flatten the string for efficiency.
}
const int string_length = str->length();
bool write_null = !(options & NO_NULL_TERMINATION);
bool replace_invalid_utf8 = (options & REPLACE_INVALID_UTF8);
int max16BitCodeUnitSize = unibrow::Utf8::kMax16BitCodeUnitSize;
// First check if we can just write the string without checking capacity.
if (capacity == -1 || capacity / max16BitCodeUnitSize >= string_length) {
Utf8WriterVisitor writer(buffer, capacity, true, replace_invalid_utf8);
const int kMaxRecursion = 100;
bool success = RecursivelySerializeToUtf8(*str, &writer, kMaxRecursion);
if (success) return writer.CompleteWrite(write_null, nchars_ref);
} else if (capacity >= string_length) {
// First check that the buffer is large enough.
int utf8_bytes = v8::Utf8Length(*str, str->GetIsolate());
if (utf8_bytes <= capacity) {
// one-byte fast path.
if (utf8_bytes == string_length) {
WriteOneByte(reinterpret_cast<uint8_t*>(buffer), 0, capacity, options);
if (nchars_ref != NULL) *nchars_ref = string_length;
if (write_null && (utf8_bytes+1 <= capacity)) {
return string_length + 1;
}
return string_length;
}
if (write_null && (utf8_bytes+1 > capacity)) {
options |= NO_NULL_TERMINATION;
}
// Recurse once without a capacity limit.
// This will get into the first branch above.
// TODO(dcarney) Check max left rec. in Utf8Length and fall through.
return WriteUtf8(buffer, -1, nchars_ref, options);
}
}
// Recursive slow path can potentially be unreasonable slow. Flatten.
str = i::String::Flatten(str);
Utf8WriterVisitor writer(buffer, capacity, false, replace_invalid_utf8);
i::String::VisitFlat(&writer, *str);
return writer.CompleteWrite(write_null, nchars_ref);
}
template<typename CharType>
static inline int WriteHelper(const String* string,
CharType* buffer,
int start,
int length,
int options) {
i::Isolate* isolate = Utils::OpenHandle(string)->GetIsolate();
LOG_API(isolate, "String::Write");
ENTER_V8(isolate);
DCHECK(start >= 0 && length >= -1);
i::Handle<i::String> str = Utils::OpenHandle(string);
isolate->string_tracker()->RecordWrite(str);
if (options & String::HINT_MANY_WRITES_EXPECTED) {
// Flatten the string for efficiency. This applies whether we are
// using StringCharacterStream or Get(i) to access the characters.
str = i::String::Flatten(str);
}
int end = start + length;
if ((length == -1) || (length > str->length() - start) )
end = str->length();
if (end < 0) return 0;
i::String::WriteToFlat(*str, buffer, start, end);
if (!(options & String::NO_NULL_TERMINATION) &&
(length == -1 || end - start < length)) {
buffer[end - start] = '\0';
}
return end - start;
}
int String::WriteOneByte(uint8_t* buffer,
int start,
int length,
int options) const {
return WriteHelper(this, buffer, start, length, options);
}
int String::Write(uint16_t* buffer,
int start,
int length,
int options) const {
return WriteHelper(this, buffer, start, length, options);
}
bool v8::String::IsExternal() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalTwoByte();
}
bool v8::String::IsExternalOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalOneByte();
}
void v8::String::VerifyExternalStringResource(
v8::String::ExternalStringResource* value) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
const v8::String::ExternalStringResource* expected;
if (i::StringShape(*str).IsExternalTwoByte()) {
const void* resource =
i::Handle<i::ExternalTwoByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResource*>(resource);
} else {
expected = NULL;
}
CHECK_EQ(expected, value);
}
void v8::String::VerifyExternalStringResourceBase(
v8::String::ExternalStringResourceBase* value, Encoding encoding) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
const v8::String::ExternalStringResourceBase* expected;
Encoding expectedEncoding;
if (i::StringShape(*str).IsExternalOneByte()) {
const void* resource =
i::Handle<i::ExternalOneByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = ONE_BYTE_ENCODING;
} else if (i::StringShape(*str).IsExternalTwoByte()) {
const void* resource =
i::Handle<i::ExternalTwoByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = TWO_BYTE_ENCODING;
} else {
expected = NULL;
expectedEncoding =
str->IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING;
}
CHECK_EQ(expected, value);
CHECK_EQ(expectedEncoding, encoding);
}
const v8::String::ExternalOneByteStringResource*
v8::String::GetExternalOneByteStringResource() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (i::StringShape(*str).IsExternalOneByte()) {
const void* resource =
i::Handle<i::ExternalOneByteString>::cast(str)->resource();
return reinterpret_cast<const ExternalOneByteStringResource*>(resource);
} else {
return NULL;
}
}
Local<Value> Symbol::Name() const {
i::Handle<i::Symbol> sym = Utils::OpenHandle(this);
i::Handle<i::Object> name(sym->name(), sym->GetIsolate());
return Utils::ToLocal(name);
}
Local<Value> Private::Name() const {
return reinterpret_cast<const Symbol*>(this)->Name();
}
double Number::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->Number();
}
bool Boolean::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsTrue();
}
int64_t Integer::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<int64_t>(obj->Number());
}
}
int32_t Int32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<int32_t>(obj->Number());
}
}
uint32_t Uint32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<uint32_t>(obj->Number());
}
}
int v8::Object::InternalFieldCount() {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
return obj->GetInternalFieldCount();
}
static bool InternalFieldOK(i::Handle<i::JSObject> obj,
int index,
const char* location) {
return Utils::ApiCheck(index < obj->GetInternalFieldCount(),
location,
"Internal field out of bounds");
}
Local<Value> v8::Object::SlowGetInternalField(int index) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetInternalField()";
if (!InternalFieldOK(obj, index, location)) return Local<Value>();
i::Handle<i::Object> value(obj->GetInternalField(index), obj->GetIsolate());
return Utils::ToLocal(value);
}
void v8::Object::SetInternalField(int index, v8::Handle<Value> value) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
obj->SetInternalField(index, *val);
DCHECK(value->Equals(GetInternalField(index)));
}
void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetAlignedPointerFromInternalField()";
if (!InternalFieldOK(obj, index, location)) return NULL;
return DecodeSmiToAligned(obj->GetInternalField(index), location);
}
void v8::Object::SetAlignedPointerInInternalField(int index, void* value) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetAlignedPointerInInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
obj->SetInternalField(index, EncodeAlignedAsSmi(value, location));
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
}
static void* ExternalValue(i::Object* obj) {
// Obscure semantics for undefined, but somehow checked in our unit tests...
if (obj->IsUndefined()) return NULL;
i::Object* foreign = i::JSObject::cast(obj)->GetInternalField(0);
return i::Foreign::cast(foreign)->foreign_address();
}
// --- E n v i r o n m e n t ---
void v8::V8::InitializePlatform(Platform* platform) {
i::V8::InitializePlatform(platform);
}
void v8::V8::ShutdownPlatform() {
i::V8::ShutdownPlatform();
}
bool v8::V8::Initialize() {
i::V8::Initialize();
return true;
}
void v8::V8::SetEntropySource(EntropySource entropy_source) {
base::RandomNumberGenerator::SetEntropySource(entropy_source);
}
void v8::V8::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver) {
i::V8::SetReturnAddressLocationResolver(return_address_resolver);
}
void v8::V8::SetArrayBufferAllocator(
ArrayBuffer::Allocator* allocator) {
if (!Utils::ApiCheck(i::V8::ArrayBufferAllocator() == NULL,
"v8::V8::SetArrayBufferAllocator",
"ArrayBufferAllocator might only be set once"))
return;
i::V8::SetArrayBufferAllocator(allocator);
}
bool v8::V8::Dispose() {
i::V8::TearDown();
return true;
}
HeapStatistics::HeapStatistics(): total_heap_size_(0),
total_heap_size_executable_(0),
total_physical_size_(0),
used_heap_size_(0),
heap_size_limit_(0) { }
bool v8::V8::InitializeICU(const char* icu_data_file) {
return i::InitializeICU(icu_data_file);
}
const char* v8::V8::GetVersion() {
return i::Version::GetVersion();
}
static i::Handle<i::Context> CreateEnvironment(
i::Isolate* isolate,
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
v8::ExtensionConfiguration* extensions,
v8::Handle<ObjectTemplate> global_template,
v8::Handle<Value> maybe_global_proxy) {
i::Handle<i::Context> env;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Enter V8 via an ENTER_V8 scope.
