v8/src/objects.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

5682 lines
216 KiB
C
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_H_
#define V8_OBJECTS_H_
#include <iosfwd>
#include <memory>
#include "src/assert-scope.h"
#include "src/bailout-reason.h"
#include "src/base/bits.h"
#include "src/base/flags.h"
#include "src/builtins/builtins-definitions.h"
#include "src/checks.h"
#include "src/elements-kind.h"
#include "src/field-index.h"
#include "src/flags.h"
#include "src/interpreter/bytecode-register.h"
Reland of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #2 id:170001 of https://codereview.chromium.org/2113593002/ ) Reason for revert: WebGL tests have been updated and rolled (at https://codereview.chromium.org/2227023002), so this should no longer fail outdated tests. Original issue's description: > Revert of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #8 id:140001 of https://codereview.chromium.org/2090353003/ ) > > Reason for revert: > Speculative revert to unblock roll: https://codereview.chromium.org/2107223003/ > > Original issue's description: > > Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. > > > > The spec was modified to relax some requirements which implementors had not been > > enforcing. Part of this process involved introducing a new abstract operation > > ToIndex, which had partial overlap with our existing semantics as well as some > > differences (most notably treating undefined as 0). Test262 tests were introduced to > > check for the new semantics, some of which we were failing. This patch amends the > > parts of our implementation corresponding to specification algorithms which use > > ToIndex to follow its semantics precisely. > > > > BUG=v8:4784,v8:5120 > > > > Committed: https://crrev.com/09720349ea058d178521ec58d0a5676443a5a132 > > Cr-Commit-Position: refs/heads/master@{#37406} > > TBR=littledan@chromium.org,adamk@chromium.org,bakkot@google.com > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG=v8:4784,v8:5120 > > Committed: https://crrev.com/b1f7f1f4e41a723d5f997738a07e35a031713b8f > Cr-Commit-Position: refs/heads/master@{#37417} TBR=littledan@chromium.org,adamk@chromium.org,hablich@chromium.org # Not skipping CQ checks because original CL landed more than 1 days ago. BUG=v8:4784,v8:5120 Review-Url: https://codereview.chromium.org/2247073004 Cr-Commit-Position: refs/heads/master@{#38689}
2016-08-17 17:38:34 +00:00
#include "src/messages.h"
#include "src/property-details.h"
#include "src/unicode-decoder.h"
#include "src/unicode.h"
#if V8_TARGET_ARCH_ARM
#include "src/arm/constants-arm.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/constants-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/constants-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/constants-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/constants-ppc.h" // NOLINT
#elif V8_TARGET_ARCH_S390
#include "src/s390/constants-s390.h" // NOLINT
#endif
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
//
// Most object types in the V8 JavaScript are described in this file.
//
// Inheritance hierarchy:
// - Object
// - Smi (immediate small integer)
// - HeapObject (superclass for everything allocated in the heap)
// - JSReceiver (suitable for property access)
// - JSObject
// - JSArray
// - JSArrayBuffer
// - JSArrayBufferView
// - JSTypedArray
// - JSDataView
// - JSBoundFunction
// - JSCollection
// - JSSet
// - JSMap
// - JSStringIterator
// - JSSetIterator
// - JSMapIterator
// - JSWeakCollection
// - JSWeakMap
// - JSWeakSet
// - JSRegExp
// - JSFunction
// - JSGeneratorObject
// - JSGlobalObject
// - JSGlobalProxy
// - JSValue
// - JSDate
// - JSMessageObject
// - JSModuleNamespace
// - WasmInstanceObject
// - WasmMemoryObject
// - WasmModuleObject
// - WasmTableObject
// - JSProxy
// - FixedArrayBase
// - ByteArray
// - BytecodeArray
// - FixedArray
// - DescriptorArray
// - FrameArray
// - HashTable
// - Dictionary
// - StringTable
// - StringSet
// - CompilationCacheTable
// - MapCache
// - OrderedHashTable
// - OrderedHashSet
// - OrderedHashMap
// - Context
// - FeedbackMetadata
// - TemplateList
// - TransitionArray
// - ScopeInfo
// - ModuleInfo
// - ScriptContextTable
// - WeakFixedArray
// - WasmSharedModuleData
// - WasmCompiledModule
// - FixedDoubleArray
// - Name
// - String
// - SeqString
// - SeqOneByteString
// - SeqTwoByteString
// - SlicedString
// - ConsString
// - ThinString
// - ExternalString
// - ExternalOneByteString
// - ExternalTwoByteString
// - InternalizedString
// - SeqInternalizedString
// - SeqOneByteInternalizedString
// - SeqTwoByteInternalizedString
// - ConsInternalizedString
// - ExternalInternalizedString
// - ExternalOneByteInternalizedString
// - ExternalTwoByteInternalizedString
// - Symbol
// - HeapNumber
// - BigInt
// - Cell
// - PropertyCell
// - PropertyArray
// - Code
// - AbstractCode, a wrapper around Code or BytecodeArray
// - Map
// - Oddball
// - Foreign
// - SmallOrderedHashTable
// - SmallOrderedHashMap
// - SmallOrderedHashSet
// - SharedFunctionInfo
// - Struct
// - AccessorInfo
// - PromiseResolveThenableJobInfo
// - PromiseReactionJobInfo
// - PromiseCapability
// - AccessorPair
// - AccessCheckInfo
// - InterceptorInfo
// - CallHandlerInfo
// - EnumCache
// - TemplateInfo
// - FunctionTemplateInfo
// - ObjectTemplateInfo
// - Script
// - DebugInfo
// - BreakPoint
// - BreakPointInfo
// - StackFrameInfo
// - SourcePositionTableWithFrameCache
// - CodeCache
// - PrototypeInfo
// - Module
// - ModuleInfoEntry
// - PreParsedScopeData
// - WeakCell
// - FeedbackVector
//
// Formats of Object*:
// Smi: [31 bit signed int] 0
// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
namespace v8 {
namespace internal {
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
struct InliningPosition;
class PropertyDescriptorObject;
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
enum KeyedAccessStoreMode {
STANDARD_STORE,
STORE_TRANSITION_TO_OBJECT,
STORE_TRANSITION_TO_DOUBLE,
STORE_AND_GROW_NO_TRANSITION,
STORE_AND_GROW_TRANSITION_TO_OBJECT,
STORE_AND_GROW_TRANSITION_TO_DOUBLE,
STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
STORE_NO_TRANSITION_HANDLE_COW
};
enum MutableMode {
MUTABLE,
IMMUTABLE
};
static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
return store_mode == STORE_TRANSITION_TO_OBJECT ||
store_mode == STORE_TRANSITION_TO_DOUBLE ||
store_mode == STORE_AND_GROW_TRANSITION_TO_OBJECT ||
store_mode == STORE_AND_GROW_TRANSITION_TO_DOUBLE;
}
static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
KeyedAccessStoreMode store_mode) {
if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
return store_mode;
}
if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
return STORE_AND_GROW_NO_TRANSITION;
}
return STANDARD_STORE;
}
static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
store_mode <= STORE_AND_GROW_TRANSITION_TO_DOUBLE;
}
enum IcCheckType { ELEMENT, PROPERTY };
// SKIP_WRITE_BARRIER skips the write barrier.
// UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
// only performs the generational part.
// UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
enum WriteBarrierMode {
SKIP_WRITE_BARRIER,
UPDATE_WEAK_WRITE_BARRIER,
UPDATE_WRITE_BARRIER
};
// PropertyNormalizationMode is used to specify whether to keep
// inobject properties when normalizing properties of a JSObject.
enum PropertyNormalizationMode {
CLEAR_INOBJECT_PROPERTIES,
KEEP_INOBJECT_PROPERTIES
};
// Indicates whether transitions can be added to a source map or not.
enum TransitionFlag {
INSERT_TRANSITION,
OMIT_TRANSITION
};
// Indicates whether the transition is simple: the target map of the transition
// either extends the current map with a new property, or it modifies the
// property that was added last to the current map.
enum SimpleTransitionFlag {
SIMPLE_PROPERTY_TRANSITION,
PROPERTY_TRANSITION,
Revert "Reland "[runtime] Add shortcuts for elements kinds transitions."" This reverts commit 6e27386d68eb737b98d37cb32e14d6bea1fd62cd. Reason for revert: There will be another much simpler and back-mergeable fix. Original change's description: > Reland "[runtime] Add shortcuts for elements kinds transitions." > > This is a reland of b90e83f5da40b214646327f8791834eeb5ddedd4 > Original change's description: > > [runtime] Add shortcuts for elements kinds transitions. > > > > The shortcuts ensure that field type generalization is properly > > propagated in the transition graph. > > > > Bug: chromium:738763 > > Change-Id: Id701a6f95ed6ea093c707fbe0bac228f1f856e9f > > Reviewed-on: https://chromium-review.googlesource.com/567992 > > Commit-Queue: Igor Sheludko <ishell@chromium.org> > > Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> > > Cr-Commit-Position: refs/heads/master@{#46622} > > Bug: chromium:738763, chromium:742346, chromium:742381, chromium:745844 > Change-Id: I93974e3906b2c7710bd525f15037a2dd97f263ad > Reviewed-on: https://chromium-review.googlesource.com/575227 > Commit-Queue: Igor Sheludko <ishell@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> > Cr-Commit-Position: refs/heads/master@{#46759} TBR=ulan@chromium.org,jkummerow@chromium.org,ishell@chromium.org # Not skipping CQ checks because original CL landed > 1 day ago. Bug: chromium:738763, chromium:742346, chromium:742381, chromium:745844 Change-Id: I203dc748c47db554e0a86d61f0e2b7b8b96f2370 Reviewed-on: https://chromium-review.googlesource.com/581547 Commit-Queue: Igor Sheludko <ishell@chromium.org> Reviewed-by: Igor Sheludko <ishell@chromium.org> Cr-Commit-Position: refs/heads/master@{#46826}
2017-07-21 15:57:33 +00:00
SPECIAL_TRANSITION
};
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
// Indicates whether we are only interested in the descriptors of a particular
// map, or in all descriptors in the descriptor array.
enum DescriptorFlag {
ALL_DESCRIPTORS,
OWN_DESCRIPTORS
};
// Instance size sentinel for objects of variable size.
const int kVariableSizeSentinel = 0;
// We may store the unsigned bit field as signed Smi value and do not
// use the sign bit.
const int kStubMajorKeyBits = 8;
const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
// All Maps have a field instance_type containing a InstanceType.
// It describes the type of the instances.
//
// As an example, a JavaScript object is a heap object and its map
// instance_type is JS_OBJECT_TYPE.
//
// The names of the string instance types are intended to systematically
// mirror their encoding in the instance_type field of the map. The default
// encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
// encoding is mentioned explicitly in the name. Likewise, the default
// representation is considered sequential. It is not mentioned in the
// name. The other representations (e.g. CONS, EXTERNAL) are explicitly
// mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
// string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
//
// NOTE: The following things are some that depend on the string types having
// instance_types that are less than those of all other types:
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
// Object::IsString.
//
// NOTE: Everything following JS_VALUE_TYPE is considered a
// JSObject for GC purposes. The first four entries here have typeof
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
#define INSTANCE_TYPE_LIST(V) \
V(INTERNALIZED_STRING_TYPE) \
V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
V(STRING_TYPE) \
V(CONS_STRING_TYPE) \
V(EXTERNAL_STRING_TYPE) \
V(SLICED_STRING_TYPE) \
V(THIN_STRING_TYPE) \
V(ONE_BYTE_STRING_TYPE) \
V(CONS_ONE_BYTE_STRING_TYPE) \
V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
V(SLICED_ONE_BYTE_STRING_TYPE) \
V(THIN_ONE_BYTE_STRING_TYPE) \
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
V(SHORT_EXTERNAL_STRING_TYPE) \
V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
\
V(SYMBOL_TYPE) \
V(HEAP_NUMBER_TYPE) \
V(BIGINT_TYPE) \
V(ODDBALL_TYPE) \
\
V(MAP_TYPE) \
V(CODE_TYPE) \
V(MUTABLE_HEAP_NUMBER_TYPE) \
V(FOREIGN_TYPE) \
V(BYTE_ARRAY_TYPE) \
V(BYTECODE_ARRAY_TYPE) \
V(FREE_SPACE_TYPE) \
\
V(FIXED_INT8_ARRAY_TYPE) \
V(FIXED_UINT8_ARRAY_TYPE) \
V(FIXED_INT16_ARRAY_TYPE) \
V(FIXED_UINT16_ARRAY_TYPE) \
V(FIXED_INT32_ARRAY_TYPE) \
V(FIXED_UINT32_ARRAY_TYPE) \
V(FIXED_FLOAT32_ARRAY_TYPE) \
V(FIXED_FLOAT64_ARRAY_TYPE) \
V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
\
V(FIXED_DOUBLE_ARRAY_TYPE) \
V(FILLER_TYPE) \
\
V(ACCESSOR_INFO_TYPE) \
V(ACCESSOR_PAIR_TYPE) \
V(ACCESS_CHECK_INFO_TYPE) \
V(INTERCEPTOR_INFO_TYPE) \
V(FUNCTION_TEMPLATE_INFO_TYPE) \
V(OBJECT_TEMPLATE_INFO_TYPE) \
V(ALLOCATION_SITE_TYPE) \
V(ALLOCATION_MEMENTO_TYPE) \
V(SCRIPT_TYPE) \
V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
V(PROMISE_RESOLVE_THENABLE_JOB_INFO_TYPE) \
V(PROMISE_REACTION_JOB_INFO_TYPE) \
V(DEBUG_INFO_TYPE) \
V(STACK_FRAME_INFO_TYPE) \
V(PROTOTYPE_INFO_TYPE) \
V(TUPLE2_TYPE) \
V(TUPLE3_TYPE) \
V(CONTEXT_EXTENSION_TYPE) \
V(MODULE_TYPE) \
V(MODULE_INFO_ENTRY_TYPE) \
V(ASYNC_GENERATOR_REQUEST_TYPE) \
V(FIXED_ARRAY_TYPE) \
V(HASH_TABLE_TYPE) \
V(FEEDBACK_VECTOR_TYPE) \
V(TRANSITION_ARRAY_TYPE) \
V(PROPERTY_ARRAY_TYPE) \
V(SHARED_FUNCTION_INFO_TYPE) \
V(CELL_TYPE) \
V(WEAK_CELL_TYPE) \
V(PROPERTY_CELL_TYPE) \
V(SMALL_ORDERED_HASH_MAP_TYPE) \
V(SMALL_ORDERED_HASH_SET_TYPE) \
V(CODE_DATA_CONTAINER_TYPE) \
\
V(JS_PROXY_TYPE) \
V(JS_GLOBAL_OBJECT_TYPE) \
V(JS_GLOBAL_PROXY_TYPE) \
V(JS_MODULE_NAMESPACE_TYPE) \
V(JS_SPECIAL_API_OBJECT_TYPE) \
V(JS_VALUE_TYPE) \
V(JS_MESSAGE_OBJECT_TYPE) \
V(JS_DATE_TYPE) \
V(JS_API_OBJECT_TYPE) \
V(JS_OBJECT_TYPE) \
V(JS_ARGUMENTS_TYPE) \
V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
V(JS_GENERATOR_OBJECT_TYPE) \
V(JS_ASYNC_GENERATOR_OBJECT_TYPE) \
V(JS_ARRAY_TYPE) \
V(JS_ARRAY_BUFFER_TYPE) \
V(JS_TYPED_ARRAY_TYPE) \
V(JS_DATA_VIEW_TYPE) \
V(JS_SET_TYPE) \
V(JS_MAP_TYPE) \
V(JS_SET_KEY_VALUE_ITERATOR_TYPE) \
V(JS_SET_VALUE_ITERATOR_TYPE) \
V(JS_MAP_KEY_ITERATOR_TYPE) \
V(JS_MAP_KEY_VALUE_ITERATOR_TYPE) \
V(JS_MAP_VALUE_ITERATOR_TYPE) \
V(JS_WEAK_MAP_TYPE) \
V(JS_WEAK_SET_TYPE) \
V(JS_PROMISE_TYPE) \
V(JS_REGEXP_TYPE) \
V(JS_ERROR_TYPE) \
V(JS_ASYNC_FROM_SYNC_ITERATOR_TYPE) \
V(JS_STRING_ITERATOR_TYPE) \
\
ARRAY_ITERATOR_TYPE_LIST(V) \
\
V(WASM_INSTANCE_TYPE) \
V(WASM_MEMORY_TYPE) \
V(WASM_MODULE_TYPE) \
V(WASM_TABLE_TYPE) \
V(JS_BOUND_FUNCTION_TYPE) \
V(JS_FUNCTION_TYPE)
// Since string types are not consecutive, this macro is used to
// iterate over them.
#define STRING_TYPE_LIST(V) \
V(STRING_TYPE, kVariableSizeSentinel, string, String) \
V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
OneByteString) \
V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
ConsOneByteString) \
V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
SlicedOneByteString) \
V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
ExternalString) \
V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
external_one_byte_string, ExternalOneByteString) \
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
external_string_with_one_byte_data, ExternalStringWithOneByteData) \
V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
short_external_string, ShortExternalString) \
V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
short_external_one_byte_string, ShortExternalOneByteString) \
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
ExternalTwoByteString::kShortSize, \
short_external_string_with_one_byte_data, \
ShortExternalStringWithOneByteData) \
\
V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
InternalizedString) \
V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
one_byte_internalized_string, OneByteInternalizedString) \
V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
external_internalized_string, ExternalInternalizedString) \
V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
ExternalTwoByteString::kSize, \
external_internalized_string_with_one_byte_data, \
ExternalInternalizedStringWithOneByteData) \
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
ExternalTwoByteString::kShortSize, short_external_internalized_string, \
ShortExternalInternalizedString) \
V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
ExternalOneByteString::kShortSize, \
short_external_one_byte_internalized_string, \
ShortExternalOneByteInternalizedString) \
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
ExternalTwoByteString::kShortSize, \
short_external_internalized_string_with_one_byte_data, \
ShortExternalInternalizedStringWithOneByteData) \
V(THIN_STRING_TYPE, ThinString::kSize, thin_string, ThinString) \
V(THIN_ONE_BYTE_STRING_TYPE, ThinString::kSize, thin_one_byte_string, \
ThinOneByteString)
#define ARRAY_ITERATOR_TYPE_LIST(V) \
V(JS_TYPED_ARRAY_KEY_ITERATOR_TYPE) \
V(JS_FAST_ARRAY_KEY_ITERATOR_TYPE) \
V(JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE) \
\
V(JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
\
V(JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
V(JS_GENERIC_ARRAY_KEY_VALUE_ITERATOR_TYPE) \
\
V(JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_INT8_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_INT16_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_INT32_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE) \
\
V(JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE) \
V(JS_GENERIC_ARRAY_VALUE_ITERATOR_TYPE)
// A struct is a simple object a set of object-valued fields. Including an
// object type in this causes the compiler to generate most of the boilerplate
// code for the class including allocation and garbage collection routines,
// casts and predicates. All you need to define is the class, methods and
// object verification routines. Easy, no?
//
// Note that for subtle reasons related to the ordering or numerical values of
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
// manually.
#define STRUCT_LIST(V) \
V(ACCESSOR_INFO, AccessorInfo, accessor_info) \
V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
V(ALLOCATION_SITE, AllocationSite, allocation_site) \
V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
V(SCRIPT, Script, script) \
V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
V(PROMISE_RESOLVE_THENABLE_JOB_INFO, PromiseResolveThenableJobInfo, \
promise_resolve_thenable_job_info) \
V(PROMISE_REACTION_JOB_INFO, PromiseReactionJobInfo, \
promise_reaction_job_info) \
V(DEBUG_INFO, DebugInfo, debug_info) \
V(STACK_FRAME_INFO, StackFrameInfo, stack_frame_info) \
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
V(PROTOTYPE_INFO, PrototypeInfo, prototype_info) \
V(TUPLE2, Tuple2, tuple2) \
V(TUPLE3, Tuple3, tuple3) \
V(CONTEXT_EXTENSION, ContextExtension, context_extension) \
V(MODULE, Module, module) \
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
V(MODULE_INFO_ENTRY, ModuleInfoEntry, module_info_entry) \
V(ASYNC_GENERATOR_REQUEST, AsyncGeneratorRequest, async_generator_request)
// We use the full 8 bits of the instance_type field to encode heap object
// instance types. The high-order bit (bit 7) is set if the object is not a
// string, and cleared if it is a string.
const uint32_t kIsNotStringMask = 0x80;
const uint32_t kStringTag = 0x0;
const uint32_t kNotStringTag = 0x80;
// Bit 6 indicates that the object is an internalized string (if set) or not.
// Bit 7 has to be clear as well.
const uint32_t kIsNotInternalizedMask = 0x40;
const uint32_t kNotInternalizedTag = 0x40;
const uint32_t kInternalizedTag = 0x0;
// If bit 7 is clear then bit 3 indicates whether the string consists of
// two-byte characters or one-byte characters.
const uint32_t kStringEncodingMask = 0x8;
const uint32_t kTwoByteStringTag = 0x0;
const uint32_t kOneByteStringTag = 0x8;
// If bit 7 is clear, the low-order 3 bits indicate the representation
// of the string.
const uint32_t kStringRepresentationMask = 0x07;
enum StringRepresentationTag {
kSeqStringTag = 0x0,
kConsStringTag = 0x1,
kExternalStringTag = 0x2,
kSlicedStringTag = 0x3,
kThinStringTag = 0x5
};
const uint32_t kIsIndirectStringMask = 0x1;
const uint32_t kIsIndirectStringTag = 0x1;
STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
STATIC_ASSERT((kConsStringTag &
kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
STATIC_ASSERT((kSlicedStringTag &
kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
STATIC_ASSERT((kThinStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
// If bit 7 is clear, then bit 4 indicates whether this two-byte
// string actually contains one byte data.
const uint32_t kOneByteDataHintMask = 0x10;
const uint32_t kOneByteDataHintTag = 0x10;
// If bit 7 is clear and string representation indicates an external string,
// then bit 5 indicates whether the data pointer is cached.
const uint32_t kShortExternalStringMask = 0x20;
const uint32_t kShortExternalStringTag = 0x20;
// A ConsString with an empty string as the right side is a candidate
// for being shortcut by the garbage collector. We don't allocate any
// non-flat internalized strings, so we do not shortcut them thereby
// avoiding turning internalized strings into strings. The bit-masks
// below contain the internalized bit as additional safety.
// See heap.cc, mark-compact.cc and objects-visiting.cc.
const uint32_t kShortcutTypeMask =
kIsNotStringMask |
kIsNotInternalizedMask |
kStringRepresentationMask;
const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
static inline bool IsShortcutCandidate(int type) {
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
}
enum InstanceType : uint8_t {
// String types.
INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag |
kInternalizedTag, // FIRST_PRIMITIVE_TYPE
ONE_BYTE_INTERNALIZED_STRING_TYPE =
kOneByteStringTag | kSeqStringTag | kInternalizedTag,
EXTERNAL_INTERNALIZED_STRING_TYPE =
kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
kOneByteStringTag | kExternalStringTag | kInternalizedTag,
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
kInternalizedTag,
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
kShortExternalStringTag |
kInternalizedTag,
SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
kInternalizedTag,
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
kShortExternalStringTag | kInternalizedTag,
STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
ONE_BYTE_STRING_TYPE =
ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
CONS_ONE_BYTE_STRING_TYPE =
kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
SLICED_STRING_TYPE =
kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
SLICED_ONE_BYTE_STRING_TYPE =
kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
EXTERNAL_STRING_TYPE =
EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
EXTERNAL_ONE_BYTE_STRING_TYPE =
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
kNotInternalizedTag,
SHORT_EXTERNAL_STRING_TYPE =
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
kNotInternalizedTag,
THIN_STRING_TYPE = kTwoByteStringTag | kThinStringTag | kNotInternalizedTag,
THIN_ONE_BYTE_STRING_TYPE =
kOneByteStringTag | kThinStringTag | kNotInternalizedTag,
// Non-string names
SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
// Other primitives (cannot contain non-map-word pointers to heap objects).
HEAP_NUMBER_TYPE,
BIGINT_TYPE,
ODDBALL_TYPE, // LAST_PRIMITIVE_TYPE
// Objects allocated in their own spaces (never in new space).
MAP_TYPE,
CODE_TYPE,
// "Data", objects that cannot contain non-map-word pointers to heap
// objects.
MUTABLE_HEAP_NUMBER_TYPE,
FOREIGN_TYPE,
BYTE_ARRAY_TYPE,
BYTECODE_ARRAY_TYPE,
FREE_SPACE_TYPE,
FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
FIXED_UINT8_ARRAY_TYPE,
FIXED_INT16_ARRAY_TYPE,
FIXED_UINT16_ARRAY_TYPE,
FIXED_INT32_ARRAY_TYPE,
FIXED_UINT32_ARRAY_TYPE,
FIXED_FLOAT32_ARRAY_TYPE,
FIXED_FLOAT64_ARRAY_TYPE,
FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
FIXED_DOUBLE_ARRAY_TYPE,
FILLER_TYPE, // LAST_DATA_TYPE
// Structs.