{
ENTER_V8(isolate);
v8::Handle<ObjectTemplate> proxy_template = global_template;
i::Handle<i::FunctionTemplateInfo> proxy_constructor;
i::Handle<i::FunctionTemplateInfo> global_constructor;
if (!global_template.IsEmpty()) {
// Make sure that the global_template has a constructor.
global_constructor = EnsureConstructor(isolate, *global_template);
// Create a fresh template for the global proxy object.
proxy_template = ObjectTemplate::New(
reinterpret_cast<v8::Isolate*>(isolate));
proxy_constructor = EnsureConstructor(isolate, *proxy_template);
// Set the global template to be the prototype template of
// global proxy template.
proxy_constructor->set_prototype_template(
*Utils::OpenHandle(*global_template));
// Migrate security handlers from global_template to
// proxy_template. Temporarily removing access check
// information from the global template.
if (!global_constructor->access_check_info()->IsUndefined()) {
proxy_constructor->set_access_check_info(
global_constructor->access_check_info());
proxy_constructor->set_needs_access_check(
global_constructor->needs_access_check());
global_constructor->set_needs_access_check(false);
global_constructor->set_access_check_info(
isolate->heap()->undefined_value());
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
}
i::Handle<i::Object> proxy = Utils::OpenHandle(*maybe_global_proxy, true);
i::MaybeHandle<i::JSGlobalProxy> maybe_proxy;
if (!proxy.is_null()) {
maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(proxy);
}
// Create the environment.
env = isolate->bootstrapper()->CreateEnvironment(
maybe_proxy, proxy_template, extensions);
// Restore the access check info on the global template.
if (!global_template.IsEmpty()) {
DCHECK(!global_constructor.is_null());
DCHECK(!proxy_constructor.is_null());
global_constructor->set_access_check_info(
proxy_constructor->access_check_info());
global_constructor->set_needs_access_check(
proxy_constructor->needs_access_check());
}
}
// Leave V8.
return env;
}
Local<Context> v8::Context::New(
v8::Isolate* external_isolate,
v8::ExtensionConfiguration* extensions,
v8::Handle<ObjectTemplate> global_template,
v8::Handle<Value> global_object) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
LOG_API(isolate, "Context::New");
ON_BAILOUT(isolate, "v8::Context::New()", return Local<Context>());
i::HandleScope scope(isolate);
ExtensionConfiguration no_extensions;
if (extensions == NULL) extensions = &no_extensions;
i::Handle<i::Context> env =
CreateEnvironment(isolate, extensions, global_template, global_object);
if (env.is_null()) return Local<Context>();
return Utils::ToLocal(scope.CloseAndEscape(env));
}
void v8::Context::SetSecurityToken(Handle<Value> token) {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
i::Handle<i::Object> token_handle = Utils::OpenHandle(*token);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
env->set_security_token(*token_handle);
}
void v8::Context::UseDefaultSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
env->set_security_token(env->global_object());
}
Handle<Value> v8::Context::GetSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
i::Object* security_token = env->security_token();
i::Handle<i::Object> token_handle(security_token, isolate);
return Utils::ToLocal(token_handle);
}
v8::Isolate* Context::GetIsolate() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
return reinterpret_cast<Isolate*>(env->GetIsolate());
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
v8::Local<v8::Object> Context::Global() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::Object> global(context->global_proxy(), isolate);
// TODO(dcarney): This should always return the global proxy
// but can't presently as calls to GetProtoype will return the wrong result.
if (i::Handle<i::JSGlobalProxy>::cast(
global)->IsDetachedFrom(context->global_object())) {
global = i::Handle<i::Object>(context->global_object(), isolate);
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
return Utils::ToLocal(i::Handle<i::JSObject>::cast(global));
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
void Context::DetachGlobal() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8(isolate);
isolate->bootstrapper()->DetachGlobal(context);
}
void Context::AllowCodeGenerationFromStrings(bool allow) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8(isolate);
context->set_allow_code_gen_from_strings(
allow ? isolate->heap()->true_value() : isolate->heap()->false_value());
}
bool Context::IsCodeGenerationFromStringsAllowed() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
return !context->allow_code_gen_from_strings()->IsFalse();
}
void Context::SetErrorMessageForCodeGenerationFromStrings(
Handle<String> error) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Handle<i::String> error_handle = Utils::OpenHandle(*error);
context->set_error_message_for_code_gen_from_strings(*error_handle);
}
Local<v8::Object> ObjectTemplate::NewInstance() {
i::Handle<i::ObjectTemplateInfo> info = Utils::OpenHandle(this);
i::Isolate* isolate = info->GetIsolate();
ON_BAILOUT(isolate, "v8::ObjectTemplate::NewInstance()",
return Local<v8::Object>());
LOG_API(isolate, "ObjectTemplate::NewInstance");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> obj;
has_pending_exception =
!i::ApiNatives::InstantiateObject(info).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>());
return Utils::ToLocal(i::Handle<i::JSObject>::cast(obj));
}
Local<v8::Function> FunctionTemplate::GetFunction() {
i::Handle<i::FunctionTemplateInfo> info = Utils::OpenHandle(this);
i::Isolate* isolate = info->GetIsolate();
ON_BAILOUT(isolate, "v8::FunctionTemplate::GetFunction()",
return Local<v8::Function>());
LOG_API(isolate, "FunctionTemplate::GetFunction");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> obj;
has_pending_exception =
!i::ApiNatives::InstantiateFunction(info).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Function>());
return Utils::ToLocal(i::Handle<i::JSFunction>::cast(obj));
}
bool FunctionTemplate::HasInstance(v8::Handle<v8::Value> value) {
i::Handle<i::FunctionTemplateInfo> info = Utils::OpenHandle(this);
i::Isolate* isolate = info->GetIsolate();
ON_BAILOUT(isolate, "v8::FunctionTemplate::HasInstanceOf()", return false);
i::Object* obj = *Utils::OpenHandle(*value);
return info->IsTemplateFor(obj);
}
Local<External> v8::External::New(Isolate* isolate, void* value) {
STATIC_ASSERT(sizeof(value) == sizeof(i::Address));
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "External::New");
ENTER_V8(i_isolate);
i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value);
return Utils::ExternalToLocal(external);
}
void* External::Value() const {
return ExternalValue(*Utils::OpenHandle(this));
}
// anonymous namespace for string creation helper functions
namespace {
inline int StringLength(const char* string) {
return i::StrLength(string);
}
inline int StringLength(const uint8_t* string) {
return i::StrLength(reinterpret_cast<const char*>(string));
}
inline int StringLength(const uint16_t* string) {
int length = 0;
while (string[length] != '\0')
length++;
return length;
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
String::NewStringType type,
i::Vector<const char> string) {
if (type == String::kInternalizedString) {
return factory->InternalizeUtf8String(string);
}
return factory->NewStringFromUtf8(string);
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
String::NewStringType type,
i::Vector<const uint8_t> string) {
if (type == String::kInternalizedString) {
return factory->InternalizeOneByteString(string);
}
return factory->NewStringFromOneByte(string);
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
String::NewStringType type,
i::Vector<const uint16_t> string) {
if (type == String::kInternalizedString) {
return factory->InternalizeTwoByteString(string);
}
return factory->NewStringFromTwoByte(string);
}
template<typename Char>
inline Local<String> NewString(Isolate* v8_isolate,
const char* location,
const char* env,
const Char* data,
String::NewStringType type,
int length) {
i::Isolate* isolate = reinterpret_cast<internal::Isolate*>(v8_isolate);
ON_BAILOUT(isolate, location, return Local<String>());
LOG_API(isolate, env);
if (length == 0) {
return String::Empty(v8_isolate);
}
ENTER_V8(isolate);
if (length == -1) length = StringLength(data);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::String> result;
has_pending_exception =
!NewString(isolate->factory(), type, i::Vector<const Char>(data, length))
.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<String>());
return Utils::ToLocal(result);
}
} // anonymous namespace
Local<String> String::NewFromUtf8(Isolate* isolate,
const char* data,
NewStringType type,
int length) {
return NewString(isolate,
"v8::String::NewFromUtf8()",
"String::NewFromUtf8",
data,
type,
length);
}
Local<String> String::NewFromOneByte(Isolate* isolate,
const uint8_t* data,
NewStringType type,
int length) {
return NewString(isolate,
"v8::String::NewFromOneByte()",
"String::NewFromOneByte",
data,
type,
length);
}
Local<String> String::NewFromTwoByte(Isolate* isolate,
const uint16_t* data,
NewStringType type,
int length) {
return NewString(isolate,
"v8::String::NewFromTwoByte()",
"String::NewFromTwoByte",
data,
type,
length);
}
Local<String> v8::String::Concat(Handle<String> left, Handle<String> right) {
i::Handle<i::String> left_string = Utils::OpenHandle(*left);
i::Isolate* isolate = left_string->GetIsolate();
LOG_API(isolate, "String::New(char)");
ENTER_V8(isolate);
i::Handle<i::String> right_string = Utils::OpenHandle(*right);
// If we are steering towards a range error, do not wait for the error to be
// thrown, and return the null handle instead.
if (left_string->length() + right_string->length() > i::String::kMaxLength) {
return Local<String>();
}
i::Handle<i::String> result = isolate->factory()->NewConsString(
left_string, right_string).ToHandleChecked();
return Utils::ToLocal(result);
}
static i::MaybeHandle<i::String> NewExternalStringHandle(
i::Isolate* isolate, v8::String::ExternalStringResource* resource) {
return isolate->factory()->NewExternalStringFromTwoByte(resource);
}
static i::MaybeHandle<i::String> NewExternalOneByteStringHandle(
i::Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) {
return isolate->factory()->NewExternalStringFromOneByte(resource);
}
Local<String> v8::String::NewExternal(
Isolate* isolate,
v8::String::ExternalStringResource* resource) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "String::NewExternal");
ENTER_V8(i_isolate);
CHECK(resource && resource->data());
EXCEPTION_PREAMBLE(i_isolate);
i::Handle<i::String> string;
has_pending_exception =
!NewExternalStringHandle(i_isolate, resource).ToHandle(&string);
EXCEPTION_BAILOUT_CHECK(i_isolate, Local<String>());
i_isolate->heap()->external_string_table()->AddString(*string);
return Utils::ToLocal(string);
}
bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
if (i::StringShape(*obj).IsExternal()) {
return false; // Already an external string.
}
ENTER_V8(isolate);
if (isolate->string_tracker()->IsFreshUnusedString(obj)) {
return false;
}
if (isolate->heap()->IsInGCPostProcessing()) {
return false;
}
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
// Assert that if CanMakeExternal(), then externalizing actually succeeds.
DCHECK(!CanMakeExternal() || result);
if (result) {
DCHECK(obj->IsExternalString());
isolate->heap()->external_string_table()->AddString(*obj);
}
return result;
}
Local<String> v8::String::NewExternal(
Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "String::NewExternal");
ENTER_V8(i_isolate);
CHECK(resource && resource->data());
EXCEPTION_PREAMBLE(i_isolate);
i::Handle<i::String> string;
has_pending_exception =
!NewExternalOneByteStringHandle(i_isolate, resource).ToHandle(&string);
EXCEPTION_BAILOUT_CHECK(i_isolate, Local<String>());
i_isolate->heap()->external_string_table()->AddString(*string);
return Utils::ToLocal(string);
}
bool v8::String::MakeExternal(
v8::String::ExternalOneByteStringResource* resource) {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
if (i::StringShape(*obj).IsExternal()) {
return false; // Already an external string.
}
ENTER_V8(isolate);
if (isolate->string_tracker()->IsFreshUnusedString(obj)) {
return false;
}
if (isolate->heap()->IsInGCPostProcessing()) {
return false;
}
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
// Assert that if CanMakeExternal(), then externalizing actually succeeds.
DCHECK(!CanMakeExternal() || result);
if (result) {
DCHECK(obj->IsExternalString());
isolate->heap()->external_string_table()->AddString(*obj);
}
return result;
}
bool v8::String::CanMakeExternal() {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
if (isolate->string_tracker()->IsFreshUnusedString(obj)) return false;
int size = obj->Size(); // Byte size of the original string.
if (size < i::ExternalString::kShortSize) return false;
i::StringShape shape(*obj);
return !shape.IsExternal();
}
Isolate* v8::Object::GetIsolate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(i_isolate);
}
Local<v8::Object> v8::Object::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Object::New");
ENTER_V8(i_isolate);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewJSObject(i_isolate->object_function());
return Utils::ToLocal(obj);
}
Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "NumberObject::New");
ENTER_V8(i_isolate);
i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, number).ToHandleChecked();
return Utils::ToLocal(obj);
}
double v8::NumberObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "NumberObject::NumberValue");
return jsvalue->value()->Number();
}
Local<v8::Value> v8::BooleanObject::New(bool value) {
i::Isolate* isolate = i::Isolate::Current();
LOG_API(isolate, "BooleanObject::New");
ENTER_V8(isolate);
i::Handle<i::Object> boolean(value
? isolate->heap()->true_value()
: isolate->heap()->false_value(),
isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(isolate, boolean).ToHandleChecked();
return Utils::ToLocal(obj);
}
bool v8::BooleanObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "BooleanObject::BooleanValue");
return jsvalue->value()->IsTrue();
}
Local<v8::Value> v8::StringObject::New(Handle<String> value) {
i::Handle<i::String> string = Utils::OpenHandle(*value);
i::Isolate* isolate = string->GetIsolate();
LOG_API(isolate, "StringObject::New");
ENTER_V8(isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(isolate, string).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::String> v8::StringObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "StringObject::StringValue");
return Utils::ToLocal(
i::Handle<i::String>(i::String::cast(jsvalue->value())));
}
Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Handle<Symbol> value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "SymbolObject::New");
ENTER_V8(i_isolate);
i::Handle<i::Object> obj = i::Object::ToObject(
i_isolate, Utils::OpenHandle(*value)).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::Symbol> v8::SymbolObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "SymbolObject::SymbolValue");
return Utils::ToLocal(
i::Handle<i::Symbol>(i::Symbol::cast(jsvalue->value())));
}
Local<v8::Value> v8::Date::New(Isolate* isolate, double time) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Date::New");
if (std::isnan(time)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
time = std::numeric_limits<double>::quiet_NaN();
}
ENTER_V8(i_isolate);
EXCEPTION_PREAMBLE(i_isolate);
i::Handle<i::Object> obj;
has_pending_exception = !i::Execution::NewDate(
i_isolate, time).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(i_isolate, Local<v8::Value>());
return Utils::ToLocal(obj);
}
double v8::Date::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj);
i::Isolate* isolate = jsdate->GetIsolate();
LOG_API(isolate, "Date::NumberValue");
return jsdate->value()->Number();
}
void v8::Date::DateTimeConfigurationChangeNotification(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ON_BAILOUT(i_isolate, "v8::Date::DateTimeConfigurationChangeNotification()",
return);
LOG_API(i_isolate, "Date::DateTimeConfigurationChangeNotification");
ENTER_V8(i_isolate);
i_isolate->date_cache()->ResetDateCache();
if (!i_isolate->eternal_handles()->Exists(
i::EternalHandles::DATE_CACHE_VERSION)) {
return;
}
i::Handle<i::FixedArray> date_cache_version =
i::Handle<i::FixedArray>::cast(i_isolate->eternal_handles()->GetSingleton(
i::EternalHandles::DATE_CACHE_VERSION));
DCHECK_EQ(1, date_cache_version->length());
CHECK(date_cache_version->get(0)->IsSmi());
date_cache_version->set(
0,
i::Smi::FromInt(i::Smi::cast(date_cache_version->get(0))->value() + 1));
}
static i::Handle<i::String> RegExpFlagsToString(RegExp::Flags flags) {
i::Isolate* isolate = i::Isolate::Current();
uint8_t flags_buf[3];
int num_flags = 0;
if ((flags & RegExp::kGlobal) != 0) flags_buf[num_flags++] = 'g';
if ((flags & RegExp::kMultiline) != 0) flags_buf[num_flags++] = 'm';
if ((flags & RegExp::kIgnoreCase) != 0) flags_buf[num_flags++] = 'i';
DCHECK(num_flags <= static_cast<int>(arraysize(flags_buf)));
return isolate->factory()->InternalizeOneByteString(
i::Vector<const uint8_t>(flags_buf, num_flags));
}
Local<v8::RegExp> v8::RegExp::New(Handle<String> pattern,
Flags flags) {
i::Isolate* isolate = Utils::OpenHandle(*pattern)->GetIsolate();
LOG_API(isolate, "RegExp::New");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::JSRegExp> obj;
has_pending_exception = !i::Execution::NewJSRegExp(
Utils::OpenHandle(*pattern),
RegExpFlagsToString(flags)).ToHandle(&obj);
EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::RegExp>());
return Utils::ToLocal(i::Handle<i::JSRegExp>::cast(obj));
}
Local<v8::String> v8::RegExp::GetSource() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::String>(obj->Pattern()));
}
// Assert that the static flags cast in GetFlags is valid.
#define REGEXP_FLAG_ASSERT_EQ(api_flag, internal_flag) \
STATIC_ASSERT(static_cast<int>(v8::RegExp::api_flag) == \
static_cast<int>(i::JSRegExp::internal_flag))
REGEXP_FLAG_ASSERT_EQ(kNone, NONE);
REGEXP_FLAG_ASSERT_EQ(kGlobal, GLOBAL);
REGEXP_FLAG_ASSERT_EQ(kIgnoreCase, IGNORE_CASE);
REGEXP_FLAG_ASSERT_EQ(kMultiline, MULTILINE);
#undef REGEXP_FLAG_ASSERT_EQ
v8::RegExp::Flags v8::RegExp::GetFlags() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return static_cast<RegExp::Flags>(obj->GetFlags().value());
}
Local<v8::Array> v8::Array::New(Isolate* isolate, int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Array::New");
ENTER_V8(i_isolate);
int real_length = length > 0 ? length : 0;
i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length);
i::Handle<i::Object> length_obj =
i_isolate->factory()->NewNumberFromInt(real_length);
obj->set_length(*length_obj);
return Utils::ToLocal(obj);
}
uint32_t v8::Array::Length() const {
i::Handle<i::JSArray> obj = Utils::OpenHandle(this);
i::Object* length = obj->length();
if (length->IsSmi()) {
return i::Smi::cast(length)->value();
} else {
return static_cast<uint32_t>(length->Number());
}
}
Local<Object> Array::CloneElementAt(uint32_t index) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ON_BAILOUT(isolate, "v8::Array::CloneElementAt()", return Local<Object>());
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
if (!self->HasFastObjectElements()) {
return Local<Object>();
}
i::FixedArray* elms = i::FixedArray::cast(self->elements());
i::Object* paragon = elms->get(index);
if (!paragon->IsJSObject()) {
return Local<Object>();
}
i::Handle<i::JSObject> paragon_handle(i::JSObject::cast(paragon));
EXCEPTION_PREAMBLE(isolate);
ENTER_V8(isolate);
i::Handle<i::JSObject> result =
isolate->factory()->CopyJSObject(paragon_handle);
has_pending_exception = result.is_null();
EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>());
return Utils::ToLocal(result);
}
bool Value::IsPromise() const {
i::Handle<i::Object> val = Utils::OpenHandle(this);
if (!val->IsJSObject()) return false;
i::Handle<i::JSObject> obj = i::Handle<i::JSObject>::cast(val);
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "IsPromise");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { obj };
i::Handle<i::Object> b;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->is_promise(),
isolate->factory()->undefined_value(),
arraysize(argv), argv,
false).ToHandle(&b);
EXCEPTION_BAILOUT_CHECK(isolate, false);
return b->BooleanValue();
}
Local<Promise::Resolver> Promise::Resolver::New(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, "Promise::Resolver::New");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->promise_create(),
isolate->factory()->undefined_value(),
0, NULL,
false).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise::Resolver>());
return Local<Promise::Resolver>::Cast(Utils::ToLocal(result));
}
Local<Promise> Promise::Resolver::GetPromise() {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
return Local<Promise>::Cast(Utils::ToLocal(promise));
}
void Promise::Resolver::Resolve(Handle<Value> value) {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::Resolver::Resolve");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { promise, Utils::OpenHandle(*value) };
has_pending_exception = i::Execution::Call(
isolate,
isolate->promise_resolve(),
isolate->factory()->undefined_value(),
arraysize(argv), argv,
false).is_null();
EXCEPTION_BAILOUT_CHECK(isolate, /* void */ ;);
}
void Promise::Resolver::Reject(Handle<Value> value) {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::Resolver::Reject");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { promise, Utils::OpenHandle(*value) };
has_pending_exception = i::Execution::Call(
isolate,