ACCESSOR_INFO_TYPE,
ACCESSOR_PAIR_TYPE,
ACCESS_CHECK_INFO_TYPE,
INTERCEPTOR_INFO_TYPE,
FUNCTION_TEMPLATE_INFO_TYPE,
OBJECT_TEMPLATE_INFO_TYPE,
ALLOCATION_SITE_TYPE,
ALLOCATION_MEMENTO_TYPE,
SCRIPT_TYPE,
ALIASED_ARGUMENTS_ENTRY_TYPE,
PROMISE_RESOLVE_THENABLE_JOB_INFO_TYPE,
PROMISE_REACTION_JOB_INFO_TYPE,
DEBUG_INFO_TYPE,
STACK_FRAME_INFO_TYPE,
PROTOTYPE_INFO_TYPE,
TUPLE2_TYPE,
TUPLE3_TYPE,
CONTEXT_EXTENSION_TYPE,
MODULE_TYPE,
MODULE_INFO_ENTRY_TYPE,
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
ASYNC_GENERATOR_REQUEST_TYPE,
FIXED_ARRAY_TYPE,
HASH_TABLE_TYPE,
FEEDBACK_VECTOR_TYPE,
TRANSITION_ARRAY_TYPE,
PROPERTY_ARRAY_TYPE,
SHARED_FUNCTION_INFO_TYPE,
CELL_TYPE,
WEAK_CELL_TYPE,
PROPERTY_CELL_TYPE,
SMALL_ORDERED_HASH_MAP_TYPE,
SMALL_ORDERED_HASH_SET_TYPE,
CODE_DATA_CONTAINER_TYPE,
// All the following types are subtypes of JSReceiver, which corresponds to
// objects in the JS sense. The first and the last type in this range are
// the two forms of function. This organization enables using the same
// compares for checking the JS_RECEIVER and the NONCALLABLE_JS_OBJECT range.
JS_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE
JS_GLOBAL_OBJECT_TYPE, // FIRST_JS_OBJECT_TYPE
JS_GLOBAL_PROXY_TYPE,
JS_MODULE_NAMESPACE_TYPE,
// Like JS_API_OBJECT_TYPE, but requires access checks and/or has
// interceptors.
JS_SPECIAL_API_OBJECT_TYPE, // LAST_SPECIAL_RECEIVER_TYPE
JS_VALUE_TYPE, // LAST_CUSTOM_ELEMENTS_RECEIVER
JS_MESSAGE_OBJECT_TYPE,
JS_DATE_TYPE,
// Like JS_OBJECT_TYPE, but created from API function.
JS_API_OBJECT_TYPE,
JS_OBJECT_TYPE,
JS_ARGUMENTS_TYPE,
JS_CONTEXT_EXTENSION_OBJECT_TYPE,
JS_GENERATOR_OBJECT_TYPE,
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
JS_ASYNC_GENERATOR_OBJECT_TYPE,
JS_ARRAY_TYPE,
JS_ARRAY_BUFFER_TYPE,
JS_TYPED_ARRAY_TYPE,
JS_DATA_VIEW_TYPE,
JS_SET_TYPE,
JS_MAP_TYPE,
JS_SET_KEY_VALUE_ITERATOR_TYPE,
JS_SET_VALUE_ITERATOR_TYPE,
JS_MAP_KEY_ITERATOR_TYPE,
JS_MAP_KEY_VALUE_ITERATOR_TYPE,
JS_MAP_VALUE_ITERATOR_TYPE,
JS_WEAK_MAP_TYPE,
JS_WEAK_SET_TYPE,
JS_PROMISE_TYPE,
JS_REGEXP_TYPE,
JS_ERROR_TYPE,
JS_ASYNC_FROM_SYNC_ITERATOR_TYPE,
JS_STRING_ITERATOR_TYPE,
#define ARRAY_ITERATOR_TYPE(type) type,
ARRAY_ITERATOR_TYPE_LIST(ARRAY_ITERATOR_TYPE)
#undef ARRAY_ITERATOR_TYPE
WASM_INSTANCE_TYPE,
WASM_MEMORY_TYPE,
WASM_MODULE_TYPE,
WASM_TABLE_TYPE,
JS_BOUND_FUNCTION_TYPE,
JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
// Pseudo-types
FIRST_TYPE = 0x0,
LAST_TYPE = JS_FUNCTION_TYPE,
FIRST_NAME_TYPE = FIRST_TYPE,
LAST_NAME_TYPE = SYMBOL_TYPE,
FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
FIRST_PRIMITIVE_TYPE = FIRST_NAME_TYPE,
LAST_PRIMITIVE_TYPE = ODDBALL_TYPE,
FIRST_FUNCTION_TYPE = JS_BOUND_FUNCTION_TYPE,
LAST_FUNCTION_TYPE = JS_FUNCTION_TYPE,
// Boundaries for testing for a fixed typed array.
FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
// Boundary for promotion to old space.
LAST_DATA_TYPE = FILLER_TYPE,
// Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
// Note that there is no range for JSObject or JSProxy, since their subtypes
// are not continuous in this enum! The enum ranges instead reflect the
// external class names, where proxies are treated as either ordinary objects,
// or functions.
FIRST_JS_RECEIVER_TYPE = JS_PROXY_TYPE,
LAST_JS_RECEIVER_TYPE = LAST_TYPE,
// Boundaries for testing the types represented as JSObject
FIRST_JS_OBJECT_TYPE = JS_GLOBAL_OBJECT_TYPE,
LAST_JS_OBJECT_TYPE = LAST_TYPE,
// Boundary for testing JSReceivers that need special property lookup handling
LAST_SPECIAL_RECEIVER_TYPE = JS_SPECIAL_API_OBJECT_TYPE,
// Boundary case for testing JSReceivers that may have elements while having
// an empty fixed array as elements backing store. This is true for string
// wrappers.
LAST_CUSTOM_ELEMENTS_RECEIVER = JS_VALUE_TYPE,
FIRST_ARRAY_KEY_ITERATOR_TYPE = JS_TYPED_ARRAY_KEY_ITERATOR_TYPE,
LAST_ARRAY_KEY_ITERATOR_TYPE = JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE,
FIRST_ARRAY_KEY_VALUE_ITERATOR_TYPE = JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE,
LAST_ARRAY_KEY_VALUE_ITERATOR_TYPE = JS_GENERIC_ARRAY_KEY_VALUE_ITERATOR_TYPE,
FIRST_ARRAY_VALUE_ITERATOR_TYPE = JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE,
LAST_ARRAY_VALUE_ITERATOR_TYPE = JS_GENERIC_ARRAY_VALUE_ITERATOR_TYPE,
FIRST_ARRAY_ITERATOR_TYPE = FIRST_ARRAY_KEY_ITERATOR_TYPE,
LAST_ARRAY_ITERATOR_TYPE = LAST_ARRAY_VALUE_ITERATOR_TYPE,
[turbofan] Inline Map and Set iterators into optimized code. This CL inlines the following builtins into TurboFan - %MapIteratorPrototype%.next - %SetIteratorPrototype%.next following the design that we are using for Array iteration already (different instance types for the different kinds of iterators). Details can be found in the relevant design document at: https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8 The key to great performance here is to ensure that the inlined code allows escape analysis and scalar replacement of aggregates to remove the allocations for the iterator itself as well as the iterator results and potential key/value arrays in the simple case of a for-of loop (and by extension also in other constructs that reduce to for-of loops internally), i.e.: const s = new Set; // ... do something with s for (const x of s) { // ... } Here the for-of loop shouldn't perform any allocations of helper objects. Drive-by-fix: Replace the ExistsJSMapWithness in JSBuiltinReducer with a more general HasInstanceTypeWitness, similar to what's in JSCallReducer. Also migrate the {Map,Set}.prototype.size getter inlining to the JSBuiltinReducer, so that everything is in a single place. R=jgruber@chromium.org Bug: v8:6344, v8:6571, chromium:740122 Change-Id: I09cb506fe26ed3e10d7dcb2f95ec4415e639582d Reviewed-on: https://chromium-review.googlesource.com/570159 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#46655}
2017-07-14 05:35:21 +00:00
FIRST_SET_ITERATOR_TYPE = JS_SET_KEY_VALUE_ITERATOR_TYPE,
LAST_SET_ITERATOR_TYPE = JS_SET_VALUE_ITERATOR_TYPE,
FIRST_MAP_ITERATOR_TYPE = JS_MAP_KEY_ITERATOR_TYPE,
LAST_MAP_ITERATOR_TYPE = JS_MAP_VALUE_ITERATOR_TYPE,
};
STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
STATIC_ASSERT(JS_API_OBJECT_TYPE == Internals::kJSApiObjectType);
STATIC_ASSERT(JS_SPECIAL_API_OBJECT_TYPE == Internals::kJSSpecialApiObjectType);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os,
InstanceType instance_type);
#define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
V(BYTECODE_ARRAY_CONSTANT_POOL_SUB_TYPE) \
V(BYTECODE_ARRAY_HANDLER_TABLE_SUB_TYPE) \
V(CODE_STUBS_TABLE_SUB_TYPE) \
V(COMPILATION_CACHE_TABLE_SUB_TYPE) \
V(CONTEXT_SUB_TYPE) \
V(COPY_ON_WRITE_SUB_TYPE) \
V(DEOPTIMIZATION_DATA_SUB_TYPE) \
V(DESCRIPTOR_ARRAY_SUB_TYPE) \
V(EMBEDDED_OBJECT_SUB_TYPE) \
V(ENUM_CACHE_SUB_TYPE) \
V(ENUM_INDICES_CACHE_SUB_TYPE) \
V(DEPENDENT_CODE_SUB_TYPE) \
V(DICTIONARY_ELEMENTS_SUB_TYPE) \
V(DICTIONARY_PROPERTIES_SUB_TYPE) \
V(EMPTY_PROPERTIES_DICTIONARY_SUB_TYPE) \
V(PACKED_ELEMENTS_SUB_TYPE) \
V(FAST_PROPERTIES_SUB_TYPE) \
V(FAST_TEMPLATE_INSTANTIATIONS_CACHE_SUB_TYPE) \
V(HANDLER_TABLE_SUB_TYPE) \
V(JS_COLLECTION_SUB_TYPE) \
V(JS_WEAK_COLLECTION_SUB_TYPE) \
V(NOSCRIPT_SHARED_FUNCTION_INFOS_SUB_TYPE) \
V(NUMBER_STRING_CACHE_SUB_TYPE) \
V(OBJECT_TO_CODE_SUB_TYPE) \
V(OPTIMIZED_CODE_LITERALS_SUB_TYPE) \
V(OPTIMIZED_CODE_MAP_SUB_TYPE) \
V(PROTOTYPE_USERS_SUB_TYPE) \
V(REGEXP_MULTIPLE_CACHE_SUB_TYPE) \
V(RETAINED_MAPS_SUB_TYPE) \
V(SCOPE_INFO_SUB_TYPE) \
V(SCRIPT_LIST_SUB_TYPE) \
V(SERIALIZED_TEMPLATES_SUB_TYPE) \
V(SHARED_FUNCTION_INFOS_SUB_TYPE) \
V(SINGLE_CHARACTER_STRING_CACHE_SUB_TYPE) \
V(SLOW_TEMPLATE_INSTANTIATIONS_CACHE_SUB_TYPE) \
V(STRING_SPLIT_CACHE_SUB_TYPE) \
V(STRING_TABLE_SUB_TYPE) \
V(TEMPLATE_INFO_SUB_TYPE) \
V(FEEDBACK_METADATA_SUB_TYPE) \
V(WEAK_NEW_SPACE_OBJECT_TO_CODE_SUB_TYPE)
enum FixedArraySubInstanceType {
#define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
#undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
LAST_FIXED_ARRAY_SUB_TYPE = WEAK_NEW_SPACE_OBJECT_TO_CODE_SUB_TYPE
};
// Result of an abstract relational comparison of x and y, implemented according
// to ES6 section 7.2.11 Abstract Relational Comparison.
enum class ComparisonResult {
kLessThan, // x < y
kEqual, // x = y
kGreaterThan, // x > y
kUndefined // at least one of x or y was undefined or NaN
};
// (Returns false whenever {result} is kUndefined.)
bool ComparisonResultToBool(Operation op, ComparisonResult result);
class AbstractCode;
class AccessorPair;
class AllocationSite;
class Cell;
class ConsString;
class DependentCode;
class ElementsAccessor;
class EnumCache;
class FixedArrayBase;
class PropertyArray;
class FunctionLiteral;
class JSGlobalObject;
class KeyAccumulator;
class LayoutDescriptor;
class LookupIterator;
class FieldType;
class Module;
class ModuleInfoEntry;
class ObjectHashTable;
class ObjectVisitor;
class PropertyCell;
class PropertyDescriptor;
class RootVisitor;
class SafepointEntry;
class SharedFunctionInfo;
class StringStream;
class TypeFeedbackInfo;
class FeedbackMetadata;
class FeedbackVector;
class WeakCell;
class TransitionArray;
class TemplateList;
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
class TemplateMap;
template <typename T>
class ZoneForwardList;
// A template-ized version of the IsXXX functions.
template <class C> inline bool Is(Object* obj);
#ifdef OBJECT_PRINT
#define DECL_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
#else
#define DECL_PRINTER(Name)
#endif
#define OBJECT_TYPE_LIST(V) \
V(Smi) \
V(LayoutDescriptor) \
V(HeapObject) \
V(Primitive) \
V(Number) \
V(Numeric)
#define HEAP_OBJECT_ORDINARY_TYPE_LIST(V) \
V(AbstractCode) \
V(AccessCheckNeeded) \
V(ArrayList) \
V(BigInt) \
V(BoilerplateDescription) \
V(Boolean) \
V(BreakPoint) \
V(BreakPointInfo) \
V(ByteArray) \
V(BytecodeArray) \
V(Callable) \
V(CallHandlerInfo) \
V(Cell) \
V(Code) \
V(CodeDataContainer) \
V(CompilationCacheTable) \
V(ConsString) \
V(ConstantElementsPair) \
V(Constructor) \
V(Context) \
V(CoverageInfo) \
V(DeoptimizationData) \
V(DependentCode) \
V(DescriptorArray) \
V(EnumCache) \
V(External) \
V(ExternalOneByteString) \
V(ExternalString) \
V(ExternalTwoByteString) \
V(FeedbackMetadata) \
V(FeedbackVector) \
V(Filler) \
V(FixedArray) \
V(FixedArrayBase) \
V(FixedDoubleArray) \
V(FixedFloat32Array) \
V(FixedFloat64Array) \
V(FixedInt16Array) \
V(FixedInt32Array) \
V(FixedInt8Array) \
V(FixedTypedArrayBase) \
V(FixedUint16Array) \
V(FixedUint32Array) \
V(FixedUint8Array) \
V(FixedUint8ClampedArray) \
V(Foreign) \
V(FrameArray) \
V(FreeSpace) \
V(Function) \
V(HandlerTable) \
V(HeapNumber) \
V(InternalizedString) \
V(JSArgumentsObject) \
V(JSArray) \
V(JSArrayBuffer) \
V(JSArrayBufferView) \
V(JSArrayIterator) \
V(JSAsyncFromSyncIterator) \
V(JSAsyncGeneratorObject) \
V(JSBoundFunction) \
V(JSCollection) \
V(JSContextExtensionObject) \
V(JSDataView) \
V(JSDate) \
V(JSError) \
V(JSFunction) \
V(JSGeneratorObject) \
V(JSGlobalObject) \
V(JSGlobalProxy) \
V(JSMap) \
V(JSMapIterator) \
V(JSMessageObject) \
V(JSModuleNamespace) \
V(JSObject) \
V(JSPromise) \
V(JSProxy) \
V(JSReceiver) \
V(JSRegExp) \
V(JSSet) \
V(JSSetIterator) \
V(JSSloppyArgumentsObject) \
V(JSStringIterator) \
V(JSTypedArray) \
V(JSValue) \
V(JSWeakCollection) \
V(JSWeakMap) \
V(JSWeakSet) \
V(Map) \
V(MapCache) \
V(ModuleInfo) \
V(MutableHeapNumber) \
V(Name) \
V(NativeContext) \
V(NormalizedMapCache) \
V(ObjectHashSet) \
V(ObjectHashTable) \
V(Oddball) \
V(PreParsedScopeData) \
V(PromiseCapability) \
V(PropertyArray) \
V(PropertyCell) \
V(PropertyDescriptorObject) \
V(RegExpMatchInfo) \
V(ScopeInfo) \
V(ScriptContextTable) \
V(SeqOneByteString) \
V(SeqString) \
V(SeqTwoByteString) \
V(SharedFunctionInfo) \
V(SlicedString) \
V(SloppyArgumentsElements) \
V(SmallOrderedHashMap) \
V(SmallOrderedHashSet) \
V(SourcePositionTableWithFrameCache) \
V(String) \
V(StringSet) \
V(StringTable) \
V(StringWrapper) \
V(Struct) \
V(Symbol) \
V(TemplateInfo) \
V(TemplateList) \
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
V(TemplateMap) \
V(TemplateObjectDescription) \
V(ThinString) \
V(TransitionArray) \
V(TypeFeedbackInfo) \
V(Undetectable) \
V(UniqueName) \
V(UnseededNumberDictionary) \
V(WasmInstanceObject) \
V(WasmMemoryObject) \
V(WasmModuleObject) \
V(WasmTableObject) \
V(WeakCell) \
V(WeakFixedArray) \
V(WeakHashTable)
#define HEAP_OBJECT_TEMPLATE_TYPE_LIST(V) \
V(Dictionary) \
V(HashTable) \
V(OrderedHashTable)
#define HEAP_OBJECT_TYPE_LIST(V) \
HEAP_OBJECT_ORDINARY_TYPE_LIST(V) \
HEAP_OBJECT_TEMPLATE_TYPE_LIST(V)
#define ODDBALL_LIST(V) \
V(Undefined, undefined_value) \
V(Null, null_value) \
V(TheHole, the_hole_value) \
V(Exception, exception) \
V(Uninitialized, uninitialized_value) \
V(True, true_value) \
V(False, false_value) \
V(ArgumentsMarker, arguments_marker) \
V(OptimizedOut, optimized_out) \
V(StaleRegister, stale_register)
// The element types selection for CreateListFromArrayLike.
enum class ElementTypes { kAll, kStringAndSymbol };
// Object is the abstract superclass for all classes in the
// object hierarchy.
// Object does not use any virtual functions to avoid the
// allocation of the C++ vtable.
// Since both Smi and HeapObject are subclasses of Object no
// data members can be present in Object.
class Object {
public:
// Type testing.
bool IsObject() const { return true; }
#define IS_TYPE_FUNCTION_DECL(Type) INLINE(bool Is##Type() const);
OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
#undef IS_TYPE_FUNCTION_DECL
#define IS_TYPE_FUNCTION_DECL(Type, Value) \
INLINE(bool Is##Type(Isolate* isolate) const);
ODDBALL_LIST(IS_TYPE_FUNCTION_DECL)
#undef IS_TYPE_FUNCTION_DECL
INLINE(bool IsNullOrUndefined(Isolate* isolate) const);
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
// a keyed store is of the form a[expression] = foo.
enum StoreFromKeyed {
MAY_BE_STORE_FROM_KEYED,
CERTAINLY_NOT_STORE_FROM_KEYED
};
enum class Conversion { kToNumber, kToNumeric };
#define RETURN_FAILURE(isolate, should_throw, call) \
do { \
if ((should_throw) == kDontThrow) { \
return Just(false); \
} else { \
isolate->Throw(*isolate->factory()->call); \
return Nothing<bool>(); \
} \
} while (false)
#define MAYBE_RETURN(call, value) \
do { \
if ((call).IsNothing()) return value; \
} while (false)
#define MAYBE_RETURN_NULL(call) MAYBE_RETURN(call, MaybeHandle<Object>())
#define DECL_STRUCT_PREDICATE(NAME, Name, name) INLINE(bool Is##Name() const);
STRUCT_LIST(DECL_STRUCT_PREDICATE)
#undef DECL_STRUCT_PREDICATE
// ES6, #sec-isarray. NOT to be confused with %_IsArray.
INLINE(MUST_USE_RESULT static Maybe<bool> IsArray(Handle<Object> object));
INLINE(bool IsNameDictionary() const);
INLINE(bool IsGlobalDictionary() const);
INLINE(bool IsSeededNumberDictionary() const);
INLINE(bool IsOrderedHashSet() const);
INLINE(bool IsOrderedHashMap() const);
INLINE(bool IsSmallOrderedHashTable() const);
// Extract the number.
inline double Number() const;
INLINE(bool IsNaN() const);
INLINE(bool IsMinusZero() const);
V8_EXPORT_PRIVATE bool ToInt32(int32_t* value);
inline bool ToUint32(uint32_t* value) const;
inline Representation OptimalRepresentation();
inline ElementsKind OptimalElementsKind();
inline bool FitsRepresentation(Representation representation);
// Checks whether two valid primitive encodings of a property name resolve to
// the same logical property. E.g., the smi 1, the string "1" and the double
// 1 all refer to the same property, so this helper will return true.
inline bool KeyEquals(Object* other);
inline bool FilterKey(PropertyFilter filter);
Handle<FieldType> OptimalType(Isolate* isolate,
Representation representation);
inline static Handle<Object> NewStorageFor(Isolate* isolate,
Handle<Object> object,
Representation representation);
inline static Handle<Object> WrapForRead(Isolate* isolate,
Handle<Object> object,
Representation representation);
// Returns true if the object is of the correct type to be used as a
// implementation of a JSObject's elements.
inline bool HasValidElements();
inline bool HasSpecificClassOf(String* name);
bool BooleanValue(); // ECMA-262 9.2.
// ES6 section 7.2.11 Abstract Relational Comparison
MUST_USE_RESULT static Maybe<ComparisonResult> Compare(Handle<Object> x,
Handle<Object> y);
// ES6 section 7.2.12 Abstract Equality Comparison
MUST_USE_RESULT static Maybe<bool> Equals(Handle<Object> x, Handle<Object> y);
// ES6 section 7.2.13 Strict Equality Comparison
bool StrictEquals(Object* that);
// ES6 section 7.1.13 ToObject
// Convert to a JSObject if needed.
// native_context is used when creating wrapper object.
//
// Passing a non-null method_name allows us to give a more informative
// error message for those cases where ToObject is being called on
// the receiver of a built-in method.
MUST_USE_RESULT static inline MaybeHandle<JSReceiver> ToObject(
Isolate* isolate, Handle<Object> object,
const char* method_name = nullptr);
MUST_USE_RESULT static MaybeHandle<JSReceiver> ToObject(
Isolate* isolate, Handle<Object> object, Handle<Context> native_context,
const char* method_name = nullptr);
// ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee.
MUST_USE_RESULT static MaybeHandle<JSReceiver> ConvertReceiver(
Isolate* isolate, Handle<Object> object);
// ES6 section 7.1.14 ToPropertyKey
MUST_USE_RESULT static inline MaybeHandle<Name> ToName(Isolate* isolate,
Handle<Object> input);
// ES6 section 7.1.1 ToPrimitive
MUST_USE_RESULT static inline MaybeHandle<Object> ToPrimitive(
Handle<Object> input, ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
// ES6 section 7.1.3 ToNumber
MUST_USE_RESULT static inline MaybeHandle<Object> ToNumber(
Handle<Object> input);
MUST_USE_RESULT static inline MaybeHandle<Object> ToNumeric(
Handle<Object> input);
// ES6 section 7.1.4 ToInteger
MUST_USE_RESULT static inline MaybeHandle<Object> ToInteger(
Isolate* isolate, Handle<Object> input);
// ES6 section 7.1.5 ToInt32
MUST_USE_RESULT static inline MaybeHandle<Object> ToInt32(
Isolate* isolate, Handle<Object> input);
// ES6 section 7.1.6 ToUint32
MUST_USE_RESULT inline static MaybeHandle<Object> ToUint32(
Isolate* isolate, Handle<Object> input);
// ES6 section 7.1.12 ToString
MUST_USE_RESULT static inline MaybeHandle<String> ToString(
Isolate* isolate, Handle<Object> input);
static Handle<String> NoSideEffectsToString(Isolate* isolate,
Handle<Object> input);
// ES6 section 7.1.14 ToPropertyKey
MUST_USE_RESULT static inline MaybeHandle<Object> ToPropertyKey(
Isolate* isolate, Handle<Object> value);
// ES6 section 7.1.15 ToLength
MUST_USE_RESULT static inline MaybeHandle<Object> ToLength(
Isolate* isolate, Handle<Object> input);
Reland of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #2 id:170001 of https://codereview.chromium.org/2113593002/ ) Reason for revert: WebGL tests have been updated and rolled (at https://codereview.chromium.org/2227023002), so this should no longer fail outdated tests. Original issue's description: > Revert of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #8 id:140001 of https://codereview.chromium.org/2090353003/ ) > > Reason for revert: > Speculative revert to unblock roll: https://codereview.chromium.org/2107223003/ > > Original issue's description: > > Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. > > > > The spec was modified to relax some requirements which implementors had not been > > enforcing. Part of this process involved introducing a new abstract operation > > ToIndex, which had partial overlap with our existing semantics as well as some > > differences (most notably treating undefined as 0). Test262 tests were introduced to > > check for the new semantics, some of which we were failing. This patch amends the > > parts of our implementation corresponding to specification algorithms which use > > ToIndex to follow its semantics precisely. > > > > BUG=v8:4784,v8:5120 > > > > Committed: https://crrev.com/09720349ea058d178521ec58d0a5676443a5a132 > > Cr-Commit-Position: refs/heads/master@{#37406} > > TBR=littledan@chromium.org,adamk@chromium.org,bakkot@google.com > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG=v8:4784,v8:5120 > > Committed: https://crrev.com/b1f7f1f4e41a723d5f997738a07e35a031713b8f > Cr-Commit-Position: refs/heads/master@{#37417} TBR=littledan@chromium.org,adamk@chromium.org,hablich@chromium.org # Not skipping CQ checks because original CL landed more than 1 days ago. BUG=v8:4784,v8:5120 Review-Url: https://codereview.chromium.org/2247073004 Cr-Commit-Position: refs/heads/master@{#38689}
2016-08-17 17:38:34 +00:00
// ES6 section 7.1.17 ToIndex
MUST_USE_RESULT static inline MaybeHandle<Object> ToIndex(
Reland of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #2 id:170001 of https://codereview.chromium.org/2113593002/ ) Reason for revert: WebGL tests have been updated and rolled (at https://codereview.chromium.org/2227023002), so this should no longer fail outdated tests. Original issue's description: > Revert of Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. (patchset #8 id:140001 of https://codereview.chromium.org/2090353003/ ) > > Reason for revert: > Speculative revert to unblock roll: https://codereview.chromium.org/2107223003/ > > Original issue's description: > > Amend DataView, ArrayBuffer, and TypedArray methods to use ToIndex. > > > > The spec was modified to relax some requirements which implementors had not been > > enforcing. Part of this process involved introducing a new abstract operation > > ToIndex, which had partial overlap with our existing semantics as well as some > > differences (most notably treating undefined as 0). Test262 tests were introduced to > > check for the new semantics, some of which we were failing. This patch amends the > > parts of our implementation corresponding to specification algorithms which use > > ToIndex to follow its semantics precisely. > > > > BUG=v8:4784,v8:5120 > > > > Committed: https://crrev.com/09720349ea058d178521ec58d0a5676443a5a132 > > Cr-Commit-Position: refs/heads/master@{#37406} > > TBR=littledan@chromium.org,adamk@chromium.org,bakkot@google.com > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG=v8:4784,v8:5120 > > Committed: https://crrev.com/b1f7f1f4e41a723d5f997738a07e35a031713b8f > Cr-Commit-Position: refs/heads/master@{#37417} TBR=littledan@chromium.org,adamk@chromium.org,hablich@chromium.org # Not skipping CQ checks because original CL landed more than 1 days ago. BUG=v8:4784,v8:5120 Review-Url: https://codereview.chromium.org/2247073004 Cr-Commit-Position: refs/heads/master@{#38689}
2016-08-17 17:38:34 +00:00
Isolate* isolate, Handle<Object> input,
MessageTemplate::Template error_index);
// ES6 section 7.3.9 GetMethod
MUST_USE_RESULT static MaybeHandle<Object> GetMethod(
Handle<JSReceiver> receiver, Handle<Name> name);
// ES6 section 7.3.17 CreateListFromArrayLike
MUST_USE_RESULT static MaybeHandle<FixedArray> CreateListFromArrayLike(
Isolate* isolate, Handle<Object> object, ElementTypes element_types);
// Get length property and apply ToLength.
MUST_USE_RESULT static MaybeHandle<Object> GetLengthFromArrayLike(
Isolate* isolate, Handle<Object> object);
// ES6 section 12.5.6 The typeof Operator
static Handle<String> TypeOf(Isolate* isolate, Handle<Object> object);
// ES6 section 12.6 Multiplicative Operators
MUST_USE_RESULT static MaybeHandle<Object> Multiply(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> Divide(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> Modulus(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
// ES6 section 12.7 Additive Operators
MUST_USE_RESULT static MaybeHandle<Object> Add(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> Subtract(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
// ES6 section 12.8 Bitwise Shift Operators
MUST_USE_RESULT static MaybeHandle<Object> ShiftLeft(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> ShiftRight(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> ShiftRightLogical(
Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs);
// ES6 section 12.9 Relational Operators
MUST_USE_RESULT static inline Maybe<bool> GreaterThan(Handle<Object> x,
Handle<Object> y);
MUST_USE_RESULT static inline Maybe<bool> GreaterThanOrEqual(
Handle<Object> x, Handle<Object> y);
MUST_USE_RESULT static inline Maybe<bool> LessThan(Handle<Object> x,
Handle<Object> y);
MUST_USE_RESULT static inline Maybe<bool> LessThanOrEqual(Handle<Object> x,
Handle<Object> y);
// ES6 section 12.11 Binary Bitwise Operators
MUST_USE_RESULT static MaybeHandle<Object> BitwiseAnd(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> BitwiseOr(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
MUST_USE_RESULT static MaybeHandle<Object> BitwiseXor(Isolate* isolate,
Handle<Object> lhs,
Handle<Object> rhs);
// ES6 section 7.3.19 OrdinaryHasInstance (C, O).
MUST_USE_RESULT static MaybeHandle<Object> OrdinaryHasInstance(
Isolate* isolate, Handle<Object> callable, Handle<Object> object);
// ES6 section 12.10.4 Runtime Semantics: InstanceofOperator(O, C)
MUST_USE_RESULT static MaybeHandle<Object> InstanceOf(
Isolate* isolate, Handle<Object> object, Handle<Object> callable);
V8_EXPORT_PRIVATE MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
LookupIterator* it);
// ES6 [[Set]] (when passed kDontThrow)
// Invariants for this and related functions (unless stated otherwise):
// 1) When the result is Nothing, an exception is pending.
// 2) When passed kThrowOnError, the result is never Just(false).
// In some cases, an exception is thrown regardless of the ShouldThrow
// argument. These cases are either in accordance with the spec or not
// covered by it (eg., concerning API callbacks).
MUST_USE_RESULT static Maybe<bool> SetProperty(LookupIterator* it,
Handle<Object> value,
LanguageMode language_mode,
StoreFromKeyed store_mode);
MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
Handle<Object> object, Handle<Name> name, Handle<Object> value,
LanguageMode language_mode,
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
MUST_USE_RESULT static inline MaybeHandle<Object> SetPropertyOrElement(
Handle<Object> object, Handle<Name> name, Handle<Object> value,
LanguageMode language_mode,
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
MUST_USE_RESULT static Maybe<bool> SetSuperProperty(
LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
StoreFromKeyed store_mode);
MUST_USE_RESULT static Maybe<bool> CannotCreateProperty(
Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
Handle<Object> value, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> WriteToReadOnlyProperty(
LookupIterator* it, Handle<Object> value, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> WriteToReadOnlyProperty(
Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
Handle<Object> value, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> RedefineIncompatibleProperty(
Isolate* isolate, Handle<Object> name, Handle<Object> value,
ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> SetDataProperty(LookupIterator* it,
Handle<Object> value);
MUST_USE_RESULT static Maybe<bool> AddDataProperty(
LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
ShouldThrow should_throw, StoreFromKeyed store_mode);
MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
Handle<Object> object, Handle<Name> name);
MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
Handle<Object> receiver, Handle<Name> name, Handle<JSReceiver> holder);
MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
Handle<Object> object, Handle<Name> name);
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
LookupIterator* it);
MUST_USE_RESULT static Maybe<bool> SetPropertyWithAccessor(
LookupIterator* it, Handle<Object> value, ShouldThrow should_throw);
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
Handle<Object> receiver,
Handle<JSReceiver> getter);
MUST_USE_RESULT static Maybe<bool> SetPropertyWithDefinedSetter(
Handle<Object> receiver, Handle<JSReceiver> setter, Handle<Object> value,
ShouldThrow should_throw);
MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
Isolate* isolate, Handle<Object> object, uint32_t index);
MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
Isolate* isolate, Handle<Object> object, uint32_t index,
Handle<Object> value, LanguageMode language_mode);
// Returns the permanent hash code associated with this object. May return
// undefined if not yet created.
Object* GetHash();
// Returns the permanent hash code associated with this object depending on
// the actual object type. May create and store a hash code if needed and none
// exists.
Smi* GetOrCreateHash(Isolate* isolate);
static Smi* GetOrCreateHash(Isolate* isolate, Object* key);
// Checks whether this object has the same value as the given one. This
// function is implemented according to ES5, section 9.12 and can be used
// to implement the Harmony "egal" function.
V8_EXPORT_PRIVATE bool SameValue(Object* other);
// Checks whether this object has the same value as the given one.
// +0 and -0 are treated equal. Everything else is the same as SameValue.
// This function is implemented according to ES6, section 7.2.4 and is used
// by ES6 Map and Set.
bool SameValueZero(Object* other);
// ES6 section 9.4.2.3 ArraySpeciesCreate (part of it)
MUST_USE_RESULT static MaybeHandle<Object> ArraySpeciesConstructor(
Isolate* isolate, Handle<Object> original_array);
// ES6 section 7.3.20 SpeciesConstructor ( O, defaultConstructor )
MUST_USE_RESULT static MaybeHandle<Object> SpeciesConstructor(
Isolate* isolate, Handle<JSReceiver> recv,
Handle<JSFunction> default_ctor);
// Tries to convert an object to an array length. Returns true and sets the
// output parameter if it succeeds.
inline bool ToArrayLength(uint32_t* index) const;
// Tries to convert an object to an array index. Returns true and sets the
// output parameter if it succeeds. Equivalent to ToArrayLength, but does not
// allow kMaxUInt32.
inline bool ToArrayIndex(uint32_t* index) const;
// Returns true if the result of iterating over the object is the same
// (including observable effects) as simply accessing the properties between 0
// and length.
bool IterationHasObservableEffects();
DECL_VERIFIER(Object)
#ifdef VERIFY_HEAP
// Verify a pointer is a valid object pointer.
static void VerifyPointer(Object* p);
#endif
inline void VerifyApiCallResultType();
// Prints this object without details.
void ShortPrint(FILE* out = stdout);
// Prints this object without details to a message accumulator.
void ShortPrint(StringStream* accumulator);
void ShortPrint(std::ostream& os); // NOLINT
DECL_CAST(Object)
// Layout description.
static const int kHeaderSize = 0; // Object does not take up any space.
#ifdef OBJECT_PRINT
// For our gdb macros, we should perhaps change these in the future.
void Print();
// Prints this object with details.
void Print(std::ostream& os); // NOLINT
#else
void Print() { ShortPrint(); }
void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
#endif
private:
friend class LookupIterator;
friend class StringStream;
// Return the map of the root of object's prototype chain.
Map* GetPrototypeChainRootMap(Isolate* isolate) const;
// Helper for SetProperty and SetSuperProperty.
// Return value is only meaningful if [found] is set to true on return.
MUST_USE_RESULT static Maybe<bool> SetPropertyInternal(
LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
StoreFromKeyed store_mode, bool* found);
MUST_USE_RESULT static MaybeHandle<Name> ConvertToName(Isolate* isolate,
Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToPropertyKey(
Isolate* isolate, Handle<Object> value);
MUST_USE_RESULT static MaybeHandle<String> ConvertToString(
Isolate* isolate, Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToNumberOrNumeric(
Isolate* isolate, Handle<Object> input, Conversion mode);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToInteger(
Isolate* isolate, Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToInt32(
Isolate* isolate, Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToUint32(
Isolate* isolate, Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToLength(
Isolate* isolate, Handle<Object> input);
MUST_USE_RESULT static MaybeHandle<Object> ConvertToIndex(
Isolate* isolate, Handle<Object> input,
MessageTemplate::Template error_index);
DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
};
// In objects.h to be usable without objects-inl.h inclusion.
bool Object::IsSmi() const { return HAS_SMI_TAG(this); }
bool Object::IsHeapObject() const {
DCHECK_EQ(!IsSmi(), Internals::HasHeapObjectTag(this));
return !IsSmi();
}
struct Brief {
explicit Brief(const Object* const v) : value(v) {}
const Object* value;
};
V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, const Brief& v);
// Smi represents integer Numbers that can be stored in 31 bits.
// Smis are immediate which means they are NOT allocated in the heap.
// The this pointer has the following format: [31 bit signed int] 0
// For long smis it has the following format:
// [32 bit signed int] [31 bits zero padding] 0
// Smi stands for small integer.
class Smi: public Object {
public:
// Returns the integer value.
inline int value() const { return Internals::SmiValue(this); }
inline Smi* ToUint32Smi() {
if (value() <= 0) return Smi::kZero;
return Smi::FromInt(static_cast<uint32_t>(value()));
}
// Convert a Smi object to an int.
static inline int ToInt(const Object* object);
// Convert a value to a Smi object.
static inline Smi* FromInt(int value) {
DCHECK(Smi::IsValid(value));
return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
}
static inline Smi* FromIntptr(intptr_t value) {
DCHECK(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
}
template <typename E,
typename = typename std::enable_if<std::is_enum<E>::value>::type>
static inline Smi* FromEnum(E value) {
STATIC_ASSERT(sizeof(E) <= sizeof(int));
return FromInt(static_cast<int>(value));
}
// Returns whether value can be represented in a Smi.
static inline bool IsValid(intptr_t value) {
bool result = Internals::IsValidSmi(value);
DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
return result;
}
DECL_CAST(Smi)
// Dispatched behavior.
V8_EXPORT_PRIVATE void SmiPrint(std::ostream& os) const; // NOLINT
DECL_VERIFIER(Smi)
static constexpr Smi* const kZero = nullptr;
static const int kMinValue =
(static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
static const int kMaxValue = -(kMinValue + 1);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
};
// Heap objects typically have a map pointer in their first word. However,
// during GC other data (e.g. mark bits, forwarding addresses) is sometimes
// encoded in the first word. The class MapWord is an abstraction of the
// value in a heap object's first word.
class MapWord BASE_EMBEDDED {
public:
// Normal state: the map word contains a map pointer.
// Create a map word from a map pointer.
static inline MapWord FromMap(const Map* map);
// View this map word as a map pointer.
inline Map* ToMap() const;
// Scavenge collection: the map word of live objects in the from space
// contains a forwarding address (a heap object pointer in the to space).
// True if this map word is a forwarding address for a scavenge
// collection. Only valid during a scavenge collection (specifically,
// when all map words are heap object pointers, i.e. not during a full GC).
inline bool IsForwardingAddress() const;
// Create a map word from a forwarding address.
static inline MapWord FromForwardingAddress(HeapObject* object);
// View this map word as a forwarding address.
inline HeapObject* ToForwardingAddress();
static inline MapWord FromRawValue(uintptr_t value) {
return MapWord(value);
}
inline uintptr_t ToRawValue() {
return value_;
}
private:
// HeapObject calls the private constructor and directly reads the value.
friend class HeapObject;
explicit MapWord(uintptr_t value) : value_(value) {}
uintptr_t value_;
};
// HeapObject is the superclass for all classes describing heap allocated
// objects.
class HeapObject: public Object {
public:
// [map]: Contains a map which contains the object's reflective
// information.
inline Map* map() const;
inline void set_map(Map* value);
inline HeapObject** map_slot();
// The no-write-barrier version. This is OK if the object is white and in
// new space, or if the value is an immortal immutable object, like the maps
// of primitive (non-JS) objects like strings, heap numbers etc.
inline void set_map_no_write_barrier(Map* value);
// Get the map using acquire load.
inline Map* synchronized_map() const;
inline MapWord synchronized_map_word() const;
// Set the map using release store
inline void synchronized_set_map(Map* value);
inline void synchronized_set_map_word(MapWord map_word);
// Initialize the map immediately after the object is allocated.
// Do not use this outside Heap.
inline void set_map_after_allocation(
Map* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// During garbage collection, the map word of a heap object does not
// necessarily contain a map pointer.
inline MapWord map_word() const;
inline void set_map_word(MapWord map_word);
// The Heap the object was allocated in. Used also to access Isolate.
inline Heap* GetHeap() const;
// Convenience method to get current isolate.
inline Isolate* GetIsolate() const;
#define IS_TYPE_FUNCTION_DECL(Type) INLINE(bool Is##Type() const);
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
#undef IS_TYPE_FUNCTION_DECL
#define IS_TYPE_FUNCTION_DECL(Type, Value) \
INLINE(bool Is##Type(Isolate* isolate) const);
ODDBALL_LIST(IS_TYPE_FUNCTION_DECL)
#undef IS_TYPE_FUNCTION_DECL
INLINE(bool IsNullOrUndefined(Isolate* isolate) const);
#define DECL_STRUCT_PREDICATE(NAME, Name, name) INLINE(bool Is##Name() const);
STRUCT_LIST(DECL_STRUCT_PREDICATE)
#undef DECL_STRUCT_PREDICATE
// Converts an address to a HeapObject pointer.
static inline HeapObject* FromAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
}
// Returns the address of this HeapObject.
inline Address address() const {
return reinterpret_cast<Address>(const_cast<HeapObject*>(this)) -
kHeapObjectTag;
}
// Iterates over pointers contained in the object (including the Map).
// If it's not performance critical iteration use the non-templatized
// version.
void Iterate(ObjectVisitor* v);
template <typename ObjectVisitor>
inline void IterateFast(ObjectVisitor* v);
// Iterates over all pointers contained in the object except the
// first map pointer. The object type is given in the first
// parameter. This function does not access the map pointer in the
// object, and so is safe to call while the map pointer is modified.
// If it's not performance critical iteration use the non-templatized
// version.
void IterateBody(ObjectVisitor* v);
void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
template <typename ObjectVisitor>
inline void IterateBodyFast(ObjectVisitor* v);
template <typename ObjectVisitor>
inline void IterateBodyFast(InstanceType type, int object_size,
ObjectVisitor* v);
// Returns true if the object contains a tagged value at given offset.
// It is used for invalid slots filtering. If the offset points outside
// of the object or to the map word, the result is UNDEFINED (!!!).
bool IsValidSlot(int offset);
// Returns the heap object's size in bytes
inline int Size() const;
// Given a heap object's map pointer, returns the heap size in bytes
// Useful when the map pointer field is used for other purposes.
// GC internal.
inline int SizeFromMap(Map* map) const;
// Returns the field at offset in obj, as a read/write Object* reference.
// Does no checking, and is safe to use during GC, while maps are invalid.
// Does not invoke write barrier, so should only be assigned to
// during marking GC.
static inline Object** RawField(HeapObject* obj, int offset);
DECL_CAST(HeapObject)
// Return the write barrier mode for this. Callers of this function
// must be able to present a reference to an DisallowHeapAllocation
// object as a sign that they are not going to use this function
// from code that allocates and thus invalidates the returned write
// barrier mode.
inline WriteBarrierMode GetWriteBarrierMode(
const DisallowHeapAllocation& promise);
// Dispatched behavior.
void HeapObjectShortPrint(std::ostream& os); // NOLINT
#ifdef OBJECT_PRINT
void PrintHeader(std::ostream& os, const char* id); // NOLINT
#endif
DECL_PRINTER(HeapObject)
DECL_VERIFIER(HeapObject)
#ifdef VERIFY_HEAP
inline void VerifyObjectField(int offset);
inline void VerifySmiField(int offset);
// Verify a pointer is a valid HeapObject pointer that points to object
// areas in the heap.
static void VerifyHeapPointer(Object* p);
#endif
inline AllocationAlignment RequiredAlignment() const;
// Layout description.
// First field in a heap object is map.
static const int kMapOffset = Object::kHeaderSize;
static const int kHeaderSize = kMapOffset + kPointerSize;
STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
};
template <int start_offset, int end_offset, int size>
class FixedBodyDescriptor;
template <int start_offset>
class FlexibleBodyDescriptor;
// The HeapNumber class describes heap allocated numbers that cannot be
// represented in a Smi (small integer)
class HeapNumber: public HeapObject {
public:
// [value]: number value.
inline double value() const;
inline void set_value(double value);
inline uint64_t value_as_bits() const;
inline void set_value_as_bits(uint64_t bits);
DECL_CAST(HeapNumber)
V8_EXPORT_PRIVATE void HeapNumberPrint(std::ostream& os); // NOLINT
DECL_VERIFIER(HeapNumber)
inline int get_exponent();
inline int get_sign();
// Layout description.
static const int kValueOffset = HeapObject::kHeaderSize;
// IEEE doubles are two 32 bit words. The first is just mantissa, the second
// is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
// words within double numbers are endian dependent and they are set
// accordingly.
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const int kMantissaOffset = kValueOffset;
static const int kExponentOffset = kValueOffset + 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const int kMantissaOffset = kValueOffset + 4;
static const int kExponentOffset = kValueOffset;
#else
#error Unknown byte ordering
#endif
static const int kSize = kValueOffset + kDoubleSize;
static const uint32_t kSignMask = 0x80000000u;
static const uint32_t kExponentMask = 0x7ff00000u;
static const uint32_t kMantissaMask = 0xfffffu;
static const int kMantissaBits = 52;
static const int kExponentBits = 11;
static const int kExponentBias = 1023;
static const int kExponentShift = 20;
static const int kInfinityOrNanExponent =
(kExponentMask >> kExponentShift) - kExponentBias;
static const int kMantissaBitsInTopWord = 20;
static const int kNonMantissaBitsInTopWord = 12;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
};
enum EnsureElementsMode {
DONT_ALLOW_DOUBLE_ELEMENTS,
ALLOW_COPIED_DOUBLE_ELEMENTS,
ALLOW_CONVERTED_DOUBLE_ELEMENTS
};
// Indicator for one component of an AccessorPair.
enum AccessorComponent {
ACCESSOR_GETTER,
ACCESSOR_SETTER
};
enum class GetKeysConversion { kKeepNumbers, kConvertToString };
enum class KeyCollectionMode {
kOwnOnly = static_cast<int>(v8::KeyCollectionMode::kOwnOnly),
kIncludePrototypes =
static_cast<int>(v8::KeyCollectionMode::kIncludePrototypes)
};
enum class AllocationSiteUpdateMode { kUpdate, kCheckOnly };
class PropertyArray : public HeapObject {
public:
// [length]: length of the array.
inline int length() const;
// Get the length using acquire loads.
inline int synchronized_length() const;
// This is only used on a newly allocated PropertyArray which
// doesn't have an existing hash.
inline void initialize_length(int length);
inline void SetHash(int hash);
inline int Hash() const;
inline Object* get(int index) const;
inline void set(int index, Object* value);
// Setter with explicit barrier mode.
inline void set(int index, Object* value, WriteBarrierMode mode);
// Gives access to raw memory which stores the array's data.
inline Object** data_start();
// Garbage collection support.
static constexpr int SizeFor(int length) {
return kHeaderSize + length * kPointerSize;
}
DECL_CAST(PropertyArray)
DECL_PRINTER(PropertyArray)
DECL_VERIFIER(PropertyArray)
// Layout description.
static const int kLengthAndHashOffset = HeapObject::kHeaderSize;
static const int kHeaderSize = kLengthAndHashOffset + kPointerSize;
// Garbage collection support.
typedef FlexibleBodyDescriptor<kHeaderSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
Make sure the identity hash is uniform (at least in the lower bits). In the current implementation of hash code for objects (identity hash), we do not bother to shift the hash when we retrieve it from the hash-length bitfield in a property array. (Even worse, we store shifted value even if we do not have property array or inside dictionaries.) That means that the hash-code for objects is always divisible by 1024. Since our hash table uses a simple masking with (2^logsize - 1) to obtain the bucket, we get terrible hash collisions - essentially, our hash table degenerates to a linked list for fewer than 1024 elements. This CL always shifts the hash code so that the value in the lowest 21 bits is uniformly distributed. This results in big improvements on medium to large hash tables. A program storing 1M elements into a WeakMap gets roughly 17x faster. A program retrieving 1M elements from a Map improves even more dramatically (>100x). const a = []; for (let i = 0; i < 1e6; i++) a[i] = {}; const m = new Map(); console.time("Map.set"); for (let i = 0; i < 1e6; i++) { m.set(a[i], i); } console.timeEnd("Map.set"); console.time("Map.get"); let s = 0; for (let i = 0; i < 1e6; i++) { s += m.get(a[i]); } console.timeEnd("Map.get"); const w = new WeakMap(); console.time("WeakMap.set"); for (let i = 0; i < 1e6; i++) { w.set(a[i], i); } console.timeEnd("WeakMap.set"); Before the fix: Map.set: 157.575000 Map.get: 28333.182000 WeakMap.set: 6923.826000 After the fix: Map.set: 178.382000 Map.get: 185.930000 WeakMap.set: 409.529000 Note that Map does not suffer from the hash collision on insertion because it uses chaining (insertion into linked list is fast regardless of size!), and we cleverly avoid lookup in the hash table on update if the key does not have identity hash yet. This is in contrast to the WeakMap, which uses open-addressing, and deals with collisions on insertion. Bug: v8:6916 Change-Id: Ic5497bd4501e3b767b3f4acb7efb4784cbb3a2e4 Reviewed-on: https://chromium-review.googlesource.com/713616 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48480}
2017-10-11 22:50:51 +00:00
static const int kLengthFieldSize = 10;
class LengthField : public BitField<int, 0, kLengthFieldSize> {};
class HashField : public BitField<int, kLengthFieldSize,
kSmiValueSize - kLengthFieldSize - 1> {};
static const int kNoHashSentinel = 0;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyArray);
};
// JSReceiver includes types on which properties can be defined, i.e.,
// JSObject and JSProxy.
class JSReceiver: public HeapObject {
public:
// Returns true if there is no slow (ie, dictionary) backing store.
inline bool HasFastProperties() const;
// Returns the properties array backing store if it
// exists. Otherwise, returns an empty_property_array when there's a
// Smi (hash code) or an empty_fixed_array for a fast properties
// map.
inline PropertyArray* property_array() const;
// Gets slow properties for non-global objects.
inline NameDictionary* property_dictionary() const;
void SetProperties(HeapObject* properties);
// There are five possible values for the properties offset.