isolate->promise_reject(),
isolate->factory()->undefined_value(),
arraysize(argv), argv,
false).is_null();
EXCEPTION_BAILOUT_CHECK(isolate, /* void */ ;);
}
Local<Promise> Promise::Chain(Handle<Function> handler) {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::Chain");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) };
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->promise_chain(),
promise,
arraysize(argv), argv,
false).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>());
return Local<Promise>::Cast(Utils::ToLocal(result));
}
Local<Promise> Promise::Catch(Handle<Function> handler) {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::Catch");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) };
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->promise_catch(),
promise,
arraysize(argv), argv,
false).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>());
return Local<Promise>::Cast(Utils::ToLocal(result));
}
Local<Promise> Promise::Then(Handle<Function> handler) {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::Then");
ENTER_V8(isolate);
EXCEPTION_PREAMBLE(isolate);
i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) };
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->promise_then(),
promise,
arraysize(argv), argv,
false).ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>());
return Local<Promise>::Cast(Utils::ToLocal(result));
}
bool Promise::HasHandler() {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::HasRejectHandler");
ENTER_V8(isolate);
i::Handle<i::Symbol> key = isolate->factory()->promise_has_handler_symbol();
return i::JSObject::GetDataProperty(promise, key)->IsTrue();
}
bool v8::ArrayBuffer::IsExternal() const {
return Utils::OpenHandle(this)->is_external();
}
bool v8::ArrayBuffer::IsNeuterable() const {
return Utils::OpenHandle(this)->is_neuterable();
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
Utils::ApiCheck(!obj->is_external(),
"v8::ArrayBuffer::Externalize",
"ArrayBuffer already externalized");
obj->set_is_external(true);
size_t byte_length = static_cast<size_t>(obj->byte_length()->Number());
Contents contents;
contents.data_ = obj->backing_store();
contents.byte_length_ = byte_length;
return contents;
}
void v8::ArrayBuffer::Neuter() {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
Utils::ApiCheck(obj->is_external(),
"v8::ArrayBuffer::Neuter",
"Only externalized ArrayBuffers can be neutered");
Utils::ApiCheck(obj->is_neuterable(), "v8::ArrayBuffer::Neuter",
"Only neuterable ArrayBuffers can be neutered");
LOG_API(obj->GetIsolate(), "v8::ArrayBuffer::Neuter()");
ENTER_V8(isolate);
i::Runtime::NeuterArrayBuffer(obj);
}
size_t v8::ArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_length()->Number());
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::ArrayBuffer::New(size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer();
i::Runtime::SetupArrayBufferAllocatingData(i_isolate, obj, byte_length);
return Utils::ToLocal(obj);
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data,
size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::ArrayBuffer::New(void*, size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer();
i::Runtime::SetupArrayBuffer(i_isolate, obj, true, data, byte_length);
return Utils::ToLocal(obj);
}
Local<ArrayBuffer> v8::ArrayBufferView::Buffer() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer;
if (obj->IsJSDataView()) {
i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj));
DCHECK(data_view->buffer()->IsJSArrayBuffer());
buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()));
} else {
DCHECK(obj->IsJSTypedArray());
buffer = i::JSTypedArray::cast(*obj)->GetBuffer();
}
return Utils::ToLocal(buffer);
}
size_t v8::ArrayBufferView::ByteOffset() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_offset()->Number());
}
size_t v8::ArrayBufferView::ByteLength() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_length()->Number());
}
size_t v8::TypedArray::Length() {
i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->length()->Number());
}
#define TYPED_ARRAY_NEW(Type, type, TYPE, ctype, size) \
Local<Type##Array> Type##Array::New(Handle<ArrayBuffer> array_buffer, \
size_t byte_offset, size_t length) { \
i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \
LOG_API(isolate, \
"v8::" #Type "Array::New(Handle<ArrayBuffer>, size_t, size_t)"); \
ENTER_V8(isolate); \
if (!Utils::ApiCheck(length <= static_cast<size_t>(i::Smi::kMaxValue), \
"v8::" #Type \
"Array::New(Handle<ArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \
i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \
v8::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
}
TYPED_ARRAYS(TYPED_ARRAY_NEW)
#undef TYPED_ARRAY_NEW
Local<DataView> DataView::New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t byte_length) {
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer);
i::Isolate* isolate = buffer->GetIsolate();
LOG_API(isolate, "v8::DataView::New(void*, size_t, size_t)");
ENTER_V8(isolate);
i::Handle<i::JSDataView> obj =
isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length);
return Utils::ToLocal(obj);
}
Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Symbol::New()");
ENTER_V8(i_isolate);
i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol();
if (!name.IsEmpty()) result->set_name(*Utils::OpenHandle(*name));
return Utils::ToLocal(result);
}
static i::Handle<i::Symbol> SymbolFor(i::Isolate* isolate,
i::Handle<i::String> name,
i::Handle<i::String> part) {
i::Handle<i::JSObject> registry = isolate->GetSymbolRegistry();
i::Handle<i::JSObject> symbols =
i::Handle<i::JSObject>::cast(
i::Object::GetPropertyOrElement(registry, part).ToHandleChecked());
i::Handle<i::Object> symbol =
i::Object::GetPropertyOrElement(symbols, name).ToHandleChecked();
if (!symbol->IsSymbol()) {
DCHECK(symbol->IsUndefined());
symbol = isolate->factory()->NewSymbol();
i::Handle<i::Symbol>::cast(symbol)->set_name(*name);
i::JSObject::SetProperty(symbols, name, symbol, i::STRICT).Assert();
}
return i::Handle<i::Symbol>::cast(symbol);
}
Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
i::Handle<i::String> part = i_isolate->factory()->for_string();
return Utils::ToLocal(SymbolFor(i_isolate, i_name, part));
}
Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
i::Handle<i::String> part = i_isolate->factory()->for_api_string();
return Utils::ToLocal(SymbolFor(i_isolate, i_name, part));
}
Local<Symbol> v8::Symbol::GetIterator(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->iterator_symbol());
}
Local<Symbol> v8::Symbol::GetUnscopables(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->unscopables_symbol());
}
Local<Symbol> v8::Symbol::GetToStringTag(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->to_string_tag_symbol());
}
Local<Private> v8::Private::New(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Private::New()");
ENTER_V8(i_isolate);
i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol();
if (!name.IsEmpty()) symbol->set_name(*Utils::OpenHandle(*name));
Local<Symbol> result = Utils::ToLocal(symbol);
return v8::Handle<Private>(reinterpret_cast<Private*>(*result));
}
Local<Private> v8::Private::ForApi(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
i::Handle<i::JSObject> registry = i_isolate->GetSymbolRegistry();
i::Handle<i::String> part = i_isolate->factory()->private_api_string();
i::Handle<i::JSObject> privates =
i::Handle<i::JSObject>::cast(
i::Object::GetPropertyOrElement(registry, part).ToHandleChecked());
i::Handle<i::Object> symbol =
i::Object::GetPropertyOrElement(privates, i_name).ToHandleChecked();
if (!symbol->IsSymbol()) {
DCHECK(symbol->IsUndefined());
symbol = i_isolate->factory()->NewPrivateSymbol();
i::Handle<i::Symbol>::cast(symbol)->set_name(*i_name);
i::JSObject::SetProperty(privates, i_name, symbol, i::STRICT).Assert();
}
Local<Symbol> result = Utils::ToLocal(i::Handle<i::Symbol>::cast(symbol));
return v8::Handle<Private>(reinterpret_cast<Private*>(*result));
}
Local<Number> v8::Number::New(Isolate* isolate, double value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (std::isnan(value)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
value = std::numeric_limits<double>::quiet_NaN();
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::NumberToLocal(result);
}
Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (i::Smi::IsValid(value)) {
return Utils::IntegerToLocal(i::Handle<i::Object>(i::Smi::FromInt(value),
internal_isolate));
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
bool fits_into_int32_t = (value & (1 << 31)) == 0;
if (fits_into_int32_t) {
return Integer::New(isolate, static_cast<int32_t>(value));
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
void Isolate::CollectAllGarbage(const char* gc_reason) {
reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage(
i::Heap::kNoGCFlags, gc_reason);
}
HeapProfiler* Isolate::GetHeapProfiler() {
i::HeapProfiler* heap_profiler =
reinterpret_cast<i::Isolate*>(this)->heap_profiler();
return reinterpret_cast<HeapProfiler*>(heap_profiler);
}
CpuProfiler* Isolate::GetCpuProfiler() {
i::CpuProfiler* cpu_profiler =
reinterpret_cast<i::Isolate*>(this)->cpu_profiler();
return reinterpret_cast<CpuProfiler*>(cpu_profiler);
}
bool Isolate::InContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->context() != NULL;
}
v8::Local<v8::Context> Isolate::GetCurrentContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Context* context = isolate->context();
if (context == NULL) return Local<Context>();
i::Context* native_context = context->native_context();
if (native_context == NULL) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>(native_context));
}
v8::Local<v8::Context> Isolate::GetCallingContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> calling = isolate->GetCallingNativeContext();
if (calling.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>::cast(calling));
}
v8::Local<v8::Context> Isolate::GetEnteredContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> last =
isolate->handle_scope_implementer()->LastEnteredContext();
if (last.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>::cast(last));
}
v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8(isolate);
// If we're passed an empty handle, we throw an undefined exception
// to deal more gracefully with out of memory situations.