// 1) EmptyFixedArray/EmptyPropertyDictionary - This is the standard
// placeholder.
//
// 2) Smi - This is the hash code of the object.
//
// 3) PropertyArray - This is similar to a FixedArray but stores
// the hash code of the object in its length field. This is a fast
// backing store.
//
// 4) NameDictionary - This is the dictionary-mode backing store.
//
// 4) GlobalDictionary - This is the backing store for the
// GlobalObject.
//
// This is used only in the deoptimizer and heap. Please use the
// above typed getters and setters to access the properties.
DECL_ACCESSORS(raw_properties_or_hash, Object)
inline void initialize_properties();
// Deletes an existing named property in a normalized object.
static void DeleteNormalizedProperty(Handle<JSReceiver> object, int entry);
DECL_CAST(JSReceiver)
// ES6 section 7.1.1 ToPrimitive
MUST_USE_RESULT static MaybeHandle<Object> ToPrimitive(
Handle<JSReceiver> receiver,
ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
// ES6 section 7.1.1.1 OrdinaryToPrimitive
MUST_USE_RESULT static MaybeHandle<Object> OrdinaryToPrimitive(
Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint);
static MaybeHandle<Context> GetFunctionRealm(Handle<JSReceiver> receiver);
// Get the first non-hidden prototype.
static inline MaybeHandle<Object> GetPrototype(Isolate* isolate,
Handle<JSReceiver> receiver);
MUST_USE_RESULT static Maybe<bool> HasInPrototypeChain(
Isolate* isolate, Handle<JSReceiver> object, Handle<Object> proto);
// Reads all enumerable own properties of source and adds them to
// target, using either Set or CreateDataProperty depending on the
// use_set argument. This only copies values not present in the
// maybe_excluded_properties list.
MUST_USE_RESULT static Maybe<bool> SetOrCopyDataProperties(
Isolate* isolate, Handle<JSReceiver> target, Handle<Object> source,
const ScopedVector<Handle<Object>>* excluded_properties = nullptr,
bool use_set = true);
// Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
MUST_USE_RESULT static Maybe<bool> HasProperty(LookupIterator* it);
MUST_USE_RESULT static inline Maybe<bool> HasProperty(
Handle<JSReceiver> object, Handle<Name> name);
MUST_USE_RESULT static inline Maybe<bool> HasElement(
Handle<JSReceiver> object, uint32_t index);
MUST_USE_RESULT static Maybe<bool> HasOwnProperty(Handle<JSReceiver> object,
Handle<Name> name);
MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(
Handle<JSReceiver> object, uint32_t index);
MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
Isolate* isolate, Handle<JSReceiver> receiver, const char* key);
MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
Handle<JSReceiver> receiver, Handle<Name> name);
MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
Isolate* isolate, Handle<JSReceiver> receiver, uint32_t index);
// Implementation of ES6 [[Delete]]
MUST_USE_RESULT static Maybe<bool> DeletePropertyOrElement(
Handle<JSReceiver> object, Handle<Name> name,
LanguageMode language_mode = LanguageMode::kSloppy);
MUST_USE_RESULT static Maybe<bool> DeleteProperty(
Handle<JSReceiver> object, Handle<Name> name,
LanguageMode language_mode = LanguageMode::kSloppy);
MUST_USE_RESULT static Maybe<bool> DeleteProperty(LookupIterator* it,
LanguageMode language_mode);
MUST_USE_RESULT static Maybe<bool> DeleteElement(
Handle<JSReceiver> object, uint32_t index,
LanguageMode language_mode = LanguageMode::kSloppy);
MUST_USE_RESULT static Object* DefineProperty(Isolate* isolate,
Handle<Object> object,
Handle<Object> name,
Handle<Object> attributes);
MUST_USE_RESULT static MaybeHandle<Object> DefineProperties(
Isolate* isolate, Handle<Object> object, Handle<Object> properties);
// "virtual" dispatcher to the correct [[DefineOwnProperty]] implementation.
MUST_USE_RESULT static Maybe<bool> DefineOwnProperty(
Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key,
PropertyDescriptor* desc, ShouldThrow should_throw);
// ES6 7.3.4 (when passed kDontThrow)
MUST_USE_RESULT static Maybe<bool> CreateDataProperty(
LookupIterator* it, Handle<Object> value, ShouldThrow should_throw);
// ES6 9.1.6.1
MUST_USE_RESULT static Maybe<bool> OrdinaryDefineOwnProperty(
Isolate* isolate, Handle<JSObject> object, Handle<Object> key,
PropertyDescriptor* desc, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> OrdinaryDefineOwnProperty(
LookupIterator* it, PropertyDescriptor* desc, ShouldThrow should_throw);
// ES6 9.1.6.2
MUST_USE_RESULT static Maybe<bool> IsCompatiblePropertyDescriptor(
Isolate* isolate, bool extensible, PropertyDescriptor* desc,
PropertyDescriptor* current, Handle<Name> property_name,
ShouldThrow should_throw);
// ES6 9.1.6.3
// |it| can be NULL in cases where the ES spec passes |undefined| as the
// receiver. Exactly one of |it| and |property_name| must be provided.
MUST_USE_RESULT static Maybe<bool> ValidateAndApplyPropertyDescriptor(
Isolate* isolate, LookupIterator* it, bool extensible,
PropertyDescriptor* desc, PropertyDescriptor* current,
ShouldThrow should_throw, Handle<Name> property_name);
V8_EXPORT_PRIVATE MUST_USE_RESULT static Maybe<bool> GetOwnPropertyDescriptor(
Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key,
PropertyDescriptor* desc);
MUST_USE_RESULT static Maybe<bool> GetOwnPropertyDescriptor(
LookupIterator* it, PropertyDescriptor* desc);
typedef PropertyAttributes IntegrityLevel;
// ES6 7.3.14 (when passed kDontThrow)
// 'level' must be SEALED or FROZEN.
MUST_USE_RESULT static Maybe<bool> SetIntegrityLevel(
Handle<JSReceiver> object, IntegrityLevel lvl, ShouldThrow should_throw);
// ES6 7.3.15
// 'level' must be SEALED or FROZEN.
MUST_USE_RESULT static Maybe<bool> TestIntegrityLevel(
Handle<JSReceiver> object, IntegrityLevel lvl);
// ES6 [[PreventExtensions]] (when passed kDontThrow)
MUST_USE_RESULT static Maybe<bool> PreventExtensions(
Handle<JSReceiver> object, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> IsExtensible(Handle<JSReceiver> object);
// Returns the class name ([[Class]] property in the specification).
V8_EXPORT_PRIVATE String* class_name();
// Returns the constructor name (the name (possibly, inferred name) of the
// function that was used to instantiate the object).
static Handle<String> GetConstructorName(Handle<JSReceiver> receiver);
Handle<Context> GetCreationContext();
MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
Handle<JSReceiver> object, Handle<Name> name);
MUST_USE_RESULT static inline Maybe<PropertyAttributes>
GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
MUST_USE_RESULT static inline Maybe<PropertyAttributes>
GetOwnPropertyAttributes(Handle<JSReceiver> object, uint32_t index);
MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
Handle<JSReceiver> object, uint32_t index);
MUST_USE_RESULT static inline Maybe<PropertyAttributes>
GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
LookupIterator* it);
// Set the object's prototype (only JSReceiver and null are allowed values).
MUST_USE_RESULT static Maybe<bool> SetPrototype(Handle<JSReceiver> object,
Handle<Object> value,
bool from_javascript,
ShouldThrow should_throw);
inline static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
Handle<Name> name);
static Handle<Object> GetDataProperty(LookupIterator* it);
// Retrieves a permanent object identity hash code. The undefined value might
// be returned in case no hash was created yet.
Object* GetIdentityHash(Isolate* isolate);
// Retrieves a permanent object identity hash code. May create and store a
// hash code if needed and none exists.
static Smi* CreateIdentityHash(Isolate* isolate, JSReceiver* key);
Smi* GetOrCreateIdentityHash(Isolate* isolate);
// Stores the hash code. The hash passed in must be masked with
// JSReceiver::kHashMask.
void SetIdentityHash(int masked_hash);
// ES6 [[OwnPropertyKeys]] (modulo return type)
Reland of [keys] Simplify KeyAccumulator (patchset #1 id:1 of https://codereview.chromium.org/2010593002/ ) Reason for revert: relanding, fixed handle dereferencing Original issue's description: > Revert of [keys] Simplify KeyAccumulator (patchset #15 id:280001 of https://codereview.chromium.org/1995263002/ ) > > Reason for revert: > https://build.chromium.org/p/client.v8/builders/V8%20Mac%20GC%20Stress/builds/6248 > > Original issue's description: > > [keys] Simplify KeyAccumulator > > > > - Use KeyAccumulator::GetKeys directly instead of JSReceiver::GetKeys > > - Revert KeyAccumulator to single OrderedHashSet implementation. > > - Convert the OrderedHashSet in-place to a FixedArray > > - IndexedInterceptor indices are no longer combined and sorted with the object indices > > > > BUG= > > > > Committed: https://crrev.com/d3324df017046bcde247a5aef6d1b59bfae5908f > > Cr-Commit-Position: refs/heads/master@{#36485} > > TBR=jkummerow@chromium.org,verwaest@chromium.org,cbruni@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/893524b53d43df63bca6cb9b7244d21771fadb0b > Cr-Commit-Position: refs/heads/master@{#36486} TBR=jkummerow@chromium.org,verwaest@chromium.org,machenbach@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2014523002 Cr-Commit-Position: refs/heads/master@{#36502}
2016-05-25 09:13:31 +00:00
MUST_USE_RESULT static inline MaybeHandle<FixedArray> OwnPropertyKeys(
Handle<JSReceiver> object);
MUST_USE_RESULT static MaybeHandle<FixedArray> GetOwnValues(
Handle<JSReceiver> object, PropertyFilter filter);
MUST_USE_RESULT static MaybeHandle<FixedArray> GetOwnEntries(
Handle<JSReceiver> object, PropertyFilter filter);
Make sure the identity hash is uniform (at least in the lower bits). In the current implementation of hash code for objects (identity hash), we do not bother to shift the hash when we retrieve it from the hash-length bitfield in a property array. (Even worse, we store shifted value even if we do not have property array or inside dictionaries.) That means that the hash-code for objects is always divisible by 1024. Since our hash table uses a simple masking with (2^logsize - 1) to obtain the bucket, we get terrible hash collisions - essentially, our hash table degenerates to a linked list for fewer than 1024 elements. This CL always shifts the hash code so that the value in the lowest 21 bits is uniformly distributed. This results in big improvements on medium to large hash tables. A program storing 1M elements into a WeakMap gets roughly 17x faster. A program retrieving 1M elements from a Map improves even more dramatically (>100x). const a = []; for (let i = 0; i < 1e6; i++) a[i] = {}; const m = new Map(); console.time("Map.set"); for (let i = 0; i < 1e6; i++) { m.set(a[i], i); } console.timeEnd("Map.set"); console.time("Map.get"); let s = 0; for (let i = 0; i < 1e6; i++) { s += m.get(a[i]); } console.timeEnd("Map.get"); const w = new WeakMap(); console.time("WeakMap.set"); for (let i = 0; i < 1e6; i++) { w.set(a[i], i); } console.timeEnd("WeakMap.set"); Before the fix: Map.set: 157.575000 Map.get: 28333.182000 WeakMap.set: 6923.826000 After the fix: Map.set: 178.382000 Map.get: 185.930000 WeakMap.set: 409.529000 Note that Map does not suffer from the hash collision on insertion because it uses chaining (insertion into linked list is fast regardless of size!), and we cleverly avoid lookup in the hash table on update if the key does not have identity hash yet. This is in contrast to the WeakMap, which uses open-addressing, and deals with collisions on insertion. Bug: v8:6916 Change-Id: Ic5497bd4501e3b767b3f4acb7efb4784cbb3a2e4 Reviewed-on: https://chromium-review.googlesource.com/713616 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48480}
2017-10-11 22:50:51 +00:00
static const int kHashMask = PropertyArray::HashField::kMask;
// Layout description.
static const int kPropertiesOrHashOffset = HeapObject::kHeaderSize;
static const int kHeaderSize = HeapObject::kHeaderSize + kPointerSize;
bool HasProxyInPrototype(Isolate* isolate);
bool HasComplexElements();
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
};
// The JSObject describes real heap allocated JavaScript objects with
// properties.
// Note that the map of JSObject changes during execution to enable inline
// caching.
class JSObject: public JSReceiver {
public:
static bool IsUnmodifiedApiObject(Object** o);
static MUST_USE_RESULT MaybeHandle<JSObject> New(
Handle<JSFunction> constructor, Handle<JSReceiver> new_target,
Handle<AllocationSite> site = Handle<AllocationSite>::null());
static MaybeHandle<Context> GetFunctionRealm(Handle<JSObject> object);
// [elements]: The elements (properties with names that are integers).
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
//
// Elements can be in two general modes: fast and slow. Each mode
// corresponds to a set of object representations of elements that
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
// have something in common.
//
// In the fast mode elements is a FixedArray and so each element can
// be quickly accessed. This fact is used in the generated code. The
// elements array can have one of three maps in this mode:
// fixed_array_map, sloppy_arguments_elements_map or
// fixed_cow_array_map (for copy-on-write arrays). In the latter case
// the elements array may be shared by a few objects and so before
// writing to any element the array must be copied. Use
// EnsureWritableFastElements in this case.
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
//
// In the slow mode the elements is either a NumberDictionary, a
// FixedArray parameter map for a (sloppy) arguments object.
DECL_ACCESSORS(elements, FixedArrayBase)
inline void initialize_elements();
static inline void SetMapAndElements(Handle<JSObject> object,
Handle<Map> map,
Handle<FixedArrayBase> elements);
inline ElementsKind GetElementsKind();
ElementsAccessor* GetElementsAccessor();
// Returns true if an object has elements of PACKED_SMI_ELEMENTS or
// HOLEY_SMI_ELEMENTS ElementsKind.
inline bool HasSmiElements();
// Returns true if an object has elements of PACKED_ELEMENTS or
// HOLEY_ELEMENTS ElementsKind.
inline bool HasObjectElements();
// Returns true if an object has elements of PACKED_SMI_ELEMENTS,
// HOLEY_SMI_ELEMENTS, PACKED_ELEMENTS, or HOLEY_ELEMENTS.
inline bool HasSmiOrObjectElements();
// Returns true if an object has any of the "fast" elements kinds.
inline bool HasFastElements();
// Returns true if an object has elements of PACKED_DOUBLE_ELEMENTS or
// HOLEY_DOUBLE_ELEMENTS ElementsKind.
inline bool HasDoubleElements();
// Returns true if an object has elements of HOLEY_SMI_ELEMENTS,
// HOLEY_DOUBLE_ELEMENTS, or HOLEY_ELEMENTS ElementsKind.
inline bool HasHoleyElements();
inline bool HasSloppyArgumentsElements();
inline bool HasStringWrapperElements();
inline bool HasDictionaryElements();
inline bool HasFixedTypedArrayElements();
inline bool HasFixedUint8ClampedElements();
inline bool HasFixedArrayElements();
inline bool HasFixedInt8Elements();
inline bool HasFixedUint8Elements();
inline bool HasFixedInt16Elements();
inline bool HasFixedUint16Elements();
inline bool HasFixedInt32Elements();
inline bool HasFixedUint32Elements();
inline bool HasFixedFloat32Elements();
inline bool HasFixedFloat64Elements();
inline bool HasFastArgumentsElements();
inline bool HasSlowArgumentsElements();
inline bool HasFastStringWrapperElements();
inline bool HasSlowStringWrapperElements();
bool HasEnumerableElements();
inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
// Requires: HasFastElements().
static void EnsureWritableFastElements(Handle<JSObject> object);
MUST_USE_RESULT static Maybe<bool> SetPropertyWithInterceptor(
LookupIterator* it, ShouldThrow should_throw, Handle<Object> value);
// The API currently still wants DefineOwnPropertyIgnoreAttributes to convert
// AccessorInfo objects to data fields. We allow FORCE_FIELD as an exception
// to the default behavior that calls the setter.
enum AccessorInfoHandling { FORCE_FIELD, DONT_FORCE_FIELD };
MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
AccessorInfoHandling handling = DONT_FORCE_FIELD);
MUST_USE_RESULT static Maybe<bool> DefineOwnPropertyIgnoreAttributes(
LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
ShouldThrow should_throw,
AccessorInfoHandling handling = DONT_FORCE_FIELD);
MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
PropertyAttributes attributes);
MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes);
// Equivalent to one of the above depending on whether |name| can be converted
// to an array index.
MUST_USE_RESULT static MaybeHandle<Object>
DefinePropertyOrElementIgnoreAttributes(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes = NONE);
// Adds or reconfigures a property to attributes NONE. It will fail when it
// cannot.
MUST_USE_RESULT static Maybe<bool> CreateDataProperty(
LookupIterator* it, Handle<Object> value,
ShouldThrow should_throw = kDontThrow);
static void AddProperty(Handle<JSObject> object, Handle<Name> name,
Handle<Object> value, PropertyAttributes attributes);
MUST_USE_RESULT static Maybe<bool> AddDataElement(
Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
PropertyAttributes attributes, ShouldThrow should_throw);
MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
PropertyAttributes attributes);
// Extend the receiver with a single fast property appeared first in the
// passed map. This also extends the property backing store if necessary.
static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
// Migrates the given object to a map whose field representations are the
// lowest upper bound of all known representations for that field.
static void MigrateInstance(Handle<JSObject> instance);
// Migrates the given object only if the target map is already available,
// or returns false if such a map is not yet available.
static bool TryMigrateInstance(Handle<JSObject> instance);
// Sets the property value in a normalized object given (key, value, details).
// Handles the special representation of JS global objects.
static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
Handle<Object> value,
PropertyDetails details);
static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes);
static void SetDictionaryArgumentsElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value,
PropertyAttributes attributes);
static void OptimizeAsPrototype(Handle<JSObject> object);
static void ReoptimizeIfPrototype(Handle<JSObject> object);
static void MakePrototypesFast(Handle<Object> receiver,
WhereToStart where_to_start, Isolate* isolate);
static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
static void UpdatePrototypeUserRegistration(Handle<Map> old_map,
Handle<Map> new_map,
Isolate* isolate);
static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
static void InvalidatePrototypeChains(Map* map);
// Updates prototype chain tracking information when an object changes its
// map from |old_map| to |new_map|.
static void NotifyMapChange(Handle<Map> old_map, Handle<Map> new_map,
Isolate* isolate);
// Utility used by many Array builtins and runtime functions
static inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object);
// Alternative implementation of WeakFixedArray::NullCallback.
class PrototypeRegistryCompactionCallback {
public:
static void Callback(Object* value, int old_index, int new_index);
};
// Retrieve interceptors.
inline InterceptorInfo* GetNamedInterceptor();
inline InterceptorInfo* GetIndexedInterceptor();
// Used from JSReceiver.
MUST_USE_RESULT static Maybe<PropertyAttributes>
GetPropertyAttributesWithInterceptor(LookupIterator* it);
MUST_USE_RESULT static Maybe<PropertyAttributes>
GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
// Defines an AccessorPair property on the given object.
// TODO(mstarzinger): Rename to SetAccessor().
static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> getter,
Handle<Object> setter,
PropertyAttributes attributes);
static MaybeHandle<Object> DefineAccessor(LookupIterator* it,
Handle<Object> getter,
Handle<Object> setter,
PropertyAttributes attributes);
// Defines an AccessorInfo property on the given object.
MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> info,
PropertyAttributes attributes);
// The result must be checked first for exceptions. If there's no exception,
// the output parameter |done| indicates whether the interceptor has a result
// or not.
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
LookupIterator* it, bool* done);
static void ValidateElements(JSObject* object);
// Makes sure that this object can contain HeapObject as elements.
static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
// Makes sure that this object can contain the specified elements.
static inline void EnsureCanContainElements(
Handle<JSObject> object,
Object** elements,
uint32_t count,
EnsureElementsMode mode);
static inline void EnsureCanContainElements(
Handle<JSObject> object,
Handle<FixedArrayBase> elements,
uint32_t length,
EnsureElementsMode mode);
static void EnsureCanContainElements(
Handle<JSObject> object,
Arguments* arguments,
uint32_t first_arg,
uint32_t arg_count,
EnsureElementsMode mode);
// Would we convert a fast elements array to dictionary mode given
// an access at key?
bool WouldConvertToSlowElements(uint32_t index);
static const uint32_t kMinAddedElementsCapacity = 16;
// Computes the new capacity when expanding the elements of a JSObject.
static uint32_t NewElementsCapacity(uint32_t old_capacity) {
// (old_capacity + 50%) + kMinAddedElementsCapacity
return old_capacity + (old_capacity >> 1) + kMinAddedElementsCapacity;
}
// These methods do not perform access checks!
template <AllocationSiteUpdateMode update_or_check =
AllocationSiteUpdateMode::kUpdate>
static bool UpdateAllocationSite(Handle<JSObject> object,
ElementsKind to_kind);
// Lookup interceptors are used for handling properties controlled by host
// objects.
inline bool HasNamedInterceptor();
inline bool HasIndexedInterceptor();
// Support functions for v8 api (needed for correct interceptor behavior).
MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
Handle<JSObject> object, Handle<Name> name);
MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
Handle<JSObject> object, uint32_t index);
MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
Handle<JSObject> object, Handle<Name> name);
// Get the header size for a JSObject. Used to compute the index of
// embedder fields as well as the number of embedder fields.
// The |function_has_prototype_slot| parameter is needed only for
// JSFunction objects.
static int GetHeaderSize(InstanceType instance_type,
bool function_has_prototype_slot = false);
static inline int GetHeaderSize(const Map* map);
inline int GetHeaderSize() const;
static inline int GetEmbedderFieldCount(const Map* map);
inline int GetEmbedderFieldCount() const;
inline int GetEmbedderFieldOffset(int index);
inline Object* GetEmbedderField(int index);
inline void SetEmbedderField(int index, Object* value);
inline void SetEmbedderField(int index, Smi* value);
bool WasConstructedFromApiFunction();
// Returns a new map with all transitions dropped from the object's current
// map and the ElementsKind set.
static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
ElementsKind to_kind);
static void TransitionElementsKind(Handle<JSObject> object,
ElementsKind to_kind);
// Always use this to migrate an object to a new map.
// |expected_additional_properties| is only used for fast-to-slow transitions
// and ignored otherwise.
static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
int expected_additional_properties = 0);
// Forces a prototype without any of the checks that the regular SetPrototype
// would do.
static void ForceSetPrototype(Handle<JSObject> object, Handle<Object> proto);
// Convert the object to use the canonical dictionary
// representation. If the object is expected to have additional properties
// added this number can be indicated to have the backing store allocated to
// an initial capacity for holding these properties.
static void NormalizeProperties(Handle<JSObject> object,
PropertyNormalizationMode mode,
int expected_additional_properties,
const char* reason);
// Convert and update the elements backing store to be a
// SeededNumberDictionary dictionary. Returns the backing after conversion.
static Handle<SeededNumberDictionary> NormalizeElements(
Handle<JSObject> object);
void RequireSlowElements(SeededNumberDictionary* dictionary);
// Transform slow named properties to fast variants.
static void MigrateSlowToFast(Handle<JSObject> object,
int unused_property_fields, const char* reason);
inline bool IsUnboxedDoubleField(FieldIndex index);
// Access fast-case object properties at index.
static Handle<Object> FastPropertyAt(Handle<JSObject> object,
Representation representation,
FieldIndex index);
inline Object* RawFastPropertyAt(FieldIndex index);
inline double RawFastDoublePropertyAt(FieldIndex index);
inline uint64_t RawFastDoublePropertyAsBitsAt(FieldIndex index);
inline void FastPropertyAtPut(FieldIndex index, Object* value);
inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
inline void RawFastDoublePropertyAsBitsAtPut(FieldIndex index, uint64_t bits);
inline void WriteToField(int descriptor, PropertyDetails details,
Object* value);
// Access to in object properties.
inline int GetInObjectPropertyOffset(int index);
inline Object* InObjectPropertyAt(int index);
inline Object* InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode
= UPDATE_WRITE_BARRIER);
// Set the object's prototype (only JSReceiver and null are allowed values).
MUST_USE_RESULT static Maybe<bool> SetPrototype(Handle<JSObject> object,
Handle<Object> value,
bool from_javascript,
ShouldThrow should_throw);
// Makes the object prototype immutable
// Never called from JavaScript
static void SetImmutableProto(Handle<JSObject> object);
// Initializes the body starting at |start_offset|. It is responsibility of
// the caller to initialize object header. Fill the pre-allocated fields with
// pre_allocated_value and the rest with filler_value.
// Note: this call does not update write barrier, the caller is responsible
// to ensure that |filler_value| can be collected without WB here.
inline void InitializeBody(Map* map, int start_offset,
Object* pre_allocated_value, Object* filler_value);
// Check whether this object references another object
bool ReferencesObject(Object* obj);
MUST_USE_RESULT static Maybe<bool> TestIntegrityLevel(Handle<JSObject> object,
IntegrityLevel lvl);
MUST_USE_RESULT static Maybe<bool> PreventExtensions(
Handle<JSObject> object, ShouldThrow should_throw);
static bool IsExtensible(Handle<JSObject> object);
DECL_CAST(JSObject)
// Dispatched behavior.
void JSObjectShortPrint(StringStream* accumulator);
DECL_PRINTER(JSObject)
DECL_VERIFIER(JSObject)
#ifdef OBJECT_PRINT
bool PrintProperties(std::ostream& os); // NOLINT
void PrintElements(std::ostream& os); // NOLINT
#endif
#if defined(DEBUG) || defined(OBJECT_PRINT)
void PrintTransitions(std::ostream& os); // NOLINT
#endif
static void PrintElementsTransition(
FILE* file, Handle<JSObject> object,
ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
#ifdef DEBUG
// Structure for collecting spill information about JSObjects.
class SpillInformation {
public:
void Clear();
void Print();
int number_of_objects_;
int number_of_objects_with_fast_properties_;
int number_of_objects_with_fast_elements_;
int number_of_fast_used_fields_;
int number_of_fast_unused_fields_;
int number_of_slow_used_properties_;
int number_of_slow_unused_properties_;
int number_of_fast_used_elements_;
int number_of_fast_unused_elements_;
int number_of_slow_used_elements_;
int number_of_slow_unused_elements_;
};
void IncrementSpillStatistics(SpillInformation* info);
#endif
#ifdef VERIFY_HEAP
// If a GC was caused while constructing this object, the elements pointer
// may point to a one pointer filler map. The object won't be rooted, but
// our heap verification code could stumble across it.
bool ElementsAreSafeToExamine();
#endif
Object* SlowReverseLookup(Object* value);
// Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
// Also maximal value of JSArray's length property.
static const uint32_t kMaxElementCount = 0xffffffffu;
// Constants for heuristics controlling conversion of fast elements
// to slow elements.
// Maximal gap that can be introduced by adding an element beyond
// the current elements length.
static const uint32_t kMaxGap = 1024;
// Maximal length of fast elements array that won't be checked for
// being dense enough on expansion.
static const int kMaxUncheckedFastElementsLength = 5000;
// Same as above but for old arrays. This limit is more strict. We
// don't want to be wasteful with long lived objects.
static const int kMaxUncheckedOldFastElementsLength = 500;
// This constant applies only to the initial map of "global.Object" and
// not to arbitrary other JSObject maps.
static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
static const int kMaxInstanceSize = 255 * kPointerSize;
// When extending the backing storage for property values, we increase
// its size by more than the 1 entry necessary, so sequentially adding fields
// to the same object requires fewer allocations and copies.
static const int kFieldsAdded = 3;
// Layout description.
static const int kElementsOffset = JSReceiver::kHeaderSize;
static const int kHeaderSize = kElementsOffset + kPointerSize;
STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
static const int kMaxInObjectProperties =
(kMaxInstanceSize - kHeaderSize) >> kPointerSizeLog2;
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
class FastBodyDescriptor;
// No weak fields.
typedef FastBodyDescriptor FastBodyDescriptorWeak;
// Gets the number of currently used elements.
int GetFastElementsUsage();
static bool AllCanRead(LookupIterator* it);
static bool AllCanWrite(LookupIterator* it);
private:
friend class JSReceiver;
friend class Object;
// Used from Object::GetProperty().
MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
LookupIterator* it);
MUST_USE_RESULT static Maybe<bool> SetPropertyWithFailedAccessCheck(
LookupIterator* it, Handle<Object> value, ShouldThrow should_throw);
MUST_USE_RESULT static Maybe<bool> DeletePropertyWithInterceptor(
LookupIterator* it, ShouldThrow should_throw);
bool ReferencesObjectFromElements(FixedArray* elements,
ElementsKind kind,
Object* object);
// Helper for fast versions of preventExtensions, seal, and freeze.
// attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
template <PropertyAttributes attrs>
MUST_USE_RESULT static Maybe<bool> PreventExtensionsWithTransition(
Handle<JSObject> object, ShouldThrow should_throw);
DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
};
// JSAccessorPropertyDescriptor is just a JSObject with a specific initial
// map. This initial map adds in-object properties for "get", "set",
// "enumerable" and "configurable" properties, as assigned by the
// FromPropertyDescriptor function for regular accessor properties.
class JSAccessorPropertyDescriptor: public JSObject {
public:
// Offsets of object fields.
static const int kGetOffset = JSObject::kHeaderSize;
static const int kSetOffset = kGetOffset + kPointerSize;
static const int kEnumerableOffset = kSetOffset + kPointerSize;
static const int kConfigurableOffset = kEnumerableOffset + kPointerSize;
static const int kSize = kConfigurableOffset + kPointerSize;
// Indices of in-object properties.
static const int kGetIndex = 0;
static const int kSetIndex = 1;
static const int kEnumerableIndex = 2;
static const int kConfigurableIndex = 3;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSAccessorPropertyDescriptor);
};
// JSDataPropertyDescriptor is just a JSObject with a specific initial map.
// This initial map adds in-object properties for "value", "writable",
// "enumerable" and "configurable" properties, as assigned by the
// FromPropertyDescriptor function for regular data properties.
class JSDataPropertyDescriptor: public JSObject {
public:
// Offsets of object fields.
static const int kValueOffset = JSObject::kHeaderSize;
static const int kWritableOffset = kValueOffset + kPointerSize;
static const int kEnumerableOffset = kWritableOffset + kPointerSize;
static const int kConfigurableOffset = kEnumerableOffset + kPointerSize;
static const int kSize = kConfigurableOffset + kPointerSize;
// Indices of in-object properties.
static const int kValueIndex = 0;
static const int kWritableIndex = 1;
static const int kEnumerableIndex = 2;
static const int kConfigurableIndex = 3;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataPropertyDescriptor);
};
// JSIteratorResult is just a JSObject with a specific initial map.
// This initial map adds in-object properties for "done" and "value",
// as specified by ES6 section 25.1.1.3 The IteratorResult Interface
class JSIteratorResult: public JSObject {
public:
DECL_ACCESSORS(value, Object)
DECL_ACCESSORS(done, Object)
// Offsets of object fields.
static const int kValueOffset = JSObject::kHeaderSize;
static const int kDoneOffset = kValueOffset + kPointerSize;
static const int kSize = kDoneOffset + kPointerSize;
// Indices of in-object properties.
static const int kValueIndex = 0;
static const int kDoneIndex = 1;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSIteratorResult);
};
// Common superclass for FixedArrays that allow implementations to share
// common accessors and some code paths.
class FixedArrayBase: public HeapObject {
public:
// [length]: length of the array.
inline int length() const;
inline void set_length(int value);
// Get and set the length using acquire loads and release stores.
inline int synchronized_length() const;
inline void synchronized_set_length(int value);
DECL_CAST(FixedArrayBase)
static int GetMaxLengthForNewSpaceAllocation(ElementsKind kind);
bool IsCowArray() const;
// Layout description.
// Length is smi tagged when it is stored.
static const int kLengthOffset = HeapObject::kHeaderSize;
static const int kHeaderSize = kLengthOffset + kPointerSize;
};
class FixedDoubleArray;
class IncrementalMarking;
// FixedArray describes fixed-sized arrays with element type Object*.
class FixedArray: public FixedArrayBase {
public:
// Setter and getter for elements.
inline Object* get(int index) const;
static inline Handle<Object> get(FixedArray* array, int index,
Isolate* isolate);
template <class T>
MaybeHandle<T> GetValue(Isolate* isolate, int index) const;
template <class T>
Handle<T> GetValueChecked(Isolate* isolate, int index) const;
// Return a grown copy if the index is bigger than the array's length.
static Handle<FixedArray> SetAndGrow(Handle<FixedArray> array, int index,
Handle<Object> value);
// Setter that uses write barrier.
inline void set(int index, Object* value);
inline bool is_the_hole(Isolate* isolate, int index);
// Setter that doesn't need write barrier.
inline void set(int index, Smi* value);
// Setter with explicit barrier mode.
inline void set(int index, Object* value, WriteBarrierMode mode);
// Setters for frequently used oddballs located in old space.
inline void set_undefined(int index);
inline void set_undefined(Isolate* isolate, int index);
inline void set_null(int index);
inline void set_null(Isolate* isolate, int index);
inline void set_the_hole(int index);
inline void set_the_hole(Isolate* isolate, int index);
inline Object** GetFirstElementAddress();
inline bool ContainsOnlySmisOrHoles();
// Gives access to raw memory which stores the array's data.
inline Object** data_start();
inline void FillWithHoles(int from, int to);
// Shrink length and insert filler objects.
void Shrink(int length);
// Copy a sub array from the receiver to dest.
void CopyTo(int pos, FixedArray* dest, int dest_pos, int len) const;
// Garbage collection support.
static constexpr int SizeFor(int length) {
return kHeaderSize + length * kPointerSize;
}
// Code Generation support.
static constexpr int OffsetOfElementAt(int index) { return SizeFor(index); }
// Garbage collection support.
inline Object** RawFieldOfElementAt(int index);
DECL_CAST(FixedArray)
// Maximal allowed size, in bytes, of a single FixedArray.
// Prevents overflowing size computations, as well as extreme memory
// consumption.
static const int kMaxSize = 128 * MB * kPointerSize;
// Maximally allowed length of a FixedArray.
static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
// Maximally allowed length for regular (non large object space) object.
STATIC_ASSERT(kMaxRegularHeapObjectSize < kMaxSize);
static const int kMaxRegularLength =
(kMaxRegularHeapObjectSize - kHeaderSize) / kPointerSize;
// Dispatched behavior.
DECL_PRINTER(FixedArray)
DECL_VERIFIER(FixedArray)
#ifdef DEBUG
// Checks if two FixedArrays have identical contents.
bool IsEqualTo(FixedArray* other);
#endif
typedef FlexibleBodyDescriptor<kHeaderSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
protected:
// Set operation on FixedArray without using write barriers. Can
// only be used for storing old space objects or smis.
static inline void NoWriteBarrierSet(FixedArray* array,
int index,
Object* value);
private:
STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
};
// FixedDoubleArray describes fixed-sized arrays with element type double.
class FixedDoubleArray: public FixedArrayBase {
public:
// Setter and getter for elements.
inline double get_scalar(int index);
inline uint64_t get_representation(int index);
static inline Handle<Object> get(FixedDoubleArray* array, int index,
Isolate* isolate);
inline void set(int index, double value);
inline void set_the_hole(Isolate* isolate, int index);
inline void set_the_hole(int index);
// Checking for the hole.
inline bool is_the_hole(Isolate* isolate, int index);
inline bool is_the_hole(int index);
// Garbage collection support.
inline static int SizeFor(int length) {
return kHeaderSize + length * kDoubleSize;
}
// Gives access to raw memory which stores the array's data.
inline double* data_start();
inline void FillWithHoles(int from, int to);
// Code Generation support.
static int OffsetOfElementAt(int index) { return SizeFor(index); }
DECL_CAST(FixedDoubleArray)
// Maximal allowed size, in bytes, of a single FixedDoubleArray.
// Prevents overflowing size computations, as well as extreme memory
// consumption.
static const int kMaxSize = 512 * MB;
// Maximally allowed length of a FixedArray.
static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
// Dispatched behavior.
DECL_PRINTER(FixedDoubleArray)
DECL_VERIFIER(FixedDoubleArray)
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
};
class WeakFixedArray : public FixedArray {
public:
// If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
// This function does not check if the value exists already, callers must
// ensure this themselves if necessary.
static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
Handle<HeapObject> value,
int* assigned_index = nullptr);
// Returns true if an entry was found and removed.
bool Remove(Handle<HeapObject> value);
class NullCallback {
public:
static void Callback(Object* value, int old_index, int new_index) {}
};
template <class CompactionCallback>
void Compact();
inline Object* Get(int index) const;
inline void Clear(int index);
inline int Length() const;
inline bool IsEmptySlot(int index) const;
static Object* Empty() { return Smi::kZero; }
class Iterator {
public:
explicit Iterator(Object* maybe_array) : list_(nullptr) {
Reset(maybe_array);
}
void Reset(Object* maybe_array);
template <class T>
inline T* Next();
private:
int index_;
WeakFixedArray* list_;
#ifdef DEBUG
int last_used_index_;
DisallowHeapAllocation no_gc_;
#endif // DEBUG
DISALLOW_COPY_AND_ASSIGN(Iterator);
};
DECL_CAST(WeakFixedArray)
private:
static const int kLastUsedIndexIndex = 0;
static const int kFirstIndex = 1;
static Handle<WeakFixedArray> Allocate(
Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
static void Set(Handle<WeakFixedArray> array, int index,
Handle<HeapObject> value);
inline void clear(int index);
inline int last_used_index() const;
inline void set_last_used_index(int index);
// Disallow inherited setters.
void set(int index, Smi* value);
void set(int index, Object* value);
void set(int index, Object* value, WriteBarrierMode mode);
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
};
// Generic array grows dynamically with O(1) amortized insertion.
//
// ArrayList is a FixedArray with static convenience methods for adding more
// elements. The Length() method returns the number of elements in the list, not
// the allocated size. The number of elements is stored at kLengthIndex and is
// updated with every insertion. The elements of the ArrayList are stored in the
// underlying FixedArray starting at kFirstIndex.
class ArrayList : public FixedArray {
public:
enum AddMode {
kNone,
// Use this if GC can delete elements from the array.
kReloadLengthAfterAllocation,
};
static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
AddMode mode = kNone);
static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
Handle<Object> obj2, AddMode = kNone);
static Handle<ArrayList> New(Isolate* isolate, int size);
// Returns the number of elements in the list, not the allocated size, which
// is length(). Lower and upper case length() return different results!
inline int Length() const;
// Sets the Length() as used by Elements(). Does not change the underlying
// storage capacity, i.e., length().
inline void SetLength(int length);
inline Object* Get(int index) const;
inline Object** Slot(int index);
// Set the element at index to obj. The underlying array must be large enough.
// If you need to grow the ArrayList, use the static Add() methods instead.
inline void Set(int index, Object* obj,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// Set the element at index to undefined. This does not change the Length().
inline void Clear(int index, Object* undefined);
// Return a copy of the list of size Length() without the first entry. The
// number returned by Length() is stored in the first entry.
static Handle<FixedArray> Elements(Handle<ArrayList> array);
bool IsFull();
DECL_CAST(ArrayList)
private:
static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
static const int kLengthIndex = 0;
static const int kFirstIndex = 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
};
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
template <SearchMode search_mode, typename T>
inline int Search(T* array, Name* name, int valid_entries = 0,
int* out_insertion_index = nullptr);
// ByteArray represents fixed sized byte arrays. Used for the relocation info
// that is attached to code objects.
class ByteArray: public FixedArrayBase {
public:
inline int Size();
// Setter and getter.
inline byte get(int index) const;
inline void set(int index, byte value);
// Copy in / copy out whole byte slices.
inline void copy_out(int index, byte* buffer, int length);
inline void copy_in(int index, const byte* buffer, int length);
// Treat contents as an int array.
inline int get_int(int index) const;
inline void set_int(int index, int value);
inline uint32_t get_uint32(int index) const;
inline void set_uint32(int index, uint32_t value);
// Clear uninitialized padding space. This ensures that the snapshot content
// is deterministic.
inline void clear_padding();
static int SizeFor(int length) {
return OBJECT_POINTER_ALIGN(kHeaderSize + length);
}
// We use byte arrays for free blocks in the heap. Given a desired size in
// bytes that is a multiple of the word size and big enough to hold a byte
// array, this function returns the number of elements a byte array should
// have.
static int LengthFor(int size_in_bytes) {
DCHECK(IsAligned(size_in_bytes, kPointerSize));
DCHECK_GE(size_in_bytes, kHeaderSize);
return size_in_bytes - kHeaderSize;
}
// Returns data start address.
inline Address GetDataStartAddress();
inline int DataSize() const;
// Returns a pointer to the ByteArray object for a given data start address.
static inline ByteArray* FromDataStartAddress(Address address);
DECL_CAST(ByteArray)
// Dispatched behavior.
inline int ByteArraySize();
DECL_PRINTER(ByteArray)
DECL_VERIFIER(ByteArray)
// Layout description.
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
// Maximal memory consumption for a single ByteArray.
static const int kMaxSize = 512 * MB;
// Maximal length of a single ByteArray.
static const int kMaxLength = kMaxSize - kHeaderSize;
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
};
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
// Wrapper class for ByteArray which can store arbitrary C++ classes, as long
// as they can be copied with memcpy.
template <class T>
class PodArray : public ByteArray {
public:
static Handle<PodArray<T>> New(Isolate* isolate, int length,
PretenureFlag pretenure = NOT_TENURED);
void copy_out(int index, T* result) {
ByteArray::copy_out(index * sizeof(T), reinterpret_cast<byte*>(result),
sizeof(T));
}
T get(int index) {
T result;
copy_out(index, &result);
return result;
}
void set(int index, const T& value) {
copy_in(index * sizeof(T), reinterpret_cast<const byte*>(&value),
sizeof(T));
}
int length() { return ByteArray::length() / sizeof(T); }
DECL_CAST(PodArray<T>)
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PodArray<T>);
};
// FreeSpace are fixed-size free memory blocks used by the heap and GC.
// They look like heap objects (are heap object tagged and have a map) so that
// the heap remains iterable. They have a size and a next pointer.
// The next pointer is the raw address of the next FreeSpace object (or NULL)
// in the free list.
class FreeSpace: public HeapObject {
public:
// [size]: size of the free space including the header.
inline int size() const;
inline void set_size(int value);
inline int relaxed_read_size() const;
inline void relaxed_write_size(int value);
inline int Size();
// Accessors for the next field.
inline FreeSpace* next();
inline void set_next(FreeSpace* next);
inline static FreeSpace* cast(HeapObject* obj);
// Dispatched behavior.
DECL_PRINTER(FreeSpace)
DECL_VERIFIER(FreeSpace)
// Layout description.
// Size is smi tagged when it is stored.
static const int kSizeOffset = HeapObject::kHeaderSize;
static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
static const int kSize = kNextOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
};
// V has parameters (Type, type, TYPE, C type, element_size)
#define TYPED_ARRAYS(V) \
V(Uint8, uint8, UINT8, uint8_t, 1) \
V(Int8, int8, INT8, int8_t, 1) \
V(Uint16, uint16, UINT16, uint16_t, 2) \
V(Int16, int16, INT16, int16_t, 2) \
V(Uint32, uint32, UINT32, uint32_t, 4) \
V(Int32, int32, INT32, int32_t, 4) \
V(Float32, float32, FLOAT32, float, 4) \
V(Float64, float64, FLOAT64, double, 8) \
V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
class FixedTypedArrayBase: public FixedArrayBase {
public:
// [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
DECL_ACCESSORS(base_pointer, Object)
// [external_pointer]: Contains the offset between base_pointer and the start
// of the data. If the base_pointer is a nullptr, the external_pointer
// therefore points to the actual backing store.
DECL_ACCESSORS(external_pointer, void)
// Dispatched behavior.
DECL_CAST(FixedTypedArrayBase)
static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
static const int kHeaderSize =
DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
static const int kDataOffset = kHeaderSize;
static const int kMaxElementSize = 8;
#ifdef V8_HOST_ARCH_32_BIT
static const size_t kMaxByteLength = std::numeric_limits<size_t>::max();
#else
static const size_t kMaxByteLength =
static_cast<size_t>(Smi::kMaxValue) * kMaxElementSize;
#endif // V8_HOST_ARCH_32_BIT
static const size_t kMaxLength = Smi::kMaxValue;
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
inline int size() const;
static inline int TypedArraySize(InstanceType type, int length);
inline int TypedArraySize(InstanceType type) const;
// Use with care: returns raw pointer into heap.
inline void* DataPtr();
inline int DataSize() const;
inline size_t ByteLength() const;
private:
static inline int ElementSize(InstanceType type);
inline int DataSize(InstanceType type) const;
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
};
template <class Traits>
class FixedTypedArray: public FixedTypedArrayBase {
public:
typedef typename Traits::ElementType ElementType;
static const InstanceType kInstanceType = Traits::kInstanceType;
DECL_CAST(FixedTypedArray<Traits>)
inline ElementType get_scalar(int index);
static inline Handle<Object> get(FixedTypedArray* array, int index);
inline void set(int index, ElementType value);
static inline ElementType from(int value);
static inline ElementType from(uint32_t value);
static inline ElementType from(double value);
// This accessor applies the correct conversion from Smi, HeapNumber
// and undefined.
inline void SetValue(uint32_t index, Object* value);
DECL_PRINTER(FixedTypedArray)
DECL_VERIFIER(FixedTypedArray)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
};
#define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
STATIC_ASSERT(size <= FixedTypedArrayBase::kMaxElementSize); \
class Type##ArrayTraits { \
public: /* NOLINT */ \
typedef elementType ElementType; \
static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
static const char* Designator() { return #type " array"; } \
static inline Handle<Object> ToHandle(Isolate* isolate, \
elementType scalar); \
static inline elementType defaultValue(); \
}; \
\
typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
#undef FIXED_TYPED_ARRAY_TRAITS
class TemplateList : public FixedArray {
public:
static Handle<TemplateList> New(Isolate* isolate, int size);
inline int length() const;
inline Object* get(int index) const;
inline void set(int index, Object* value);
static Handle<TemplateList> Add(Isolate* isolate, Handle<TemplateList> list,
Handle<Object> value);
DECL_CAST(TemplateList)
private:
static const int kLengthIndex = 0;
static const int kFirstElementIndex = kLengthIndex + 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateList);
};
class PrototypeInfo;
// An abstract superclass, a marker class really, for simple structure classes.
// It doesn't carry much functionality but allows struct classes to be
// identified in the type system.
class Struct: public HeapObject {
public:
inline void InitializeBody(int object_size);
DECL_CAST(Struct)
void BriefPrintDetails(std::ostream& os);
};
class Tuple2 : public Struct {
public:
DECL_ACCESSORS(value1, Object)
DECL_ACCESSORS(value2, Object)
DECL_CAST(Tuple2)
// Dispatched behavior.
DECL_PRINTER(Tuple2)
DECL_VERIFIER(Tuple2)
void BriefPrintDetails(std::ostream& os);
static const int kValue1Offset = HeapObject::kHeaderSize;
static const int kValue2Offset = kValue1Offset + kPointerSize;
static const int kSize = kValue2Offset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Tuple2);
};
class Tuple3 : public Tuple2 {
public:
DECL_ACCESSORS(value3, Object)
DECL_CAST(Tuple3)
// Dispatched behavior.
DECL_PRINTER(Tuple3)
DECL_VERIFIER(Tuple3)
void BriefPrintDetails(std::ostream& os);
static const int kValue3Offset = Tuple2::kSize;
static const int kSize = kValue3Offset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Tuple3);
};
class PromiseCapability : public Tuple3 {
public:
DECL_CAST(PromiseCapability)
DECL_PRINTER(PromiseCapability)
DECL_VERIFIER(PromiseCapability)
DECL_ACCESSORS(promise, Object)
DECL_ACCESSORS(resolve, Object)
DECL_ACCESSORS(reject, Object)
static const int kPromiseOffset = Tuple3::kValue1Offset;
static const int kResolveOffset = Tuple3::kValue2Offset;
static const int kRejectOffset = Tuple3::kValue3Offset;
static const int kSize = Tuple3::kSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PromiseCapability);
};
// A container struct to hold state required for PromiseResolveThenableJob.
class PromiseResolveThenableJobInfo : public Struct {
public:
DECL_ACCESSORS(thenable, JSReceiver)
DECL_ACCESSORS(then, JSReceiver)
DECL_ACCESSORS(resolve, JSFunction)
DECL_ACCESSORS(reject, JSFunction)
DECL_ACCESSORS(context, Context)
static const int kThenableOffset = Struct::kHeaderSize;
static const int kThenOffset = kThenableOffset + kPointerSize;
static const int kResolveOffset = kThenOffset + kPointerSize;
static const int kRejectOffset = kResolveOffset + kPointerSize;
[inspector] change target promise for kDebugWillHandle & kDebugDidHandle - kDebugPromiseCreated(task, parent_task) This event occurs when promise is created (PromiseHookType::Init). V8Debugger uses this event to maintain task -> parent task map. - kDebugEnqueueAsyncFunction(task) This event occurs when first internal promise for async function is created. V8Debugger collects stack trace at this point. - kDebugEnqueuePromiseResolve(task), This event occurs when Promise fulfills with resolved status. V8Debugger collects stack trace at this point. - kDebugEnqueuePromiseReject(task), This event occurs when Promise fulfills with rejected status. V8Debugger collects stack trace at this point. - kDebugPromiseCollected, This event occurs when Promise is collected and no other chained callbacks can be added. V8Debugger removes information about async task for this promise. - kDebugWillHandle, This event occurs when chained promise function (either resolve or reject handler) is called. V8Debugger installs parent promise's stack (based on task -> parent_task map) as current if available or current promise's scheduled stack otherwise. - kDebugDidHandle, This event occurs after chained promise function has finished. V8Debugger restores asynchronous call chain to previous one. With this change all instrumentation calls are related to current promise (before WillHandle and DidHandle were related to next async task). Before V8Debugger supported only the following: - asyncTaskScheduled(task1) - asyncTaskStarted(task1) - asyncTaskFinished(task1) Now V8Debugger supports the following: - asyncTaskScheduled(parent_task) .. - asyncTaskCreated(task, parent_task), - asyncTaskStarted(task), uses parent_task scheduled stack - asyncTaskScheduled(task) - asyncTaskFinished(task) Additionally: WillHandle and DidHandle were migrated to PromiseHook API. More details: https://docs.google.com/document/d/1u19N45f1gSF7M39mGsycJEK3IPyJgIXCBnWyiPeuJFE BUG=v8:5738 R=dgozman@chromium.org,gsathya@chromium.org,yangguo@chromium.org Review-Url: https://codereview.chromium.org/2650803003 Cr-Commit-Position: refs/heads/master@{#42644}
2017-01-25 07:05:43 +00:00
static const int kContextOffset = kRejectOffset + kPointerSize;
static const int kSize = kContextOffset + kPointerSize;
DECL_CAST(PromiseResolveThenableJobInfo)
DECL_PRINTER(PromiseResolveThenableJobInfo)
DECL_VERIFIER(PromiseResolveThenableJobInfo)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PromiseResolveThenableJobInfo);
};
class JSPromise;
// Struct to hold state required for PromiseReactionJob.
class PromiseReactionJobInfo : public Struct {
public:
DECL_ACCESSORS(value, Object)
DECL_ACCESSORS(tasks, Object)
// Check comment in JSPromise for information on what state these
// deferred fields could be in.