if (value.IsEmpty()) {
isolate->ScheduleThrow(isolate->heap()->undefined_value());
} else {
isolate->ScheduleThrow(*Utils::OpenHandle(*value));
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
void Isolate::SetObjectGroupId(internal::Object** object, UniqueId id) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
internal_isolate->global_handles()->SetObjectGroupId(
v8::internal::Handle<v8::internal::Object>(object).location(),
id);
}
void Isolate::SetReferenceFromGroup(UniqueId id, internal::Object** object) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
internal_isolate->global_handles()->SetReferenceFromGroup(
id,
v8::internal::Handle<v8::internal::Object>(object).location());
}
void Isolate::SetReference(internal::Object** parent,
internal::Object** child) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
i::Object** parent_location =
v8::internal::Handle<v8::internal::Object>(parent).location();
internal_isolate->global_handles()->SetReference(
reinterpret_cast<i::HeapObject**>(parent_location),
v8::internal::Handle<v8::internal::Object>(child).location());
}
void Isolate::AddGCPrologueCallback(GCPrologueCallback callback,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCPrologueCallback(callback, gc_type);
}
void Isolate::RemoveGCPrologueCallback(GCPrologueCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCPrologueCallback(callback);
}
void Isolate::AddGCEpilogueCallback(GCEpilogueCallback callback,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCEpilogueCallback(callback, gc_type);
}
void Isolate::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCEpilogueCallback(callback);
}
void V8::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
i::Isolate* isolate = i::Isolate::Current();
isolate->heap()->AddGCPrologueCallback(
reinterpret_cast<v8::Isolate::GCPrologueCallback>(callback),
gc_type,
false);
}
void V8::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
i::Isolate* isolate = i::Isolate::Current();
isolate->heap()->AddGCEpilogueCallback(
reinterpret_cast<v8::Isolate::GCEpilogueCallback>(callback),
gc_type,
false);
}
void Isolate::AddMemoryAllocationCallback(MemoryAllocationCallback callback,
ObjectSpace space,
AllocationAction action) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->memory_allocator()->AddMemoryAllocationCallback(
callback, space, action);
}
void Isolate::RemoveMemoryAllocationCallback(
MemoryAllocationCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->memory_allocator()->RemoveMemoryAllocationCallback(
callback);
}
void Isolate::TerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->RequestTerminateExecution();
}
bool Isolate::IsExecutionTerminating() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return IsExecutionTerminatingCheck(isolate);
}
void Isolate::CancelTerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->ClearTerminateExecution();
isolate->CancelTerminateExecution();
}
Reland r18363. Introduce API to temporarily interrupt long running JavaScript code. It is different from termination API as interrupted JavaScript will continue to execute normally when registered InterruptCallback returns. /** * Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * At any given moment V8 can remember only a single callback for the very * last interrupt request. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data); /** * Clear interrupt request created by |RequestInterrupt|. * Can be called from another thread without acquiring a |Locker|. */ void ClearInterrupt(); Fix Hydrogen SCE pass to avoid eliminating stack guards too aggressively. Only normal JavaScript functions are guaranteed to have stack guard in the prologue. If function is a builtin or has a custom call IC it will lack one. Changes from r18363: - includes r18364 to fix compilation errors: removes debugging only code; - makes interrupiton related tests not threaded, because they rely on having exclusive access to the V8 instance and the fact that they can only interrupt themselves, if they are interrupted from the outside they break; - changes HasStackCheck predicate used during SCE pass to avoid handles dereference to make SCE compatible with parallel recompilation. R=dcarney@chromium.org Review URL: https://codereview.chromium.org/104823008 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18375 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-12-19 16:45:58 +00:00
void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RequestInterrupt(callback, data);
Reland r18363. Introduce API to temporarily interrupt long running JavaScript code. It is different from termination API as interrupted JavaScript will continue to execute normally when registered InterruptCallback returns. /** * Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * At any given moment V8 can remember only a single callback for the very * last interrupt request. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data); /** * Clear interrupt request created by |RequestInterrupt|. * Can be called from another thread without acquiring a |Locker|. */ void ClearInterrupt(); Fix Hydrogen SCE pass to avoid eliminating stack guards too aggressively. Only normal JavaScript functions are guaranteed to have stack guard in the prologue. If function is a builtin or has a custom call IC it will lack one. Changes from r18363: - includes r18364 to fix compilation errors: removes debugging only code; - makes interrupiton related tests not threaded, because they rely on having exclusive access to the V8 instance and the fact that they can only interrupt themselves, if they are interrupted from the outside they break; - changes HasStackCheck predicate used during SCE pass to avoid handles dereference to make SCE compatible with parallel recompilation. R=dcarney@chromium.org Review URL: https://codereview.chromium.org/104823008 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18375 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-12-19 16:45:58 +00:00
}
void Isolate::ClearInterrupt() {
}
void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) {
CHECK(i::FLAG_expose_gc);
if (type == kMinorGarbageCollection) {
reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage(
i::NEW_SPACE, "Isolate::RequestGarbageCollection",
kGCCallbackFlagForced);
} else {
DCHECK_EQ(kFullGarbageCollection, type);
reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage(
i::Heap::kAbortIncrementalMarkingMask,
"Isolate::RequestGarbageCollection", kGCCallbackFlagForced);
}
}
Isolate* Isolate::GetCurrent() {
i::Isolate* isolate = i::Isolate::Current();
return reinterpret_cast<Isolate*>(isolate);
}
Isolate* Isolate::New(const Isolate::CreateParams& params) {
i::Isolate* isolate = new i::Isolate(params.enable_serializer);
Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate);
if (params.entry_hook) {
isolate->set_function_entry_hook(params.entry_hook);
}
if (params.code_event_handler) {
isolate->InitializeLoggingAndCounters();
isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault,
params.code_event_handler);
}
SetResourceConstraints(isolate, params.constraints);
// TODO(jochen): Once we got rid of Isolate::Current(), we can remove this.
Isolate::Scope isolate_scope(v8_isolate);
if (params.entry_hook || !i::Snapshot::Initialize(isolate)) {
// If the isolate has a function entry hook, it needs to re-build all its
// code stubs with entry hooks embedded, so don't deserialize a snapshot.
isolate->Init(NULL);
}
return v8_isolate;
}
void Isolate::Dispose() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!Utils::ApiCheck(!isolate->IsInUse(),
"v8::Isolate::Dispose()",
"Disposing the isolate that is entered by a thread.")) {
return;
}
isolate->TearDown();
}
void Isolate::Enter() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Enter();
}
void Isolate::Exit() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Exit();
}
Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope(
Isolate* isolate,
Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure)
: on_failure_(on_failure) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (on_failure_ == CRASH_ON_FAILURE) {
internal_ = reinterpret_cast<void*>(
new i::DisallowJavascriptExecution(i_isolate));
} else {
DCHECK_EQ(THROW_ON_FAILURE, on_failure);
internal_ = reinterpret_cast<void*>(
new i::ThrowOnJavascriptExecution(i_isolate));
}
}
Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() {
if (on_failure_ == CRASH_ON_FAILURE) {
delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_);
} else {
delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_);
}
}
Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope(
Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_assert_ = reinterpret_cast<void*>(
new i::AllowJavascriptExecution(i_isolate));
internal_throws_ = reinterpret_cast<void*>(
new i::NoThrowOnJavascriptExecution(i_isolate));
}
Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() {
delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_);
delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_);
}
Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope(
Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)) {
isolate_->handle_scope_implementer()->IncrementCallDepth();
}
Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() {
isolate_->handle_scope_implementer()->DecrementCallDepth();
}
void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
heap_statistics->total_heap_size_ = heap->CommittedMemory();
heap_statistics->total_heap_size_executable_ =
heap->CommittedMemoryExecutable();
heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory();
heap_statistics->used_heap_size_ = heap->SizeOfObjects();
heap_statistics->heap_size_limit_ = heap->MaxReserved();
}
void Isolate::GetStackSample(const RegisterState& state, void** frames,
size_t frames_limit, SampleInfo* sample_info) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::TickSample::GetStackSample(isolate, state, i::TickSample::kSkipCEntryFrame,
frames, frames_limit, sample_info);
}
void Isolate::SetEventLogger(LogEventCallback that) {
// Do not overwrite the event logger if we want to log explicitly.
if (i::FLAG_log_internal_timer_events) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_event_logger(that);
}
void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
if (callback == NULL) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->AddCallCompletedCallback(callback);
}
void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RemoveCallCompletedCallback(callback);
}
void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
if (callback == NULL) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetPromiseRejectCallback(callback);
}
void Isolate::RunMicrotasks() {
reinterpret_cast<i::Isolate*>(this)->RunMicrotasks();
}
void Isolate::EnqueueMicrotask(Handle<Function> microtask) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->EnqueueMicrotask(Utils::OpenHandle(*microtask));
}
void Isolate::EnqueueMicrotask(MicrotaskCallback microtask, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::HandleScope scope(isolate);
i::Handle<i::CallHandlerInfo> callback_info =
i::Handle<i::CallHandlerInfo>::cast(
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE));
SET_FIELD_WRAPPED(callback_info, set_callback, microtask);
SET_FIELD_WRAPPED(callback_info, set_data, data);
isolate->EnqueueMicrotask(callback_info);
}
void Isolate::SetAutorunMicrotasks(bool autorun) {
reinterpret_cast<i::Isolate*>(this)->set_autorun_microtasks(autorun);
}
bool Isolate::WillAutorunMicrotasks() const {
return reinterpret_cast<const i::Isolate*>(this)->autorun_microtasks();
}
void Isolate::SetUseCounterCallback(UseCounterCallback callback) {
reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback);
}
void Isolate::SetCounterFunction(CounterLookupCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stats_table()->SetCounterFunction(callback);
isolate->InitializeLoggingAndCounters();
isolate->counters()->ResetCounters();
}
void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stats_table()->SetCreateHistogramFunction(callback);
isolate->InitializeLoggingAndCounters();
isolate->counters()->ResetHistograms();
}
void Isolate::SetAddHistogramSampleFunction(
AddHistogramSampleCallback callback) {
reinterpret_cast<i::Isolate*>(this)
->stats_table()
->SetAddHistogramSampleFunction(callback);
}
bool Isolate::IdleNotification(int idle_time_in_ms) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::FLAG_use_idle_notification) return true;
return isolate->heap()->IdleNotification(idle_time_in_ms);
}
bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::FLAG_use_idle_notification) return true;
return isolate->heap()->IdleNotification(deadline_in_seconds);
}
void Isolate::LowMemoryNotification() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
{
i::HistogramTimerScope idle_notification_scope(
isolate->counters()->gc_low_memory_notification());
isolate->heap()->CollectAllAvailableGarbage("low memory notification");
}
}
int Isolate::ContextDisposedNotification(bool dependant_context) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->heap()->NotifyContextDisposed(dependant_context);
}
void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
// Ensure that logging is initialized for our isolate.