DECL_ACCESSORS(deferred_promise, Object)
DECL_ACCESSORS(deferred_on_resolve, Object)
DECL_ACCESSORS(deferred_on_reject, Object)
DECL_INT_ACCESSORS(debug_id)
DECL_ACCESSORS(context, Context)
static const int kValueOffset = Struct::kHeaderSize;
static const int kTasksOffset = kValueOffset + kPointerSize;
static const int kDeferredPromiseOffset = kTasksOffset + kPointerSize;
static const int kDeferredOnResolveOffset =
kDeferredPromiseOffset + kPointerSize;
static const int kDeferredOnRejectOffset =
kDeferredOnResolveOffset + kPointerSize;
[inspector] change target promise for kDebugWillHandle & kDebugDidHandle - kDebugPromiseCreated(task, parent_task) This event occurs when promise is created (PromiseHookType::Init). V8Debugger uses this event to maintain task -> parent task map. - kDebugEnqueueAsyncFunction(task) This event occurs when first internal promise for async function is created. V8Debugger collects stack trace at this point. - kDebugEnqueuePromiseResolve(task), This event occurs when Promise fulfills with resolved status. V8Debugger collects stack trace at this point. - kDebugEnqueuePromiseReject(task), This event occurs when Promise fulfills with rejected status. V8Debugger collects stack trace at this point. - kDebugPromiseCollected, This event occurs when Promise is collected and no other chained callbacks can be added. V8Debugger removes information about async task for this promise. - kDebugWillHandle, This event occurs when chained promise function (either resolve or reject handler) is called. V8Debugger installs parent promise's stack (based on task -> parent_task map) as current if available or current promise's scheduled stack otherwise. - kDebugDidHandle, This event occurs after chained promise function has finished. V8Debugger restores asynchronous call chain to previous one. With this change all instrumentation calls are related to current promise (before WillHandle and DidHandle were related to next async task). Before V8Debugger supported only the following: - asyncTaskScheduled(task1) - asyncTaskStarted(task1) - asyncTaskFinished(task1) Now V8Debugger supports the following: - asyncTaskScheduled(parent_task) .. - asyncTaskCreated(task, parent_task), - asyncTaskStarted(task), uses parent_task scheduled stack - asyncTaskScheduled(task) - asyncTaskFinished(task) Additionally: WillHandle and DidHandle were migrated to PromiseHook API. More details: https://docs.google.com/document/d/1u19N45f1gSF7M39mGsycJEK3IPyJgIXCBnWyiPeuJFE BUG=v8:5738 R=dgozman@chromium.org,gsathya@chromium.org,yangguo@chromium.org Review-Url: https://codereview.chromium.org/2650803003 Cr-Commit-Position: refs/heads/master@{#42644}
2017-01-25 07:05:43 +00:00
static const int kContextOffset = kDeferredOnRejectOffset + kPointerSize;
static const int kSize = kContextOffset + kPointerSize;
DECL_CAST(PromiseReactionJobInfo)
DECL_PRINTER(PromiseReactionJobInfo)
DECL_VERIFIER(PromiseReactionJobInfo)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PromiseReactionJobInfo);
};
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
class AsyncGeneratorRequest : public Struct {
public:
// Holds an AsyncGeneratorRequest, or Undefined.
DECL_ACCESSORS(next, Object)
DECL_INT_ACCESSORS(resume_mode)
DECL_ACCESSORS(value, Object)
DECL_ACCESSORS(promise, Object)
static const int kNextOffset = Struct::kHeaderSize;
static const int kResumeModeOffset = kNextOffset + kPointerSize;
static const int kValueOffset = kResumeModeOffset + kPointerSize;
static const int kPromiseOffset = kValueOffset + kPointerSize;
static const int kSize = kPromiseOffset + kPointerSize;
DECL_CAST(AsyncGeneratorRequest)
DECL_PRINTER(AsyncGeneratorRequest)
DECL_VERIFIER(AsyncGeneratorRequest)
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AsyncGeneratorRequest);
};
// Container for metadata stored on each prototype map.
class PrototypeInfo : public Struct {
public:
static const int UNREGISTERED = -1;
// [weak_cell]: A WeakCell containing this prototype. ICs cache the cell here.
DECL_ACCESSORS(weak_cell, Object)
// [prototype_users]: WeakFixedArray containing maps using this prototype,
// or Smi(0) if uninitialized.
DECL_ACCESSORS(prototype_users, Object)
// [object_create_map]: A field caching the map for Object.create(prototype).
static inline void SetObjectCreateMap(Handle<PrototypeInfo> info,
Handle<Map> map);
inline Map* ObjectCreateMap();
inline bool HasObjectCreateMap();
// [registry_slot]: Slot in prototype's user registry where this user
// is stored. Returns UNREGISTERED if this prototype has not been registered.
inline int registry_slot() const;
inline void set_registry_slot(int slot);
// [validity_cell]: Cell containing the validity bit for prototype chains
// going through this object, or Smi(0) if uninitialized.
// When a prototype object changes its map, then both its own validity cell
// and those of all "downstream" prototypes are invalidated; handlers for a
// given receiver embed the currently valid cell for that receiver's prototype
// during their compilation and check it on execution.
DECL_ACCESSORS(validity_cell, Object)
// [bit_field]
inline int bit_field() const;
inline void set_bit_field(int bit_field);
DECL_BOOLEAN_ACCESSORS(should_be_fast_map)
DECL_CAST(PrototypeInfo)
// Dispatched behavior.
DECL_PRINTER(PrototypeInfo)
DECL_VERIFIER(PrototypeInfo)
static const int kWeakCellOffset = HeapObject::kHeaderSize;
static const int kPrototypeUsersOffset = kWeakCellOffset + kPointerSize;
static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
static const int kObjectCreateMap = kValidityCellOffset + kPointerSize;
static const int kBitFieldOffset = kObjectCreateMap + kPointerSize;
static const int kSize = kBitFieldOffset + kPointerSize;
// Bit field usage.
static const int kShouldBeFastBit = 0;
private:
DECL_ACCESSORS(object_create_map, Object)
DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
};
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
// Pair used to store both a ScopeInfo and an extension object in the extension
// slot of a block, catch, or with context. Needed in the rare case where a
// declaration block scope (a "varblock" as used to desugar parameter
// destructuring) also contains a sloppy direct eval, or for with and catch
// scopes. (In no other case both are needed at the same time.)
class ContextExtension : public Struct {
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
public:
// [scope_info]: Scope info.
DECL_ACCESSORS(scope_info, ScopeInfo)
// [extension]: Extension object.
DECL_ACCESSORS(extension, Object)
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
DECL_CAST(ContextExtension)
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
// Dispatched behavior.
DECL_PRINTER(ContextExtension)
DECL_VERIFIER(ContextExtension)
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
static const int kScopeInfoOffset = HeapObject::kHeaderSize;
static const int kExtensionOffset = kScopeInfoOffset + kPointerSize;
static const int kSize = kExtensionOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ContextExtension);
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
};
// List of builtin functions we want to identify to improve code
// generation.
//
// Each entry has a name of a global object property holding an object
// optionally followed by ".prototype", a name of a builtin function
// on the object (the one the id is set for), and a label.
//
// Installation of ids for the selected builtin functions is handled
// by the bootstrapper.
#define FUNCTIONS_WITH_ID_LIST(V) \
V(Array, isArray, ArrayIsArray) \
V(Array.prototype, concat, ArrayConcat) \
V(Array.prototype, every, ArrayEvery) \
V(Array.prototype, fill, ArrayFill) \
V(Array.prototype, filter, ArrayFilter) \
V(Array.prototype, findIndex, ArrayFindIndex) \
V(Array.prototype, forEach, ArrayForEach) \
V(Array.prototype, includes, ArrayIncludes) \
V(Array.prototype, indexOf, ArrayIndexOf) \
V(Array.prototype, join, ArrayJoin) \
V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
V(Array.prototype, map, ArrayMap) \
V(Array.prototype, pop, ArrayPop) \
V(Array.prototype, push, ArrayPush) \
V(Array.prototype, reverse, ArrayReverse) \
V(Array.prototype, shift, ArrayShift) \
V(Array.prototype, slice, ArraySlice) \
V(Array.prototype, some, ArraySome) \
V(Array.prototype, splice, ArraySplice) \
V(Array.prototype, unshift, ArrayUnshift) \
V(Date, now, DateNow) \
V(Date.prototype, getDate, DateGetDate) \
V(Date.prototype, getDay, DateGetDay) \
V(Date.prototype, getFullYear, DateGetFullYear) \
V(Date.prototype, getHours, DateGetHours) \
V(Date.prototype, getMilliseconds, DateGetMilliseconds) \
V(Date.prototype, getMinutes, DateGetMinutes) \
V(Date.prototype, getMonth, DateGetMonth) \
V(Date.prototype, getSeconds, DateGetSeconds) \
V(Date.prototype, getTime, DateGetTime) \
V(Function.prototype, apply, FunctionApply) \
V(Function.prototype, bind, FunctionBind) \
V(Function.prototype, call, FunctionCall) \
V(Object, assign, ObjectAssign) \
V(Object, create, ObjectCreate) \
[es2015] Optimize Object.is baseline and interesting cases. The Object.is builtin provides an entry point to the abstract operation SameValue, which properly distinguishes -0 and 0, and also identifies NaNs. Most of the time you don't need these, but rather just regular strict equality, but when you do, Object.is(o, -0) is the most readable way to check for minus zero. This is for example used in Node.js by formatNumber to properly print -0 for negative zero. However since the builtin thus far implemented as C++ builtin and TurboFan didn't know anything about it, Node.js considering to go with a more performant, less readable version (which also makes assumptions about the input value) in https://github.com/nodejs/node/pull/15726 until the performance of Object.is will be on par (so hopefully we can go back to Object.is in Node 9). This CL ports the baseline implementation of Object.is to CSA, which is pretty straight-forward since SameValue is already available in CodeStubAssembler, and inlines a few interesting cases into TurboFan, i.e. comparing same SSA node, and checking for -0 and NaN explicitly. On the micro-benchmarks we go from testNumberIsMinusZero: 1000 ms. testObjectIsMinusZero: 929 ms. testObjectIsNaN: 954 ms. testObjectIsSame: 793 ms. testStrictEqualSame: 104 ms. to testNumberIsMinusZero: 89 ms. testObjectIsMinusZero: 88 ms. testObjectIsNaN: 88 ms. testObjectIsSame: 86 ms. testStrictEqualSame: 105 ms. which is a nice 10x to 11x improvement and brings Object.is on par with strict equality for most cases. Drive-by-fix: Also refactor and optimize the SameValue check in the CodeStubAssembler to avoid code bloat (by not inlining StrictEqual into every user of SameValue, and also avoiding useless checks). Bug: v8:6882 Change-Id: Ibffd8c36511f219fcce0d89ed4e1073f5d6c6344 Reviewed-on: https://chromium-review.googlesource.com/700254 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48275}
2017-10-04 06:25:26 +00:00
V(Object, is, ObjectIs) \
V(Object.prototype, hasOwnProperty, ObjectHasOwnProperty) \
[builtins] Properly optimize Object.prototype.isPrototypeOf. Port the baseline implementation of Object.prototype.isPrototypeOf to the CodeStubAssembler, sharing the existing prototype chain lookup logic with the instanceof / OrdinaryHasInstance implementation. Based on that, do the same in TurboFan, introducing a new JSHasInPrototypeChain operator, which encapsulates the central prototype chain walk logic. This speeds up Object.prototype.isPrototypeOf by more than a factor of four, so that the code A.prototype.isPrototypeOf(a) is now performance-wise on par with a instanceof A for the case where A is a regular constructor function and a is an instance of A. Since instanceof does more than just the fundamental prototype chain lookup, it was discovered in Node core that O.p.isPrototypeOf would be a more appropriate alternative for certain sanity checks, since it's less vulnerable to monkey-patching. In addition, the Object builtin would also avoid the performance-cliff associated with instanceof (due to the Symbol.hasInstance hook), as for example hit by https://github.com/nodejs/node/pull/13403#issuecomment-305915874. The main blocker was the missing performance of isPrototypeOf, since it was still a JS builtin backed by a runtime call. This CL also adds more test coverage for the Object.prototype.isPrototypeOf builtin, especially when called from optimized code. CQ_INCLUDE_TRYBOTS=master.tryserver.chromium.linux:linux_chromium_rel_ng BUG=v8:5269,v8:5989,v8:6483 R=jgruber@chromium.org Review-Url: https://codereview.chromium.org/2934893002 Cr-Commit-Position: refs/heads/master@{#45925}
2017-06-13 19:14:00 +00:00
V(Object.prototype, isPrototypeOf, ObjectIsPrototypeOf) \
V(Object.prototype, toString, ObjectToString) \
V(RegExp.prototype, compile, RegExpCompile) \
V(RegExp.prototype, exec, RegExpExec) \
V(RegExp.prototype, test, RegExpTest) \
V(RegExp.prototype, toString, RegExpToString) \
V(String.prototype, charCodeAt, StringCharCodeAt) \
V(String.prototype, charAt, StringCharAt) \
V(String.prototype, codePointAt, StringCodePointAt) \
V(String.prototype, concat, StringConcat) \
V(String.prototype, endsWith, StringEndsWith) \
V(String.prototype, includes, StringIncludes) \
V(String.prototype, indexOf, StringIndexOf) \
V(String.prototype, lastIndexOf, StringLastIndexOf) \
V(String.prototype, repeat, StringRepeat) \
V(String.prototype, slice, StringSlice) \
V(String.prototype, startsWith, StringStartsWith) \
V(String.prototype, substr, StringSubstr) \
V(String.prototype, substring, StringSubstring) \
V(String.prototype, toLowerCase, StringToLowerCase) \
V(String.prototype, toString, StringToString) \
V(String.prototype, toUpperCase, StringToUpperCase) \
V(String.prototype, trim, StringTrim) \
V(String.prototype, trimLeft, StringTrimLeft) \
V(String.prototype, trimRight, StringTrimRight) \
V(String.prototype, valueOf, StringValueOf) \
V(String, fromCharCode, StringFromCharCode) \
V(String, fromCodePoint, StringFromCodePoint) \
V(String, raw, StringRaw) \
V(Math, random, MathRandom) \
V(Math, floor, MathFloor) \
V(Math, round, MathRound) \
V(Math, ceil, MathCeil) \
V(Math, abs, MathAbs) \
V(Math, log, MathLog) \
V(Math, log1p, MathLog1p) \
V(Math, log2, MathLog2) \
V(Math, log10, MathLog10) \
V(Math, cbrt, MathCbrt) \
V(Math, exp, MathExp) \
V(Math, expm1, MathExpm1) \
V(Math, sqrt, MathSqrt) \
V(Math, pow, MathPow) \
V(Math, max, MathMax) \
V(Math, min, MathMin) \
V(Math, cos, MathCos) \
V(Math, cosh, MathCosh) \
V(Math, sign, MathSign) \
V(Math, sin, MathSin) \
V(Math, sinh, MathSinh) \
V(Math, tan, MathTan) \
V(Math, tanh, MathTanh) \
V(Math, acos, MathAcos) \
V(Math, acosh, MathAcosh) \
V(Math, asin, MathAsin) \
V(Math, asinh, MathAsinh) \
V(Math, atan, MathAtan) \
V(Math, atan2, MathAtan2) \
V(Math, atanh, MathAtanh) \
V(Math, imul, MathImul) \
V(Math, clz32, MathClz32) \
V(Math, fround, MathFround) \
V(Math, trunc, MathTrunc) \
V(Number, isFinite, NumberIsFinite) \
V(Number, isInteger, NumberIsInteger) \
V(Number, isNaN, NumberIsNaN) \
V(Number, isSafeInteger, NumberIsSafeInteger) \
V(Number, parseFloat, NumberParseFloat) \
V(Number, parseInt, NumberParseInt) \
V(Number.prototype, toString, NumberToString) \
V(Map.prototype, clear, MapClear) \
V(Map.prototype, delete, MapDelete) \
V(Map.prototype, entries, MapEntries) \
V(Map.prototype, forEach, MapForEach) \
V(Map.prototype, has, MapHas) \
V(Map.prototype, keys, MapKeys) \
V(Map.prototype, get, MapGet) \
V(Map.prototype, set, MapSet) \
V(Map.prototype, values, MapValues) \
V(Set.prototype, add, SetAdd) \
V(Set.prototype, clear, SetClear) \
V(Set.prototype, delete, SetDelete) \
V(Set.prototype, entries, SetEntries) \
V(Set.prototype, forEach, SetForEach) \
V(Set.prototype, has, SetHas) \
V(Set.prototype, values, SetValues) \
V(WeakMap.prototype, delete, WeakMapDelete) \
V(WeakMap.prototype, has, WeakMapHas) \
V(WeakMap.prototype, set, WeakMapSet) \
V(WeakSet.prototype, add, WeakSetAdd) \
V(WeakSet.prototype, delete, WeakSetDelete) \
V(WeakSet.prototype, has, WeakSetHas)
#define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
V(Atomics, load, AtomicsLoad) \
V(Atomics, store, AtomicsStore) \
V(Atomics, exchange, AtomicsExchange) \
V(Atomics, compareExchange, AtomicsCompareExchange) \
V(Atomics, add, AtomicsAdd) \
V(Atomics, sub, AtomicsSub) \
V(Atomics, and, AtomicsAnd) \
V(Atomics, or, AtomicsOr) \
V(Atomics, xor, AtomicsXor)
enum BuiltinFunctionId {
kInvalidBuiltinFunctionId = -1,
kArrayConstructor,
#define DECL_FUNCTION_ID(ignored1, ignore2, name) k##name,
FUNCTIONS_WITH_ID_LIST(DECL_FUNCTION_ID)
ATOMIC_FUNCTIONS_WITH_ID_LIST(DECL_FUNCTION_ID)
#undef DECL_FUNCTION_ID
// Fake id for a special case of Math.pow. Note, it continues the
// list of math functions.
kMathPowHalf,
// These are manually assigned to special getters during bootstrapping.
kArrayBufferByteLength,
kArrayBufferIsView,
kArrayEntries,
kArrayKeys,
kArrayValues,
kArrayIteratorNext,
[turbofan] Inline Map and Set iterators into optimized code. This CL inlines the following builtins into TurboFan - %MapIteratorPrototype%.next - %SetIteratorPrototype%.next following the design that we are using for Array iteration already (different instance types for the different kinds of iterators). Details can be found in the relevant design document at: https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8 The key to great performance here is to ensure that the inlined code allows escape analysis and scalar replacement of aggregates to remove the allocations for the iterator itself as well as the iterator results and potential key/value arrays in the simple case of a for-of loop (and by extension also in other constructs that reduce to for-of loops internally), i.e.: const s = new Set; // ... do something with s for (const x of s) { // ... } Here the for-of loop shouldn't perform any allocations of helper objects. Drive-by-fix: Replace the ExistsJSMapWithness in JSBuiltinReducer with a more general HasInstanceTypeWitness, similar to what's in JSCallReducer. Also migrate the {Map,Set}.prototype.size getter inlining to the JSBuiltinReducer, so that everything is in a single place. R=jgruber@chromium.org Bug: v8:6344, v8:6571, chromium:740122 Change-Id: I09cb506fe26ed3e10d7dcb2f95ec4415e639582d Reviewed-on: https://chromium-review.googlesource.com/570159 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#46655}
2017-07-14 05:35:21 +00:00
kMapSize,
kSetSize,
kMapIteratorNext,
kSetIteratorNext,
kDataViewBuffer,
kDataViewByteLength,
kDataViewByteOffset,
kFunctionHasInstance,
kGlobalDecodeURI,
kGlobalDecodeURIComponent,
kGlobalEncodeURI,
kGlobalEncodeURIComponent,
kGlobalEscape,
kGlobalUnescape,
kGlobalIsFinite,
kGlobalIsNaN,
kTypedArrayByteLength,
kTypedArrayByteOffset,
kTypedArrayEntries,
kTypedArrayKeys,
kTypedArrayLength,
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
kTypedArrayToStringTag,
kTypedArrayValues,
kSharedArrayBufferByteLength,
kStringIterator,
kStringIteratorNext,
kStringToLowerCaseIntl,
kStringToUpperCaseIntl
};
class JSGeneratorObject: public JSObject {
public:
// [function]: The function corresponding to this generator object.
DECL_ACCESSORS(function, JSFunction)
// [context]: The context of the suspended computation.
DECL_ACCESSORS(context, Context)
// [receiver]: The receiver of the suspended computation.
DECL_ACCESSORS(receiver, Object)
// [input_or_debug_pos]
// For executing generators: the most recent input value.
// For suspended generators: debug information (bytecode offset).
// There is currently no need to remember the most recent input value for a
// suspended generator.
DECL_ACCESSORS(input_or_debug_pos, Object)
// [resume_mode]: The most recent resume mode.
enum ResumeMode { kNext, kReturn, kThrow };
DECL_INT_ACCESSORS(resume_mode)
// [continuation]
//
// A positive value indicates a suspended generator. The special
// kGeneratorExecuting and kGeneratorClosed values indicate that a generator
// cannot be resumed.
inline int continuation() const;
inline void set_continuation(int continuation);
inline bool is_closed() const;
inline bool is_executing() const;
inline bool is_suspended() const;
// For suspended generators: the source position at which the generator
// is suspended.
int source_position() const;
// [register_file]: Saved interpreter register file.
DECL_ACCESSORS(register_file, FixedArray)
DECL_CAST(JSGeneratorObject)
// Dispatched behavior.
DECL_VERIFIER(JSGeneratorObject)
// Magic sentinel values for the continuation.
static const int kGeneratorExecuting = -2;
static const int kGeneratorClosed = -1;
// Layout description.
static const int kFunctionOffset = JSObject::kHeaderSize;
static const int kContextOffset = kFunctionOffset + kPointerSize;
static const int kReceiverOffset = kContextOffset + kPointerSize;
static const int kInputOrDebugPosOffset = kReceiverOffset + kPointerSize;
static const int kResumeModeOffset = kInputOrDebugPosOffset + kPointerSize;
static const int kContinuationOffset = kResumeModeOffset + kPointerSize;
static const int kRegisterFileOffset = kContinuationOffset + kPointerSize;
static const int kSize = kRegisterFileOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
};
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
class JSAsyncGeneratorObject : public JSGeneratorObject {
public:
DECL_CAST(JSAsyncGeneratorObject)
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
// Dispatched behavior.
DECL_VERIFIER(JSAsyncGeneratorObject)
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
// [queue]
// Pointer to the head of a singly linked list of AsyncGeneratorRequest, or
// undefined.
DECL_ACCESSORS(queue, HeapObject)
// [awaited_promise]
// A reference to the Promise of an AwaitExpression.
DECL_ACCESSORS(awaited_promise, HeapObject)
// Layout description.
static const int kQueueOffset = JSGeneratorObject::kSize;
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
static const int kAwaitedPromiseOffset = kQueueOffset + kPointerSize;
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
static const int kSize = kAwaitedPromiseOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSAsyncGeneratorObject);
};
// JSBoundFunction describes a bound function exotic object.
class JSBoundFunction : public JSObject {
public:
// [bound_target_function]: The wrapped function object.
inline Object* raw_bound_target_function() const;
DECL_ACCESSORS(bound_target_function, JSReceiver)
// [bound_this]: The value that is always passed as the this value when
// calling the wrapped function.
DECL_ACCESSORS(bound_this, Object)
// [bound_arguments]: A list of values whose elements are used as the first
// arguments to any call to the wrapped function.
DECL_ACCESSORS(bound_arguments, FixedArray)
static MaybeHandle<String> GetName(Isolate* isolate,
Handle<JSBoundFunction> function);
static Maybe<int> GetLength(Isolate* isolate,
Handle<JSBoundFunction> function);
static MaybeHandle<Context> GetFunctionRealm(
Handle<JSBoundFunction> function);
DECL_CAST(JSBoundFunction)
// Dispatched behavior.
DECL_PRINTER(JSBoundFunction)
DECL_VERIFIER(JSBoundFunction)
// The bound function's string representation implemented according
// to ES6 section 19.2.3.5 Function.prototype.toString ( ).
static Handle<String> ToString(Handle<JSBoundFunction> function);
// Layout description.
static const int kBoundTargetFunctionOffset = JSObject::kHeaderSize;
static const int kBoundThisOffset = kBoundTargetFunctionOffset + kPointerSize;
static const int kBoundArgumentsOffset = kBoundThisOffset + kPointerSize;
static const int kSize = kBoundArgumentsOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSBoundFunction);
};
// JSFunction describes JavaScript functions.
class JSFunction: public JSObject {
public:
// [prototype_or_initial_map]:
DECL_ACCESSORS(prototype_or_initial_map, Object)
// [shared]: The information about the function that
// can be shared by instances.
DECL_ACCESSORS(shared, SharedFunctionInfo)
static const int kLengthDescriptorIndex = 0;
static const int kNameDescriptorIndex = 1;
// [context]: The context for this function.
inline Context* context();
inline bool has_context() const;
inline void set_context(Object* context);
inline JSObject* global_proxy();
inline Context* native_context();
static Handle<Object> GetName(Isolate* isolate, Handle<JSFunction> function);
static Maybe<int> GetLength(Isolate* isolate, Handle<JSFunction> function);
static Handle<Context> GetFunctionRealm(Handle<JSFunction> function);
// [code]: The generated code object for this function. Executed
// when the function is invoked, e.g. foo() or new foo(). See
// [[Call]] and [[Construct]] description in ECMA-262, section
// 8.6.2, page 27.
inline Code* code();
inline void set_code(Code* code);
inline void set_code_no_write_barrier(Code* code);
// Get the abstract code associated with the function, which will either be
// a Code object or a BytecodeArray.
inline AbstractCode* abstract_code();
// Tells whether or not this function is interpreted.
//
// Note: function->IsInterpreted() does not necessarily return the same value
// as function->shared()->IsInterpreted() because the closure might have been
// optimized.
inline bool IsInterpreted();
// Tells whether or not this function checks its optimization marker in its
// feedback vector.
inline bool ChecksOptimizationMarker();
// Tells whether or not this function holds optimized code.
//
// Note: Returning false does not necessarily mean that this function hasn't
// been optimized, as it may have optimized code on its feedback vector.
inline bool IsOptimized();
// Tells whether or not this function has optimized code available to it,
// either because it is optimized or because it has optimized code in its
// feedback vector.
inline bool HasOptimizedCode();
// Tells whether or not this function has a (non-zero) optimization marker.
inline bool HasOptimizationMarker();
// Mark this function for lazy recompilation. The function will be recompiled
// the next time it is executed.
void MarkForOptimization(ConcurrencyMode mode);
// Tells whether or not the function is already marked for lazy recompilation.
inline bool IsMarkedForOptimization();
inline bool IsMarkedForConcurrentOptimization();
// Tells whether or not the function is on the concurrent recompilation queue.
inline bool IsInOptimizationQueue();
// Clears the optimized code slot in the function's feedback vector.
inline void ClearOptimizedCodeSlot(const char* reason);
// Sets the optimization marker in the function's feedback vector.
inline void SetOptimizationMarker(OptimizationMarker marker);
// Clears the optimization marker in the function's feedback vector.
inline void ClearOptimizationMarker();
// Completes inobject slack tracking on initial map if it is active.
inline void CompleteInobjectSlackTrackingIfActive();
// [feedback_vector_cell]: The feedback vector.
DECL_ACCESSORS(feedback_vector_cell, Cell)
enum FeedbackVectorState {
TOP_LEVEL_SCRIPT_NEEDS_VECTOR,
NEEDS_VECTOR,
HAS_VECTOR,
NO_VECTOR_NEEDED
};
inline FeedbackVectorState GetFeedbackVectorState(Isolate* isolate) const;
// feedback_vector() can be used once the function is compiled.
inline FeedbackVector* feedback_vector() const;
inline bool has_feedback_vector() const;
static void EnsureLiterals(Handle<JSFunction> function);
// Unconditionally clear the type feedback vector.
void ClearTypeFeedbackInfo();
inline bool has_prototype_slot() const;
// The initial map for an object created by this constructor.
inline Map* initial_map();
static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
Handle<Object> prototype);
inline bool has_initial_map();
static void EnsureHasInitialMap(Handle<JSFunction> function);
// Creates a map that matches the constructor's initial map, but with
// [[prototype]] being new.target.prototype. Because new.target can be a
// JSProxy, this can call back into JavaScript.
static MUST_USE_RESULT MaybeHandle<Map> GetDerivedMap(
Isolate* isolate, Handle<JSFunction> constructor,
Handle<JSReceiver> new_target);
// Get and set the prototype property on a JSFunction. If the
// function has an initial map the prototype is set on the initial
// map. Otherwise, the prototype is put in the initial map field
// until an initial map is needed.
inline bool has_prototype();
inline bool has_instance_prototype();
inline Object* prototype();
inline Object* instance_prototype();
static void SetPrototype(Handle<JSFunction> function,
Handle<Object> value);
// Returns if this function has been compiled to native code yet.
inline bool is_compiled();
// Prints the name of the function using PrintF.
void PrintName(FILE* out = stdout);
DECL_CAST(JSFunction)
// Calculate the instance size and in-object properties count.
static void CalculateInstanceSizeForDerivedClass(
Handle<JSFunction> function, InstanceType instance_type,
int requested_embedder_fields, int* instance_size,
int* in_object_properties);
static void CalculateInstanceSizeHelper(InstanceType instance_type,
bool has_prototype_slot,
int requested_embedder_fields,
int requested_in_object_properties,
int* instance_size,
int* in_object_properties);
class BodyDescriptor;
// Dispatched behavior.
DECL_PRINTER(JSFunction)
DECL_VERIFIER(JSFunction)
// The function's name if it is configured, otherwise shared function info
// debug name.
static Handle<String> GetName(Handle<JSFunction> function);
// ES6 section 9.2.11 SetFunctionName
// Because of the way this abstract operation is used in the spec,
// it should never fail, but in practice it will fail if the generated
// function name's length exceeds String::kMaxLength.
static MUST_USE_RESULT bool SetName(Handle<JSFunction> function,
Handle<Name> name, Handle<String> prefix);
// The function's displayName if it is set, otherwise name if it is
// configured, otherwise shared function info
// debug name.
static Handle<String> GetDebugName(Handle<JSFunction> function);
// The function's string representation implemented according to
// ES6 section 19.2.3.5 Function.prototype.toString ( ).
static Handle<String> ToString(Handle<JSFunction> function);
// Layout description.
#define JS_FUNCTION_FIELDS(V) \
/* Pointer fields. */ \
V(kSharedFunctionInfoOffset, kPointerSize) \
V(kContextOffset, kPointerSize) \
V(kFeedbackVectorOffset, kPointerSize) \
V(kEndOfStrongFieldsOffset, 0) \
V(kCodeOffset, kPointerSize) \
/* Size of JSFunction object without prototype field. */ \
V(kSizeWithoutPrototype, 0) \
V(kPrototypeOrInitialMapOffset, kPointerSize) \
/* Size of JSFunction object with prototype field. */ \
V(kSizeWithPrototype, 0)
DEFINE_FIELD_OFFSET_CONSTANTS(JSObject::kHeaderSize, JS_FUNCTION_FIELDS)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
};
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// JSGlobalProxy's prototype must be a JSGlobalObject or null,
// and the prototype is hidden. JSGlobalProxy always delegates
// property accesses to its prototype if the prototype is not null.
//
// A JSGlobalProxy can be reinitialized which will preserve its identity.
//
// Accessing a JSGlobalProxy requires security check.
class JSGlobalProxy : public JSObject {
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
public:
// [native_context]: the owner native context of this global proxy object.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// It is null value if this object is not used by any context.
DECL_ACCESSORS(native_context, Object)
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
DECL_CAST(JSGlobalProxy)
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
inline bool IsDetachedFrom(JSGlobalObject* global) const;
static int SizeWithEmbedderFields(int embedder_field_count);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Dispatched behavior.
DECL_PRINTER(JSGlobalProxy)
DECL_VERIFIER(JSGlobalProxy)
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Layout description.
static const int kNativeContextOffset = JSObject::kHeaderSize;
static const int kSize = kNativeContextOffset + kPointerSize;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
};
// JavaScript global object.
class JSGlobalObject : public JSObject {
public:
// [native context]: the natives corresponding to this global object.
DECL_ACCESSORS(native_context, Context)
// [global proxy]: the global proxy object of the context
DECL_ACCESSORS(global_proxy, JSObject)
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Gets global object properties.
inline GlobalDictionary* global_dictionary();
inline void set_global_dictionary(GlobalDictionary* dictionary);
static void InvalidatePropertyCell(Handle<JSGlobalObject> object,
Handle<Name> name);
// Ensure that the global object has a cell for the given property name.
static Handle<PropertyCell> EnsureEmptyPropertyCell(
Handle<JSGlobalObject> global, Handle<Name> name,
PropertyCellType cell_type, int* entry_out = nullptr);
DECL_CAST(JSGlobalObject)
inline bool IsDetached();
// Dispatched behavior.
DECL_PRINTER(JSGlobalObject)
DECL_VERIFIER(JSGlobalObject)
// Layout description.
static const int kNativeContextOffset = JSObject::kHeaderSize;
static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
static const int kSize = kHeaderSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
};
// Representation for JS Wrapper objects, String, Number, Boolean, etc.
class JSValue: public JSObject {
public:
// [value]: the object being wrapped.
DECL_ACCESSORS(value, Object)
DECL_CAST(JSValue)
// Dispatched behavior.
DECL_PRINTER(JSValue)
DECL_VERIFIER(JSValue)
// Layout description.
static const int kValueOffset = JSObject::kHeaderSize;
static const int kSize = kValueOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
};
class DateCache;
// Representation for JS date objects.
class JSDate: public JSObject {
public:
static MUST_USE_RESULT MaybeHandle<JSDate> New(Handle<JSFunction> constructor,
Handle<JSReceiver> new_target,
double tv);
// If one component is NaN, all of them are, indicating a NaN time value.
// [value]: the time value.
DECL_ACCESSORS(value, Object)
// [year]: caches year. Either undefined, smi, or NaN.
DECL_ACCESSORS(year, Object)
// [month]: caches month. Either undefined, smi, or NaN.
DECL_ACCESSORS(month, Object)
// [day]: caches day. Either undefined, smi, or NaN.
DECL_ACCESSORS(day, Object)
// [weekday]: caches day of week. Either undefined, smi, or NaN.
DECL_ACCESSORS(weekday, Object)
// [hour]: caches hours. Either undefined, smi, or NaN.
DECL_ACCESSORS(hour, Object)
// [min]: caches minutes. Either undefined, smi, or NaN.
DECL_ACCESSORS(min, Object)
// [sec]: caches seconds. Either undefined, smi, or NaN.
DECL_ACCESSORS(sec, Object)
// [cache stamp]: sample of the date cache stamp at the
// moment when chached fields were cached.
DECL_ACCESSORS(cache_stamp, Object)
DECL_CAST(JSDate)
// Returns the time value (UTC) identifying the current time.
static double CurrentTimeValue(Isolate* isolate);
// Returns the date field with the specified index.
// See FieldIndex for the list of date fields.
static Object* GetField(Object* date, Smi* index);
static Handle<Object> SetValue(Handle<JSDate> date, double v);
void SetValue(Object* value, bool is_value_nan);
// Dispatched behavior.
DECL_PRINTER(JSDate)
DECL_VERIFIER(JSDate)
// The order is important. It must be kept in sync with date macros
// in macros.py.
enum FieldIndex {
kDateValue,
kYear,
kMonth,
kDay,
kWeekday,
kHour,
kMinute,
kSecond,
kFirstUncachedField,
kMillisecond = kFirstUncachedField,
kDays,
kTimeInDay,
kFirstUTCField,
kYearUTC = kFirstUTCField,
kMonthUTC,
kDayUTC,
kWeekdayUTC,
kHourUTC,
kMinuteUTC,
kSecondUTC,
kMillisecondUTC,
kDaysUTC,
kTimeInDayUTC,
kTimezoneOffset
};
// Layout description.
static const int kValueOffset = JSObject::kHeaderSize;
static const int kYearOffset = kValueOffset + kPointerSize;
static const int kMonthOffset = kYearOffset + kPointerSize;
static const int kDayOffset = kMonthOffset + kPointerSize;
static const int kWeekdayOffset = kDayOffset + kPointerSize;
static const int kHourOffset = kWeekdayOffset + kPointerSize;
static const int kMinOffset = kHourOffset + kPointerSize;
static const int kSecOffset = kMinOffset + kPointerSize;
static const int kCacheStampOffset = kSecOffset + kPointerSize;
static const int kSize = kCacheStampOffset + kPointerSize;
private:
inline Object* DoGetField(FieldIndex index);
Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
// Computes and caches the cacheable fields of the date.
inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
};
// Representation of message objects used for error reporting through
// the API. The messages are formatted in JavaScript so this object is
// a real JavaScript object. The information used for formatting the
// error messages are not directly accessible from JavaScript to
// prevent leaking information to user code called during error
// formatting.
class JSMessageObject: public JSObject {
public:
// [type]: the type of error message.
inline int type() const;
inline void set_type(int value);
// [arguments]: the arguments for formatting the error message.
DECL_ACCESSORS(argument, Object)
// [script]: the script from which the error message originated.
DECL_ACCESSORS(script, Object)
// [stack_frames]: an array of stack frames for this error object.
DECL_ACCESSORS(stack_frames, Object)
// [start_position]: the start position in the script for the error message.
inline int start_position() const;
inline void set_start_position(int value);
// [end_position]: the end position in the script for the error message.
inline int end_position() const;
inline void set_end_position(int value);
// Returns the line number for the error message (1-based), or
// Message::kNoLineNumberInfo if the line cannot be determined.
int GetLineNumber() const;
// Returns the offset of the given position within the containing line.
int GetColumnNumber() const;
// Returns the source code line containing the given source
// position, or the empty string if the position is invalid.
Handle<String> GetSourceLine() const;
inline int error_level() const;
inline void set_error_level(int level);
DECL_CAST(JSMessageObject)
// Dispatched behavior.
DECL_PRINTER(JSMessageObject)
DECL_VERIFIER(JSMessageObject)
// Layout description.
static const int kTypeOffset = JSObject::kHeaderSize;
static const int kArgumentsOffset = kTypeOffset + kPointerSize;
static const int kScriptOffset = kArgumentsOffset + kPointerSize;
static const int kStackFramesOffset = kScriptOffset + kPointerSize;
static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
static const int kErrorLevelOffset = kEndPositionOffset + kPointerSize;
static const int kSize = kErrorLevelOffset + kPointerSize;
typedef FixedBodyDescriptor<HeapObject::kMapOffset,
kStackFramesOffset + kPointerSize,
kSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
};
class JSPromise : public JSObject {
public:
DECL_ACCESSORS(result, Object)
// There are 3 possible states for these fields --
// 1) Undefined -- This is the zero state when there is no callback
// or deferred fields registered.
//
// 2) Object -- There is a single callback directly attached to the
// fulfill_reactions, reject_reactions and the deferred fields are
// directly attached to the slots. In this state, deferred_promise
// is a JSReceiver and deferred_on_{resolve, reject} are Callables.
//
// 3) FixedArray -- There is more than one callback and deferred
// fields attached to a FixedArray.
//
// The callback can be a Callable or a Symbol.
DECL_ACCESSORS(deferred_promise, Object)
DECL_ACCESSORS(deferred_on_resolve, Object)
DECL_ACCESSORS(deferred_on_reject, Object)
DECL_ACCESSORS(fulfill_reactions, Object)
DECL_ACCESSORS(reject_reactions, Object)
DECL_INT_ACCESSORS(flags)
// [has_handler]: Whether this promise has a reject handler or not.
DECL_BOOLEAN_ACCESSORS(has_handler)
// [handled_hint]: Whether this promise will be handled by a catch
// block in an async function.
DECL_BOOLEAN_ACCESSORS(handled_hint)
static const char* Status(v8::Promise::PromiseState status);
v8::Promise::PromiseState status() const;
DECL_CAST(JSPromise)
// Dispatched behavior.
DECL_PRINTER(JSPromise)
DECL_VERIFIER(JSPromise)
// Layout description.
static const int kResultOffset = JSObject::kHeaderSize;
static const int kDeferredPromiseOffset = kResultOffset + kPointerSize;
static const int kDeferredOnResolveOffset =
kDeferredPromiseOffset + kPointerSize;
static const int kDeferredOnRejectOffset =
kDeferredOnResolveOffset + kPointerSize;
static const int kFulfillReactionsOffset =
kDeferredOnRejectOffset + kPointerSize;
static const int kRejectReactionsOffset =
kFulfillReactionsOffset + kPointerSize;
static const int kFlagsOffset = kRejectReactionsOffset + kPointerSize;
static const int kSize = kFlagsOffset + kPointerSize;
static const int kSizeWithEmbedderFields =
kSize + v8::Promise::kEmbedderFieldCount * kPointerSize;
// Flags layout.
// The first two bits store the v8::Promise::PromiseState.
static const int kStatusBits = 2;
static const int kHasHandlerBit = 2;
static const int kHandledHintBit = 3;
static const int kStatusShift = 0;
static const int kStatusMask = 0x3;
STATIC_ASSERT(v8::Promise::kPending == 0);
STATIC_ASSERT(v8::Promise::kFulfilled == 1);
STATIC_ASSERT(v8::Promise::kRejected == 2);
};
class TypeFeedbackInfo : public Tuple3 {
public:
inline int ic_total_count();
inline void set_ic_total_count(int count);
inline int ic_with_type_info_count();
inline void change_ic_with_type_info_count(int delta);
inline int ic_generic_count();
inline void change_ic_generic_count(int delta);
inline void initialize_storage();
inline void change_own_type_change_checksum();
inline int own_type_change_checksum();
inline void set_inlined_type_change_checksum(int checksum);
inline bool matches_inlined_type_change_checksum(int checksum);
DECL_CAST(TypeFeedbackInfo)
static const int kStorage1Offset = kValue1Offset;
static const int kStorage2Offset = kValue2Offset;
static const int kStorage3Offset = kValue3Offset;
private:
static const int kTypeChangeChecksumBits = 7;
class ICTotalCountField: public BitField<int, 0,
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
class OwnTypeChangeChecksum: public BitField<int,
kSmiValueSize - kTypeChangeChecksumBits,
kTypeChangeChecksumBits> {}; // NOLINT
class ICsWithTypeInfoCountField: public BitField<int, 0,
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
class InlinedTypeChangeChecksum: public BitField<int,
kSmiValueSize - kTypeChangeChecksumBits,
kTypeChangeChecksumBits> {}; // NOLINT
DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
};
class AllocationSite: public Struct {
public:
static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
static const double kPretenureRatio;
static const int kPretenureMinimumCreated = 100;
// Values for pretenure decision field.
enum PretenureDecision {
kUndecided = 0,
kDontTenure = 1,
kMaybeTenure = 2,
kTenure = 3,
kZombie = 4,
kLastPretenureDecisionValue = kZombie
};
const char* PretenureDecisionName(PretenureDecision decision);
// Contains either a Smi-encoded bitfield or a boilerplate. If it's a Smi the
// AllocationSite is for a constructed Array.
DECL_ACCESSORS(transition_info_or_boilerplate, Object)
DECL_ACCESSORS(boilerplate, JSObject)
DECL_INT_ACCESSORS(transition_info)
// nested_site threads a list of sites that represent nested literals
// walked in a particular order. So [[1, 2], 1, 2] will have one
// nested_site, but [[1, 2], 3, [4]] will have a list of two.
DECL_ACCESSORS(nested_site, Object)
// Bitfield containing pretenuring information.
DECL_INT_ACCESSORS(pretenure_data)
DECL_INT_ACCESSORS(pretenure_create_count)
DECL_ACCESSORS(dependent_code, DependentCode)
// heap->allocation_site_list() points to the last AllocationSite which form
// a linked list through the weak_next property. The GC might remove elements
// from the list by updateing weak_next.
DECL_ACCESSORS(weak_next, Object)
inline void Initialize();
// This method is expensive, it should only be called for reporting.
bool IsNested();
// transition_info bitfields, for constructed array transition info.
class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
class UnusedBits: public BitField<int, 15, 14> {};
class DoNotInlineBit: public BitField<bool, 29, 1> {};
// Bitfields for pretenure_data
class MementoFoundCountBits: public BitField<int, 0, 26> {};
class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
// Increments the mementos found counter and returns true when the first
// memento was found for a given allocation site.
inline bool IncrementMementoFoundCount(int increment = 1);
inline void IncrementMementoCreateCount();
PretenureFlag GetPretenureMode() const;
void ResetPretenureDecision();
inline PretenureDecision pretenure_decision() const;
inline void set_pretenure_decision(PretenureDecision decision);
inline bool deopt_dependent_code() const;
inline void set_deopt_dependent_code(bool deopt);
inline int memento_found_count() const;
inline void set_memento_found_count(int count);
inline int memento_create_count() const;
inline void set_memento_create_count(int count);
// The pretenuring decision is made during gc, and the zombie state allows
// us to recognize when an allocation site is just being kept alive because
// a later traversal of new space may discover AllocationMementos that point
// to this AllocationSite.
inline bool IsZombie() const;
inline bool IsMaybeTenure() const;
inline void MarkZombie();
inline bool MakePretenureDecision(PretenureDecision current_decision,
double ratio,
bool maximum_size_scavenge);
inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
inline ElementsKind GetElementsKind() const;
inline void SetElementsKind(ElementsKind kind);
inline bool CanInlineCall() const;
inline void SetDoNotInlineCall();
inline bool PointsToLiteral() const;
template <AllocationSiteUpdateMode update_or_check =
AllocationSiteUpdateMode::kUpdate>
static bool DigestTransitionFeedback(Handle<AllocationSite> site,
ElementsKind to_kind);
DECL_PRINTER(AllocationSite)
DECL_VERIFIER(AllocationSite)
DECL_CAST(AllocationSite)
static inline bool ShouldTrack(ElementsKind boilerplate_elements_kind);
static bool ShouldTrack(ElementsKind from, ElementsKind to);
static inline bool CanTrack(InstanceType type);
static const int kTransitionInfoOrBoilerplateOffset = HeapObject::kHeaderSize;
static const int kNestedSiteOffset =
kTransitionInfoOrBoilerplateOffset + kPointerSize;
static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
static const int kPretenureCreateCountOffset =
kPretenureDataOffset + kPointerSize;
static const int kDependentCodeOffset =
kPretenureCreateCountOffset + kPointerSize;
static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
static const int kSize = kWeakNextOffset + kPointerSize;
// During mark compact we need to take special care for the dependent code
// field.
static const int kPointerFieldsBeginOffset =
kTransitionInfoOrBoilerplateOffset;
static const int kPointerFieldsEndOffset = kWeakNextOffset;
// Ignores weakness.
typedef FixedBodyDescriptor<HeapObject::kHeaderSize, kSize, kSize>
BodyDescriptor;
// Respects weakness.
typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
kPointerFieldsEndOffset, kSize>
BodyDescriptorWeak;
private:
inline bool PretenuringDecisionMade() const;
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
};
class AllocationMemento: public Struct {
public:
static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
static const int kSize = kAllocationSiteOffset + kPointerSize;
DECL_ACCESSORS(allocation_site, Object)
inline bool IsValid() const;
inline AllocationSite* GetAllocationSite() const;
inline Address GetAllocationSiteUnchecked() const;
DECL_PRINTER(AllocationMemento)
DECL_VERIFIER(AllocationMemento)
DECL_CAST(AllocationMemento)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
};
// Utility superclass for stack-allocated objects that must be updated
// on gc. It provides two ways for the gc to update instances, either
// iterating or updating after gc.
class Relocatable BASE_EMBEDDED {
public:
explicit inline Relocatable(Isolate* isolate);
inline virtual ~Relocatable();
virtual void IterateInstance(RootVisitor* v) {}
virtual void PostGarbageCollection() { }
static void PostGarbageCollectionProcessing(Isolate* isolate);
static int ArchiveSpacePerThread();
static char* ArchiveState(Isolate* isolate, char* to);
static char* RestoreState(Isolate* isolate, char* from);
static void Iterate(Isolate* isolate, RootVisitor* v);
static void Iterate(RootVisitor* v, Relocatable* top);
static char* Iterate(RootVisitor* v, char* t);
private:
Isolate* isolate_;
Relocatable* prev_;
};
// The Oddball describes objects null, undefined, true, and false.
class Oddball: public HeapObject {
public:
// [to_number_raw]: Cached raw to_number computed at startup.
inline double to_number_raw() const;
inline void set_to_number_raw(double value);
inline void set_to_number_raw_as_bits(uint64_t bits);
// [to_string]: Cached to_string computed at startup.
DECL_ACCESSORS(to_string, String)
// [to_number]: Cached to_number computed at startup.
DECL_ACCESSORS(to_number, Object)
// [typeof]: Cached type_of computed at startup.
DECL_ACCESSORS(type_of, String)
inline byte kind() const;
inline void set_kind(byte kind);
// ES6 section 7.1.3 ToNumber for Boolean, Null, Undefined.
MUST_USE_RESULT static inline Handle<Object> ToNumber(Handle<Oddball> input);
DECL_CAST(Oddball)
// Dispatched behavior.