isolate->InitializeLoggingAndCounters();
isolate->logger()->SetCodeEventHandler(options, event_handler);
}
void Isolate::SetStackLimit(uintptr_t stack_limit) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
CHECK(stack_limit);
isolate->stack_guard()->SetStackLimit(stack_limit);
}
void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (isolate->code_range()->valid()) {
*start = isolate->code_range()->start();
*length_in_bytes = isolate->code_range()->size();
} else {
*start = NULL;
*length_in_bytes = 0;
}
}
void Isolate::SetFatalErrorHandler(FatalErrorCallback that) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_exception_behavior(that);
}
void Isolate::SetAllowCodeGenerationFromStringsCallback(
AllowCodeGenerationFromStringsCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_allow_code_gen_callback(callback);
}
bool Isolate::IsDead() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsDead();
}
bool Isolate::AddMessageListener(MessageCallback that, Handle<Value> data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ON_BAILOUT(isolate, "v8::V8::AddMessageListener()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
NeanderArray listeners(isolate->factory()->message_listeners());
NeanderObject obj(isolate, 2);
obj.set(0, *isolate->factory()->NewForeign(FUNCTION_ADDR(that)));
obj.set(1, data.IsEmpty() ? isolate->heap()->undefined_value()
: *Utils::OpenHandle(*data));
listeners.add(isolate, obj.value());
return true;
}
void Isolate::RemoveMessageListeners(MessageCallback that) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ON_BAILOUT(isolate, "v8::V8::RemoveMessageListeners()", return);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
NeanderArray listeners(isolate->factory()->message_listeners());
for (int i = 0; i < listeners.length(); i++) {
if (listeners.get(i)->IsUndefined()) continue; // skip deleted ones
NeanderObject listener(i::JSObject::cast(listeners.get(i)));
i::Handle<i::Foreign> callback_obj(i::Foreign::cast(listener.get(0)));
if (callback_obj->foreign_address() == FUNCTION_ADDR(that)) {
listeners.set(i, isolate->heap()->undefined_value());
}
}
}
void Isolate::SetFailedAccessCheckCallbackFunction(
FailedAccessCheckCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetFailedAccessCheckCallback(callback);
}
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
options);
}
void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->VisitExternalResources(visitor);
}
class VisitorAdapter : public i::ObjectVisitor {
public:
explicit VisitorAdapter(PersistentHandleVisitor* visitor)
: visitor_(visitor) {}
virtual void VisitPointers(i::Object** start, i::Object** end) {
UNREACHABLE();
}
virtual void VisitEmbedderReference(i::Object** p, uint16_t class_id) {
Value* value = ToApi<Value>(i::Handle<i::Object>(p));
visitor_->VisitPersistentHandle(
reinterpret_cast<Persistent<Value>*>(&value), class_id);
}
private:
PersistentHandleVisitor* visitor_;
};
void Isolate::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
VisitorAdapter visitor_adapter(visitor);
isolate->global_handles()->IterateAllRootsWithClassIds(&visitor_adapter);
}
void Isolate::VisitHandlesForPartialDependence(
PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
VisitorAdapter visitor_adapter(visitor);
isolate->global_handles()->IterateAllRootsInNewSpaceWithClassIds(
&visitor_adapter);
}
String::Utf8Value::Utf8Value(v8::Handle<v8::Value> obj)
: str_(NULL), length_(0) {
i::Isolate* isolate = i::Isolate::Current();
if (obj.IsEmpty()) return;
ENTER_V8(isolate);
i::HandleScope scope(isolate);
TryCatch try_catch;
Handle<String> str = obj->ToString(reinterpret_cast<v8::Isolate*>(isolate));
if (str.IsEmpty()) return;
i::Handle<i::String> i_str = Utils::OpenHandle(*str);
length_ = v8::Utf8Length(*i_str, isolate);
str_ = i::NewArray<char>(length_ + 1);
str->WriteUtf8(str_);
}
String::Utf8Value::~Utf8Value() {
i::DeleteArray(str_);
}
String::Value::Value(v8::Handle<v8::Value> obj)
: str_(NULL), length_(0) {
i::Isolate* isolate = i::Isolate::Current();
if (obj.IsEmpty()) return;
ENTER_V8(isolate);
i::HandleScope scope(isolate);
TryCatch try_catch;
Handle<String> str = obj->ToString(reinterpret_cast<v8::Isolate*>(isolate));
if (str.IsEmpty()) return;
length_ = str->Length();
str_ = i::NewArray<uint16_t>(length_ + 1);
str->Write(str_);
}
String::Value::~Value() {
i::DeleteArray(str_);
}
#define DEFINE_ERROR(NAME) \
Local<Value> Exception::NAME(v8::Handle<v8::String> raw_message) { \
i::Isolate* isolate = i::Isolate::Current(); \
LOG_API(isolate, #NAME); \
ON_BAILOUT(isolate, "v8::Exception::" #NAME "()", return Local<Value>()); \
ENTER_V8(isolate); \
i::Object* error; \
{ \
i::HandleScope scope(isolate); \
i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \
error = *isolate->factory()->New##NAME(message); \
} \
i::Handle<i::Object> result(error, isolate); \
return Utils::ToLocal(result); \
}
DEFINE_ERROR(RangeError)
DEFINE_ERROR(ReferenceError)
DEFINE_ERROR(SyntaxError)
DEFINE_ERROR(TypeError)
DEFINE_ERROR(Error)
#undef DEFINE_ERROR
Local<Message> Exception::CreateMessage(Handle<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!obj->IsHeapObject()) return Local<Message>();
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
return Utils::MessageToLocal(
scope.CloseAndEscape(isolate->CreateMessage(obj, NULL)));
}
Local<StackTrace> Exception::GetStackTrace(Handle<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!obj->IsJSObject()) return Local<StackTrace>();
i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj);
i::Isolate* isolate = js_obj->GetIsolate();
ENTER_V8(isolate);
return Utils::StackTraceToLocal(isolate->GetDetailedStackTrace(js_obj));
}
// --- D e b u g S u p p o r t ---
bool Debug::SetDebugEventListener(EventCallback that, Handle<Value> data) {
i::Isolate* isolate = i::Isolate::Current();
ON_BAILOUT(isolate, "v8::Debug::SetDebugEventListener()", return false);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> foreign = isolate->factory()->undefined_value();
if (that != NULL) {
foreign = isolate->factory()->NewForeign(FUNCTION_ADDR(that));
}
isolate->debug()->SetEventListener(foreign,
Utils::OpenHandle(*data, true));
return true;
}
void Debug::DebugBreak(Isolate* isolate) {
reinterpret_cast<i::Isolate*>(isolate)->stack_guard()->RequestDebugBreak();
}
void Debug::CancelDebugBreak(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->stack_guard()->ClearDebugBreak();
}
bool Debug::CheckDebugBreak(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
return internal_isolate->stack_guard()->CheckDebugBreak();
}
void Debug::DebugBreakForCommand(Isolate* isolate, ClientData* data) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->EnqueueDebugCommand(data);
}
void Debug::SetMessageHandler(v8::Debug::MessageHandler handler) {
i::Isolate* isolate = i::Isolate::Current();
ENTER_V8(isolate);
isolate->debug()->SetMessageHandler(handler);
}
void Debug::SendCommand(Isolate* isolate,
const uint16_t* command,
int length,
ClientData* client_data) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->EnqueueCommandMessage(
i::Vector<const uint16_t>(command, length), client_data);
}
Local<Value> Debug::Call(v8::Handle<v8::Function> fun,
v8::Handle<v8::Value> data) {
i::Isolate* isolate = i::Isolate::Current();
ON_BAILOUT(isolate, "v8::Debug::Call()", return Local<Value>());
ENTER_V8(isolate);
i::MaybeHandle<i::Object> maybe_result;
EXCEPTION_PREAMBLE(isolate);
if (data.IsEmpty()) {
maybe_result = isolate->debug()->Call(
Utils::OpenHandle(*fun), isolate->factory()->undefined_value());
} else {
maybe_result = isolate->debug()->Call(
Utils::OpenHandle(*fun), Utils::OpenHandle(*data));
}
i::Handle<i::Object> result;
has_pending_exception = !maybe_result.ToHandle(&result);
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
return Utils::ToLocal(result);
}
Local<Value> Debug::GetMirror(v8::Handle<v8::Value> obj) {
i::Isolate* isolate = i::Isolate::Current();
ON_BAILOUT(isolate, "v8::Debug::GetMirror()", return Local<Value>());
ENTER_V8(isolate);
v8::EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Debug* isolate_debug = isolate->debug();
EXCEPTION_PREAMBLE(isolate);
has_pending_exception = !isolate_debug->Load();
v8::Local<v8::Value> result;
if (!has_pending_exception) {
i::Handle<i::JSObject> debug(
isolate_debug->debug_context()->global_object());
i::Handle<i::String> name = isolate->factory()->InternalizeOneByteString(
STATIC_CHAR_VECTOR("MakeMirror"));
i::Handle<i::Object> fun_obj =
i::Object::GetProperty(debug, name).ToHandleChecked();
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(fun_obj);
v8::Handle<v8::Function> v8_fun = Utils::ToLocal(fun);
const int kArgc = 1;
v8::Handle<v8::Value> argv[kArgc] = { obj };
result = v8_fun->Call(Utils::ToLocal(debug), kArgc, argv);
has_pending_exception = result.IsEmpty();
}
EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>());
return scope.Escape(result);
}
void Debug::ProcessDebugMessages() {
i::Isolate::Current()->debug()->ProcessDebugMessages(true);
}
Local<Context> Debug::GetDebugContext() {
i::Isolate* isolate = i::Isolate::Current();
ENTER_V8(isolate);
return Utils::ToLocal(i::Isolate::Current()->debug()->GetDebugContext());
}
void Debug::SetLiveEditEnabled(Isolate* isolate, bool enable) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->set_live_edit_enabled(enable);
}
Handle<String> CpuProfileNode::GetFunctionName() const {
i::Isolate* isolate = i::Isolate::Current();
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
i::Handle<i::String> name =
isolate->factory()->InternalizeUtf8String(entry->name());
if (!entry->has_name_prefix()) {
return ToApiHandle<String>(name);
} else {
// We do not expect this to fail. Change this if it does.
i::Handle<i::String> cons = isolate->factory()->NewConsString(
isolate->factory()->InternalizeUtf8String(entry->name_prefix()),
name).ToHandleChecked();
return ToApiHandle<String>(cons);
}
}
int CpuProfileNode::GetScriptId() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
return entry->script_id();
}
Handle<String> CpuProfileNode::GetScriptResourceName() const {
i::Isolate* isolate = i::Isolate::Current();
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String(
node->entry()->resource_name()));
}
int CpuProfileNode::GetLineNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->entry()->line_number();
}
int CpuProfileNode::GetColumnNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->
entry()->column_number();
}
The idea behind of this solution is to use the existing "relocation info" instead of consumption the CodeLinePosition events emitted by the V8 compilers. During generation code and relocation info are generated simultaneously. When code generation is done you each code object has associated "relocation info". Relocation information lets V8 to mark interesting places in the generated code: the pointers that might need to be relocated (after garbage collection), correspondences between the machine program counter and source locations for stack walking. This patch: 1. Add more source positions info in reloc info to make it suitable for source level mapping. The amount of data should not be increased dramatically because (1) V8 already marks interesting places in the generated code and (2) V8 does not write redundant information (it writes a pair (pc_offset, pos) only if pos is changed and skips other). I measured it on Octane benchmark - for unoptimized code the number of source positions may achieve 2x ('lin_solve' from NavierStokes benchmark). 2. When a sample happens, CPU profiler finds a code object by pc, then use its reloc info to match the sample to a source line. If a source line is found that hit counter is increased by one for this line. 3. Add a new public V8 API to get the hit source lines by CDT CPU profiler. Note that it's expected a minor patch in Blink to pack the source level info in JSON to be shown. 4.Add a test that checks how the samples are distributed through source lines. It tests two cases: (1) relocation info created during code generation and (2) relocation info associated with precompiled function's version. Patch from Denis Pravdin <denis.pravdin@intel.com>; R=svenpanne@chromium.org, yurys@chromium.org Review URL: https://codereview.chromium.org/682143003 Patch from Weiliang <weiliang.lin@intel.com>. Cr-Commit-Position: refs/heads/master@{#25182} git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@25182 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-11-06 09:16:34 +00:00
unsigned int CpuProfileNode::GetHitLineCount() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetHitLineCount();
}
bool CpuProfileNode::GetLineTicks(LineTick* entries,
unsigned int length) const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetLineTicks(entries, length);
}
const char* CpuProfileNode::GetBailoutReason() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->bailout_reason();
}
unsigned CpuProfileNode::GetHitCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks();
}
unsigned CpuProfileNode::GetCallUid() const {
return reinterpret_cast<const i::ProfileNode*>(this)->function_id();
}
unsigned CpuProfileNode::GetNodeId() const {
return reinterpret_cast<const i::ProfileNode*>(this)->id();
}
int CpuProfileNode::GetChildrenCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->children()->length();
}
const CpuProfileNode* CpuProfileNode::GetChild(int index) const {
const i::ProfileNode* child =
reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index);
return reinterpret_cast<const CpuProfileNode*>(child);
}
void CpuProfile::Delete() {
i::Isolate* isolate = i::Isolate::Current();
i::CpuProfiler* profiler = isolate->cpu_profiler();
DCHECK(profiler != NULL);
profiler->DeleteProfile(reinterpret_cast<i::CpuProfile*>(this));
}
Handle<String> CpuProfile::GetTitle() const {
i::Isolate* isolate = i::Isolate::Current();
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String(
profile->title()));
}
const CpuProfileNode* CpuProfile::GetTopDownRoot() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root());
}
const CpuProfileNode* CpuProfile::GetSample(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->sample(index));
}
int64_t CpuProfile::GetSampleTimestamp(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->sample_timestamp(index) - base::TimeTicks())
.InMicroseconds();
}
int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->start_time() - base::TimeTicks()).InMicroseconds();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->end_time() - base::TimeTicks()).InMicroseconds();
}
int CpuProfile::GetSamplesCount() const {
return reinterpret_cast<const i::CpuProfile*>(this)->samples_count();
}
void CpuProfiler::SetSamplingInterval(int us) {
DCHECK(us >= 0);
return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval(
base::TimeDelta::FromMicroseconds(us));
}
void CpuProfiler::StartProfiling(Handle<String> title, bool record_samples) {
reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), record_samples);
}
void CpuProfiler::StartCpuProfiling(Handle<String> title, bool record_samples) {
StartProfiling(title, record_samples);
}
CpuProfile* CpuProfiler::StopProfiling(Handle<String> title) {
return reinterpret_cast<CpuProfile*>(
reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling(
*Utils::OpenHandle(*title)));
}
const CpuProfile* CpuProfiler::StopCpuProfiling(Handle<String> title) {
return StopProfiling(title);
}
void CpuProfiler::SetIdle(bool is_idle) {
i::Isolate* isolate = reinterpret_cast<i::CpuProfiler*>(this)->isolate();
v8::StateTag state = isolate->current_vm_state();
DCHECK(state == v8::EXTERNAL || state == v8::IDLE);
if (isolate->js_entry_sp() != NULL) return;
if (is_idle) {
isolate->set_current_vm_state(v8::IDLE);
} else if (state == v8::IDLE) {
isolate->set_current_vm_state(v8::EXTERNAL);
}
}
static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) {
return const_cast<i::HeapGraphEdge*>(
reinterpret_cast<const i::HeapGraphEdge*>(edge));
}
HeapGraphEdge::Type HeapGraphEdge::GetType() const {
return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type());
}
Handle<Value> HeapGraphEdge::GetName() const {
i::Isolate* isolate = i::Isolate::Current();
i::HeapGraphEdge* edge = ToInternal(this);
switch (edge->type()) {
case i::HeapGraphEdge::kContextVariable:
case i::HeapGraphEdge::kInternal:
case i::HeapGraphEdge::kProperty:
case i::HeapGraphEdge::kShortcut:
case i::HeapGraphEdge::kWeak:
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(edge->name()));
case i::HeapGraphEdge::kElement:
case i::HeapGraphEdge::kHidden:
return ToApiHandle<Number>(
isolate->factory()->NewNumberFromInt(edge->index()));
default: UNREACHABLE();
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
const HeapGraphNode* HeapGraphEdge::GetFromNode() const {
const i::HeapEntry* from = ToInternal(this)->from();
return reinterpret_cast<const HeapGraphNode*>(from);
}
const HeapGraphNode* HeapGraphEdge::GetToNode() const {
const i::HeapEntry* to = ToInternal(this)->to();
return reinterpret_cast<const HeapGraphNode*>(to);
}
static i::HeapEntry* ToInternal(const HeapGraphNode* entry) {
return const_cast<i::HeapEntry*>(
reinterpret_cast<const i::HeapEntry*>(entry));
}
HeapGraphNode::Type HeapGraphNode::GetType() const {
return static_cast<HeapGraphNode::Type>(ToInternal(this)->type());
}
Handle<String> HeapGraphNode::GetName() const {
i::Isolate* isolate = i::Isolate::Current();
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(ToInternal(this)->name()));
}
SnapshotObjectId HeapGraphNode::GetId() const {
return ToInternal(this)->id();
}
int HeapGraphNode::GetSelfSize() const {
size_t size = ToInternal(this)->self_size();
CHECK(size <= static_cast<size_t>(internal::kMaxInt));
return static_cast<int>(size);
}
size_t HeapGraphNode::GetShallowSize() const {
return ToInternal(this)->self_size();
}
int HeapGraphNode::GetChildrenCount() const {
return ToInternal(this)->children().length();
}
const HeapGraphEdge* HeapGraphNode::GetChild(int index) const {
return reinterpret_cast<const HeapGraphEdge*>(
ToInternal(this)->children()[index]);
}
static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) {
return const_cast<i::HeapSnapshot*>(
reinterpret_cast<const i::HeapSnapshot*>(snapshot));
}
void HeapSnapshot::Delete() {
i::Isolate* isolate = i::Isolate::Current();
if (isolate->heap_profiler()->GetSnapshotsCount() > 1) {
ToInternal(this)->Delete();
} else {
// If this is the last snapshot, clean up all accessory data as well.
isolate->heap_profiler()->DeleteAllSnapshots();
}
}
unsigned HeapSnapshot::GetUid() const {
return ToInternal(this)->uid();
}
Handle<String> HeapSnapshot::GetTitle() const {
i::Isolate* isolate = i::Isolate::Current();
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(ToInternal(this)->title()));
}
const HeapGraphNode* HeapSnapshot::GetRoot() const {
return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root());
}
const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const {
return reinterpret_cast<const HeapGraphNode*>(
ToInternal(this)->GetEntryById(id));
}
int HeapSnapshot::GetNodesCount() const {
return ToInternal(this)->entries().length();
}
const HeapGraphNode* HeapSnapshot::GetNode(int index) const {
return reinterpret_cast<const HeapGraphNode*>(
&ToInternal(this)->entries().at(index));
}
SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const {
return ToInternal(this)->max_snapshot_js_object_id();
}
void HeapSnapshot::Serialize(OutputStream* stream,
HeapSnapshot::SerializationFormat format) const {
Utils::ApiCheck(format == kJSON,
"v8::HeapSnapshot::Serialize",
"Unknown serialization format");
Utils::ApiCheck(stream->GetChunkSize() > 0,
"v8::HeapSnapshot::Serialize",
"Invalid stream chunk size");
i::HeapSnapshotJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
// static
STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId
HeapProfiler::kUnknownObjectId;
int HeapProfiler::GetSnapshotCount() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount();
}
const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index));
}
SnapshotObjectId HeapProfiler::GetObjectId(Handle<Value> value) {
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj);
}
Handle<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) {
i::Handle<i::Object> obj =
reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id);
if (obj.is_null()) return Local<Value>();
return Utils::ToLocal(obj);
}
void HeapProfiler::ClearObjectIds() {
reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap();
}
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(
Handle<String> title,
ActivityControl* control,
ObjectNameResolver* resolver) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot(
*Utils::OpenHandle(*title), control, resolver));
}
void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) {
reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking(
track_allocations);
}
void HeapProfiler::StopTrackingHeapObjects() {
reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking();
}
SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream) {
return reinterpret_cast<i::HeapProfiler*>(this)->PushHeapObjectsStats(stream);
}
void HeapProfiler::DeleteAllHeapSnapshots() {
reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots();
}
void HeapProfiler::SetWrapperClassInfoProvider(uint16_t class_id,
WrapperInfoCallback callback) {
reinterpret_cast<i::HeapProfiler*>(this)->DefineWrapperClass(class_id,
callback);
}
size_t HeapProfiler::GetProfilerMemorySize() {
return reinterpret_cast<i::HeapProfiler*>(this)->
GetMemorySizeUsedByProfiler();
}
void HeapProfiler::SetRetainedObjectInfo(UniqueId id,
RetainedObjectInfo* info) {
reinterpret_cast<i::HeapProfiler*>(this)->SetRetainedObjectInfo(id, info);
}
v8::Testing::StressType internal::Testing::stress_type_ =
v8::Testing::kStressTypeOpt;
void Testing::SetStressRunType(Testing::StressType type) {
internal::Testing::set_stress_type(type);
}
int Testing::GetStressRuns() {
if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs;
#ifdef DEBUG
// In debug mode the code runs much slower so stressing will only make two
// runs.
return 2;
#else
return 5;
#endif
}
static void SetFlagsFromString(const char* flags) {
V8::SetFlagsFromString(flags, i::StrLength(flags));
}
void Testing::PrepareStressRun(int run) {
static const char* kLazyOptimizations =
"--prepare-always-opt "
"--max-inlined-source-size=999999 "
"--max-inlined-nodes=999999 "
"--max-inlined-nodes-cumulative=999999 "
"--noalways-opt";
static const char* kForcedOptimizations = "--always-opt";
// If deoptimization stressed turn on frequent deoptimization. If no value
// is spefified through --deopt-every-n-times use a default default value.
static const char* kDeoptEvery13Times = "--deopt-every-n-times=13";
if (internal::Testing::stress_type() == Testing::kStressTypeDeopt &&
internal::FLAG_deopt_every_n_times == 0) {
SetFlagsFromString(kDeoptEvery13Times);
}
#ifdef DEBUG
// As stressing in debug mode only make two runs skip the deopt stressing
// here.
if (run == GetStressRuns() - 1) {
SetFlagsFromString(kForcedOptimizations);
} else {
SetFlagsFromString(kLazyOptimizations);
}
#else
if (run == GetStressRuns() - 1) {
SetFlagsFromString(kForcedOptimizations);
} else if (run != GetStressRuns() - 2) {
SetFlagsFromString(kLazyOptimizations);
}
#endif
}
// TODO(svenpanne) Deprecate this.
void Testing::DeoptimizeAll() {
i::Isolate* isolate = i::Isolate::Current();
i::HandleScope scope(isolate);
internal::Deoptimizer::DeoptimizeAll(isolate);
}
namespace internal {
void HandleScopeImplementer::FreeThreadResources() {
Free();
}
char* HandleScopeImplementer::ArchiveThread(char* storage) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
MemCopy(storage, this, sizeof(*this));
ResetAfterArchive();
current->Initialize();
return storage + ArchiveSpacePerThread();
}
int HandleScopeImplementer::ArchiveSpacePerThread() {
return sizeof(HandleScopeImplementer);
}
char* HandleScopeImplementer::RestoreThread(char* storage) {
MemCopy(this, storage, sizeof(*this));
*isolate_->handle_scope_data() = handle_scope_data_;
return storage + ArchiveSpacePerThread();
}
void HandleScopeImplementer::IterateThis(ObjectVisitor* v) {
#ifdef DEBUG
bool found_block_before_deferred = false;
#endif
// Iterate over all handles in the blocks except for the last.
for (int i = blocks()->length() - 2; i >= 0; --i) {
Object** block = blocks()->at(i);
if (last_handle_before_deferred_block_ != NULL &&
(last_handle_before_deferred_block_ <= &block[kHandleBlockSize]) &&
(last_handle_before_deferred_block_ >= block)) {
v->VisitPointers(block, last_handle_before_deferred_block_);
DCHECK(!found_block_before_deferred);
#ifdef DEBUG
found_block_before_deferred = true;
#endif
} else {
v->VisitPointers(block, &block[kHandleBlockSize]);
}
}
DCHECK(last_handle_before_deferred_block_ == NULL ||
found_block_before_deferred);
// Iterate over live handles in the last block (if any).
if (!blocks()->is_empty()) {
v->VisitPointers(blocks()->last(), handle_scope_data_.next);
}
List<Context*>* context_lists[2] = { &saved_contexts_, &entered_contexts_};
for (unsigned i = 0; i < arraysize(context_lists); i++) {
if (context_lists[i]->is_empty()) continue;
Object** start = reinterpret_cast<Object**>(&context_lists[i]->first());
v->VisitPointers(start, start + context_lists[i]->length());
}
}
void HandleScopeImplementer::Iterate(ObjectVisitor* v) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
IterateThis(v);
}
char* HandleScopeImplementer::Iterate(ObjectVisitor* v, char* storage) {
HandleScopeImplementer* scope_implementer =
reinterpret_cast<HandleScopeImplementer*>(storage);
scope_implementer->IterateThis(v);
return storage + ArchiveSpacePerThread();
}
DeferredHandles* HandleScopeImplementer::Detach(Object** prev_limit) {
DeferredHandles* deferred =
new DeferredHandles(isolate()->handle_scope_data()->next, isolate());
while (!blocks_.is_empty()) {
Object** block_start = blocks_.last();
Object** block_limit = &block_start[kHandleBlockSize];
// We should not need to check for SealHandleScope here. Assert this.
DCHECK(prev_limit == block_limit ||
!(block_start <= prev_limit && prev_limit <= block_limit));
if (prev_limit == block_limit) break;
deferred->blocks_.Add(blocks_.last());
blocks_.RemoveLast();
}
// deferred->blocks_ now contains the blocks installed on the
// HandleScope stack since BeginDeferredScope was called, but in
// reverse order.
DCHECK(prev_limit == NULL || !blocks_.is_empty());
DCHECK(!blocks_.is_empty() && prev_limit != NULL);
DCHECK(last_handle_before_deferred_block_ != NULL);
last_handle_before_deferred_block_ = NULL;
return deferred;
}
void HandleScopeImplementer::BeginDeferredScope() {
DCHECK(last_handle_before_deferred_block_ == NULL);
last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next;
}
DeferredHandles::~DeferredHandles() {
isolate_->UnlinkDeferredHandles(this);
for (int i = 0; i < blocks_.length(); i++) {
#ifdef ENABLE_HANDLE_ZAPPING
HandleScope::ZapRange(blocks_[i], &blocks_[i][kHandleBlockSize]);
#endif
isolate_->handle_scope_implementer()->ReturnBlock(blocks_[i]);
}
}
void DeferredHandles::Iterate(ObjectVisitor* v) {
DCHECK(!blocks_.is_empty());
DCHECK((first_block_limit_ >= blocks_.first()) &&
(first_block_limit_ <= &(blocks_.first())[kHandleBlockSize]));
v->VisitPointers(blocks_.first(), first_block_limit_);
for (int i = 1; i < blocks_.length(); i++) {
v->VisitPointers(blocks_[i], &blocks_[i][kHandleBlockSize]);
}
}
void InvokeAccessorGetterCallback(
v8::Local<v8::Name> property,
const v8::PropertyCallbackInfo<v8::Value>& info,
v8::AccessorNameGetterCallback getter) {
// Leaving JavaScript.
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
Address getter_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>(
getter));
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, getter_address);
getter(property, info);
}
void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info,
v8::FunctionCallback callback) {
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
Address callback_address =
reinterpret_cast<Address>(reinterpret_cast<intptr_t>(callback));
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, callback_address);
callback(info);
}
} } // namespace v8::internal