DECL_VERIFIER(Oddball)
// Initialize the fields.
static void Initialize(Isolate* isolate, Handle<Oddball> oddball,
const char* to_string, Handle<Object> to_number,
const char* type_of, byte kind);
// Layout description.
static const int kToNumberRawOffset = HeapObject::kHeaderSize;
static const int kToStringOffset = kToNumberRawOffset + kDoubleSize;
static const int kToNumberOffset = kToStringOffset + kPointerSize;
static const int kTypeOfOffset = kToNumberOffset + kPointerSize;
static const int kKindOffset = kTypeOfOffset + kPointerSize;
static const int kSize = kKindOffset + kPointerSize;
static const byte kFalse = 0;
static const byte kTrue = 1;
static const byte kNotBooleanMask = static_cast<byte>(~1);
static const byte kTheHole = 2;
static const byte kNull = 3;
static const byte kArgumentsMarker = 4;
static const byte kUndefined = 5;
static const byte kUninitialized = 6;
static const byte kOther = 7;
static const byte kException = 8;
static const byte kOptimizedOut = 9;
static const byte kStaleRegister = 10;
typedef FixedBodyDescriptor<kToStringOffset, kTypeOfOffset + kPointerSize,
kSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
STATIC_ASSERT(kToNumberRawOffset == HeapNumber::kValueOffset);
STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
STATIC_ASSERT(kNull == Internals::kNullOddballKind);
STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
};
class Cell: public HeapObject {
public:
// [value]: value of the cell.
DECL_ACCESSORS(value, Object)
DECL_CAST(Cell)
static inline Cell* FromValueAddress(Address value) {
Object* result = FromAddress(value - kValueOffset);
return static_cast<Cell*>(result);
}
inline Address ValueAddress() {
return address() + kValueOffset;
}
// Dispatched behavior.
DECL_PRINTER(Cell)
DECL_VERIFIER(Cell)
// Layout description.
static const int kValueOffset = HeapObject::kHeaderSize;
static const int kSize = kValueOffset + kPointerSize;
typedef FixedBodyDescriptor<kValueOffset,
kValueOffset + kPointerSize,
kSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
};
class PropertyCell : public HeapObject {
public:
// [name]: the name of the global property.
DECL_ACCESSORS(name, Name)
// [property_details]: details of the global property.
DECL_ACCESSORS(property_details_raw, Object)
// [value]: value of the global property.
DECL_ACCESSORS(value, Object)
// [dependent_code]: dependent code that depends on the type of the global
// property.
DECL_ACCESSORS(dependent_code, DependentCode)
inline PropertyDetails property_details();
inline void set_property_details(PropertyDetails details);
PropertyCellConstantType GetConstantType();
// Computes the new type of the cell's contents for the given value, but
// without actually modifying the details.
static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
Handle<Object> value,
PropertyDetails details);
// Prepares property cell at given entry for receiving given value.
// As a result the old cell could be invalidated and/or dependent code could
// be deoptimized. Returns the prepared property cell.
static Handle<PropertyCell> PrepareForValue(
Handle<GlobalDictionary> dictionary, int entry, Handle<Object> value,
PropertyDetails details);
static Handle<PropertyCell> InvalidateEntry(
Handle<GlobalDictionary> dictionary, int entry);
static void SetValueWithInvalidation(Handle<PropertyCell> cell,
Handle<Object> new_value);
DECL_CAST(PropertyCell)
// Dispatched behavior.
DECL_PRINTER(PropertyCell)
DECL_VERIFIER(PropertyCell)
// Layout description.
static const int kDetailsOffset = HeapObject::kHeaderSize;
static const int kNameOffset = kDetailsOffset + kPointerSize;
static const int kValueOffset = kNameOffset + kPointerSize;
static const int kDependentCodeOffset = kValueOffset + kPointerSize;
static const int kSize = kDependentCodeOffset + kPointerSize;
typedef FixedBodyDescriptor<kNameOffset, kSize, kSize> BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
};
class WeakCell : public HeapObject {
public:
inline Object* value() const;
// This should not be called by anyone except GC.
inline void clear();
// This should not be called by anyone except allocator.
inline void initialize(HeapObject* value);
inline bool cleared() const;
DECL_CAST(WeakCell)
DECL_PRINTER(WeakCell)
DECL_VERIFIER(WeakCell)
// Layout description.
static const int kValueOffset = HeapObject::kHeaderSize;
static const int kSize = kValueOffset + kPointerSize;
typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
};
// The JSProxy describes EcmaScript Harmony proxies
class JSProxy: public JSReceiver {
public:
MUST_USE_RESULT static MaybeHandle<JSProxy> New(Isolate* isolate,
Handle<Object>,
Handle<Object>);
// [handler]: The handler property.
DECL_ACCESSORS(handler, Object)
// [target]: The target property.
DECL_ACCESSORS(target, JSReceiver)
static MaybeHandle<Context> GetFunctionRealm(Handle<JSProxy> proxy);
DECL_CAST(JSProxy)
INLINE(bool IsRevoked() const);
static void Revoke(Handle<JSProxy> proxy);
// ES6 9.5.1
static MaybeHandle<Object> GetPrototype(Handle<JSProxy> receiver);
// ES6 9.5.2
MUST_USE_RESULT static Maybe<bool> SetPrototype(Handle<JSProxy> proxy,
Handle<Object> value,
bool from_javascript,
ShouldThrow should_throw);
// ES6 9.5.3
MUST_USE_RESULT static Maybe<bool> IsExtensible(Handle<JSProxy> proxy);
// ES6, #sec-isarray. NOT to be confused with %_IsArray.
MUST_USE_RESULT static Maybe<bool> IsArray(Handle<JSProxy> proxy);
// ES6 9.5.4 (when passed kDontThrow)
MUST_USE_RESULT static Maybe<bool> PreventExtensions(
Handle<JSProxy> proxy, ShouldThrow should_throw);
// ES6 9.5.5
MUST_USE_RESULT static Maybe<bool> GetOwnPropertyDescriptor(
Isolate* isolate, Handle<JSProxy> proxy, Handle<Name> name,
PropertyDescriptor* desc);
// ES6 9.5.6
MUST_USE_RESULT static Maybe<bool> DefineOwnProperty(
Isolate* isolate, Handle<JSProxy> object, Handle<Object> key,
PropertyDescriptor* desc, ShouldThrow should_throw);
// ES6 9.5.7
MUST_USE_RESULT static Maybe<bool> HasProperty(Isolate* isolate,
Handle<JSProxy> proxy,
Handle<Name> name);
// This function never returns false.
// It returns either true or throws.
MUST_USE_RESULT static Maybe<bool> CheckHasTrap(Isolate* isolate,
Handle<Name> name,
Handle<JSReceiver> target);
// ES6 9.5.8
MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
Isolate* isolate, Handle<JSProxy> proxy, Handle<Name> name,
Handle<Object> receiver, bool* was_found);
enum AccessKind { kGet, kSet };
static MaybeHandle<Object> CheckGetSetTrapResult(Isolate* isolate,
Handle<Name> name,
Handle<JSReceiver> target,
Handle<Object> trap_result,
AccessKind access_kind);
// ES6 9.5.9
MUST_USE_RESULT static Maybe<bool> SetProperty(Handle<JSProxy> proxy,
Handle<Name> name,
Handle<Object> value,
Handle<Object> receiver,
LanguageMode language_mode);
// ES6 9.5.10 (when passed LanguageMode::kSloppy)
MUST_USE_RESULT static Maybe<bool> DeletePropertyOrElement(
Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
// ES6 9.5.12
MUST_USE_RESULT static Maybe<bool> OwnPropertyKeys(
Isolate* isolate, Handle<JSReceiver> receiver, Handle<JSProxy> proxy,
PropertyFilter filter, KeyAccumulator* accumulator);
MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
LookupIterator* it);
// Dispatched behavior.
DECL_PRINTER(JSProxy)
DECL_VERIFIER(JSProxy)
static const int kMaxIterationLimit = 100 * 1024;
// Layout description.
static const int kTargetOffset = JSReceiver::kHeaderSize;
static const int kHandlerOffset = kTargetOffset + kPointerSize;
static const int kSize = kHandlerOffset + kPointerSize;
// kTargetOffset aliases with the elements of JSObject. The fact that
// JSProxy::target is a Javascript value which cannot be confused with an
// elements backing store is exploited by loading from this offset from an
// unknown JSReceiver.
STATIC_ASSERT(JSObject::kElementsOffset == JSProxy::kTargetOffset);
typedef FixedBodyDescriptor<JSReceiver::kPropertiesOrHashOffset, kSize, kSize>
BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
static Maybe<bool> SetPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy,
Handle<Symbol> private_name,
PropertyDescriptor* desc,
ShouldThrow should_throw);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
};
class JSCollection : public JSObject {
public:
// [table]: the backing hash table
DECL_ACCESSORS(table, Object)
static const int kTableOffset = JSObject::kHeaderSize;
static const int kSize = kTableOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
};
// The JSSet describes EcmaScript Harmony sets
// TODO(marja): When moving JSSet out of objects.h, move JSSetIterator (from
// objects/hash-table.h) into the same file.
class JSSet : public JSCollection {
public:
DECL_CAST(JSSet)
static void Initialize(Handle<JSSet> set, Isolate* isolate);
static void Clear(Handle<JSSet> set);
// Dispatched behavior.
DECL_PRINTER(JSSet)
DECL_VERIFIER(JSSet)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
};
// The JSMap describes EcmaScript Harmony maps
// TODO(marja): When moving JSMap out of objects.h, move JSMapIterator (from
// objects/hash-table.h) into the same file.
class JSMap : public JSCollection {
public:
DECL_CAST(JSMap)
static void Initialize(Handle<JSMap> map, Isolate* isolate);
static void Clear(Handle<JSMap> map);
// Dispatched behavior.
DECL_PRINTER(JSMap)
DECL_VERIFIER(JSMap)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
};
// The [Async-from-Sync Iterator] object
// (proposal-async-iteration/#sec-async-from-sync-iterator-objects)
// An object which wraps an ordinary Iterator and converts it to behave
// according to the Async Iterator protocol.
// (See https://tc39.github.io/proposal-async-iteration/#sec-iteration)
class JSAsyncFromSyncIterator : public JSObject {
public:
DECL_CAST(JSAsyncFromSyncIterator)
DECL_PRINTER(JSAsyncFromSyncIterator)
DECL_VERIFIER(JSAsyncFromSyncIterator)
// Async-from-Sync Iterator instances are ordinary objects that inherit
// properties from the %AsyncFromSyncIteratorPrototype% intrinsic object.
// Async-from-Sync Iterator instances are initially created with the internal
// slots listed in Table 4.
// (proposal-async-iteration/#table-async-from-sync-iterator-internal-slots)
DECL_ACCESSORS(sync_iterator, JSReceiver)
// Offsets of object fields.
static const int kSyncIteratorOffset = JSObject::kHeaderSize;
static const int kSize = kSyncIteratorOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSAsyncFromSyncIterator);
};
class JSStringIterator : public JSObject {
public:
// Dispatched behavior.
DECL_PRINTER(JSStringIterator)
DECL_VERIFIER(JSStringIterator)
DECL_CAST(JSStringIterator)
// [string]: the [[IteratedString]] inobject property.
DECL_ACCESSORS(string, String)
// [index]: The [[StringIteratorNextIndex]] inobject property.
inline int index() const;
inline void set_index(int value);
static const int kStringOffset = JSObject::kHeaderSize;
static const int kNextIndexOffset = kStringOffset + kPointerSize;
static const int kSize = kNextIndexOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSStringIterator);
};
// Base class for both JSWeakMap and JSWeakSet
class JSWeakCollection: public JSObject {
public:
DECL_CAST(JSWeakCollection)
// [table]: the backing hash table mapping keys to values.
DECL_ACCESSORS(table, Object)
// [next]: linked list of encountered weak maps during GC.
DECL_ACCESSORS(next, Object)
static void Initialize(Handle<JSWeakCollection> collection, Isolate* isolate);
static void Set(Handle<JSWeakCollection> collection, Handle<Object> key,
Handle<Object> value, int32_t hash);
static bool Delete(Handle<JSWeakCollection> collection, Handle<Object> key,
int32_t hash);
static Handle<JSArray> GetEntries(Handle<JSWeakCollection> holder,
int max_entries);
static const int kTableOffset = JSObject::kHeaderSize;
static const int kNextOffset = kTableOffset + kPointerSize;
static const int kSize = kNextOffset + kPointerSize;
// Visiting policy defines whether the table and next collection fields
// should be visited or not.
enum BodyVisitingPolicy { kIgnoreWeakness, kRespectWeakness };
// Iterates the function object according to the visiting policy.
template <BodyVisitingPolicy>
class BodyDescriptorImpl;
// Visit the whole object.
typedef BodyDescriptorImpl<kIgnoreWeakness> BodyDescriptor;
// Don't visit table and next collection fields.
typedef BodyDescriptorImpl<kRespectWeakness> BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
};
// The JSWeakMap describes EcmaScript Harmony weak maps
class JSWeakMap: public JSWeakCollection {
public:
DECL_CAST(JSWeakMap)
// Dispatched behavior.
DECL_PRINTER(JSWeakMap)
DECL_VERIFIER(JSWeakMap)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
};
// The JSWeakSet describes EcmaScript Harmony weak sets
class JSWeakSet: public JSWeakCollection {
public:
DECL_CAST(JSWeakSet)
// Dispatched behavior.
DECL_PRINTER(JSWeakSet)
DECL_VERIFIER(JSWeakSet)
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
};
// Foreign describes objects pointing from JavaScript to C structures.
class Foreign: public HeapObject {
public:
// [address]: field containing the address.
inline Address foreign_address();
inline void set_foreign_address(Address value);
DECL_CAST(Foreign)
// Dispatched behavior.
DECL_PRINTER(Foreign)
DECL_VERIFIER(Foreign)
// Layout description.
static const int kForeignAddressOffset = HeapObject::kHeaderSize;
static const int kSize = kForeignAddressOffset + kPointerSize;
STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
};
// An accessor must have a getter, but can have no setter.
//
// When setting a property, V8 searches accessors in prototypes.
// If an accessor was found and it does not have a setter,
// the request is ignored.
//
// If the accessor in the prototype has the READ_ONLY property attribute, then
// a new value is added to the derived object when the property is set.
// This shadows the accessor in the prototype.
class AccessorInfo: public Struct {
public:
DECL_ACCESSORS(name, Name)
DECL_INT_ACCESSORS(flags)
DECL_ACCESSORS(expected_receiver_type, Object)
// This directly points at a foreign C function to be used from the runtime.
DECL_ACCESSORS(getter, Object)
DECL_ACCESSORS(setter, Object)
// This either points at the same as above, or a trampoline in case we are
// running with the simulator. Use these entries from generated code.
DECL_ACCESSORS(js_getter, Object)
DECL_ACCESSORS(data, Object)
static Address redirect(Isolate* isolate, Address address,
AccessorComponent component);
Address redirected_getter() const;
// Dispatched behavior.
DECL_PRINTER(AccessorInfo)
DECL_BOOLEAN_ACCESSORS(all_can_read)
DECL_BOOLEAN_ACCESSORS(all_can_write)
DECL_BOOLEAN_ACCESSORS(is_special_data_property)
DECL_BOOLEAN_ACCESSORS(replace_on_access)
DECL_BOOLEAN_ACCESSORS(is_sloppy)
// The property attributes used when an API object template is instantiated
// for the first time. Changing of this value afterwards does not affect
// the actual attributes of a property.
inline PropertyAttributes initial_property_attributes() const;
inline void set_initial_property_attributes(PropertyAttributes attributes);
// Checks whether the given receiver is compatible with this accessor.
static bool IsCompatibleReceiverMap(Isolate* isolate,
Handle<AccessorInfo> info,
Handle<Map> map);
inline bool IsCompatibleReceiver(Object* receiver);
DECL_CAST(AccessorInfo)
// Dispatched behavior.
DECL_VERIFIER(AccessorInfo)
// Append all descriptors to the array that are not already there.
// Return number added.
static int AppendUnique(Handle<Object> descriptors,
Handle<FixedArray> array,
int valid_descriptors);
// Layout description.
#define ACCESSOR_INFO_FIELDS(V) \
V(kNameOffset, kPointerSize) \
V(kFlagsOffset, kPointerSize) \
V(kExpectedReceiverTypeOffset, kPointerSize) \
V(kSetterOffset, kPointerSize) \
V(kGetterOffset, kPointerSize) \
V(kJsGetterOffset, kPointerSize) \
V(kDataOffset, kPointerSize) \
V(kSize, 0)
DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, ACCESSOR_INFO_FIELDS)
#undef ACCESSOR_INFO_FIELDS
private:
inline bool HasExpectedReceiverType();
// Bit positions in |flags|.
#define ACCESSOR_INFO_FLAGS_BIT_FIELDS(V, _) \
V(AllCanReadBit, bool, 1, _) \
V(AllCanWriteBit, bool, 1, _) \
V(IsSpecialDataPropertyBit, bool, 1, _) \
V(IsSloppyBit, bool, 1, _) \
V(ReplaceOnAccessBit, bool, 1, _) \
V(InitialAttributesBits, PropertyAttributes, 3, _)
DEFINE_BIT_FIELDS(ACCESSOR_INFO_FLAGS_BIT_FIELDS)
#undef ACCESSOR_INFO_FLAGS_BIT_FIELDS
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
};
// Support for JavaScript accessors: A pair of a getter and a setter. Each
// accessor can either be
// * a JavaScript function or proxy: a real accessor
// * a FunctionTemplateInfo: a real (lazy) accessor
// * undefined: considered an accessor by the spec, too, strangely enough
// * null: an accessor which has not been set
class AccessorPair: public Struct {
public:
DECL_ACCESSORS(getter, Object)
DECL_ACCESSORS(setter, Object)
DECL_CAST(AccessorPair)
static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
inline Object* get(AccessorComponent component);
inline void set(AccessorComponent component, Object* value);
// Note: Returns undefined if the component is not set.
static Handle<Object> GetComponent(Handle<AccessorPair> accessor_pair,
AccessorComponent component);
// Set both components, skipping arguments which are a JavaScript null.
inline void SetComponents(Object* getter, Object* setter);
inline bool Equals(AccessorPair* pair);
inline bool Equals(Object* getter_value, Object* setter_value);
inline bool ContainsAccessor();
// Dispatched behavior.
DECL_PRINTER(AccessorPair)
DECL_VERIFIER(AccessorPair)
static const int kGetterOffset = HeapObject::kHeaderSize;
static const int kSetterOffset = kGetterOffset + kPointerSize;
static const int kSize = kSetterOffset + kPointerSize;
private:
// Strangely enough, in addition to functions and harmony proxies, the spec
// requires us to consider undefined as a kind of accessor, too:
// var obj = {};
// Object.defineProperty(obj, "foo", {get: undefined});
// assertTrue("foo" in obj);
inline bool IsJSAccessor(Object* obj);
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
};
class AccessCheckInfo: public Struct {
public:
DECL_ACCESSORS(callback, Object)
DECL_ACCESSORS(named_interceptor, Object)
DECL_ACCESSORS(indexed_interceptor, Object)
DECL_ACCESSORS(data, Object)
DECL_CAST(AccessCheckInfo)
// Dispatched behavior.
DECL_PRINTER(AccessCheckInfo)
DECL_VERIFIER(AccessCheckInfo)
static AccessCheckInfo* Get(Isolate* isolate, Handle<JSObject> receiver);
static const int kCallbackOffset = HeapObject::kHeaderSize;
static const int kNamedInterceptorOffset = kCallbackOffset + kPointerSize;
static const int kIndexedInterceptorOffset =
kNamedInterceptorOffset + kPointerSize;
static const int kDataOffset = kIndexedInterceptorOffset + kPointerSize;
static const int kSize = kDataOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
};
class InterceptorInfo: public Struct {
public:
DECL_ACCESSORS(getter, Object)
DECL_ACCESSORS(setter, Object)
DECL_ACCESSORS(query, Object)
DECL_ACCESSORS(descriptor, Object)
DECL_ACCESSORS(deleter, Object)
DECL_ACCESSORS(enumerator, Object)
DECL_ACCESSORS(definer, Object)
DECL_ACCESSORS(data, Object)
DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
DECL_BOOLEAN_ACCESSORS(all_can_read)
DECL_BOOLEAN_ACCESSORS(non_masking)
inline int flags() const;
inline void set_flags(int flags);
DECL_CAST(InterceptorInfo)
// Dispatched behavior.
DECL_PRINTER(InterceptorInfo)
DECL_VERIFIER(InterceptorInfo)
static const int kGetterOffset = HeapObject::kHeaderSize;
static const int kSetterOffset = kGetterOffset + kPointerSize;
static const int kQueryOffset = kSetterOffset + kPointerSize;
static const int kDescriptorOffset = kQueryOffset + kPointerSize;
static const int kDeleterOffset = kDescriptorOffset + kPointerSize;
static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
static const int kDefinerOffset = kEnumeratorOffset + kPointerSize;
static const int kDataOffset = kDefinerOffset + kPointerSize;
static const int kFlagsOffset = kDataOffset + kPointerSize;
static const int kSize = kFlagsOffset + kPointerSize;
static const int kCanInterceptSymbolsBit = 0;
static const int kAllCanReadBit = 1;
static const int kNonMasking = 2;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
};
class CallHandlerInfo : public Tuple2 {
public:
DECL_ACCESSORS(callback, Object)
DECL_ACCESSORS(data, Object)
DECL_CAST(CallHandlerInfo)
static const int kCallbackOffset = kValue1Offset;
static const int kDataOffset = kValue2Offset;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
};
class TemplateInfo: public Struct {
public:
DECL_ACCESSORS(tag, Object)
DECL_ACCESSORS(serial_number, Object)
DECL_INT_ACCESSORS(number_of_properties)
DECL_ACCESSORS(property_list, Object)
DECL_ACCESSORS(property_accessors, Object)
DECL_VERIFIER(TemplateInfo)
DECL_CAST(TemplateInfo)
static const int kTagOffset = HeapObject::kHeaderSize;
static const int kSerialNumberOffset = kTagOffset + kPointerSize;
static const int kNumberOfProperties = kSerialNumberOffset + kPointerSize;
static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
static const int kPropertyAccessorsOffset =
kPropertyListOffset + kPointerSize;
static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
static const int kFastTemplateInstantiationsCacheSize = 1 * KB;
// While we could grow the slow cache until we run out of memory, we put
// a limit on it anyway to not crash for embedders that re-create templates
// instead of caching them.
static const int kSlowTemplateInstantiationsCacheSize = 1 * MB;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
};
// See the api-exposed FunctionTemplate for more information.
class FunctionTemplateInfo: public TemplateInfo {
public:
// Handler invoked when calling an instance of this FunctionTemplateInfo.
// Either CallInfoHandler or Undefined.
DECL_ACCESSORS(call_code, Object)
// ObjectTemplateInfo or Undefined, used for the prototype property of the
// resulting JSFunction instance of this FunctionTemplate.
DECL_ACCESSORS(prototype_template, Object)
// In the case the prototype_template is Undefined we use the
// protoype_provider_template to retrieve the instance prototype. Either
// contains an ObjectTemplateInfo or Undefined.
DECL_ACCESSORS(prototype_provider_template, Object)
// Used to create protoype chains. The parent_template's prototype is set as
// __proto__ of this FunctionTemplate's instance prototype. Is either a
// FunctionTemplateInfo or Undefined.
DECL_ACCESSORS(parent_template, Object)
// Returns an InterceptorInfo or Undefined for named properties.
DECL_ACCESSORS(named_property_handler, Object)
// Returns an InterceptorInfo or Undefined for indexed properties/elements.
DECL_ACCESSORS(indexed_property_handler, Object)
// An ObjectTemplateInfo that is used when instantiating the JSFunction
// associated with this FunctionTemplateInfo. Contains either an
// ObjectTemplateInfo or Undefined. A default instance_template is assigned
// upon first instantiation if it's Undefined.
DECL_ACCESSORS(instance_template, Object)
DECL_ACCESSORS(class_name, Object)
// If the signature is a FunctionTemplateInfo it is used to check whether the
// receiver calling the associated JSFunction is a compatible receiver, i.e.
// it is an instance of the signare FunctionTemplateInfo or any of the
// receiver's prototypes are.
DECL_ACCESSORS(signature, Object)
// Either a CallHandlerInfo or Undefined. If an instance_call_handler is
// provided the instances created from the associated JSFunction are marked as
// callable.
DECL_ACCESSORS(instance_call_handler, Object)
DECL_ACCESSORS(access_check_info, Object)
DECL_ACCESSORS(shared_function_info, Object)
// Internal field to store a flag bitfield.
DECL_INT_ACCESSORS(flag)
// "length" property of the final JSFunction.
DECL_INT_ACCESSORS(length)
// Either the_hole or a private symbol. Used to cache the result on
// the receiver under the the cached_property_name when this
// FunctionTemplateInfo is used as a getter.
DECL_ACCESSORS(cached_property_name, Object)
// Begin flag bits ---------------------
DECL_BOOLEAN_ACCESSORS(hidden_prototype)
DECL_BOOLEAN_ACCESSORS(undetectable)
// If set, object instances created by this function
// requires access check.
DECL_BOOLEAN_ACCESSORS(needs_access_check)
DECL_BOOLEAN_ACCESSORS(read_only_prototype)
// If set, do not create a prototype property for the associated
// JSFunction. This bit implies that neither the prototype_template nor the
// prototype_provoider_template are instantiated.
DECL_BOOLEAN_ACCESSORS(remove_prototype)
// If set, do not attach a serial number to this FunctionTemplate and thus do
// not keep an instance boilerplate around.
DECL_BOOLEAN_ACCESSORS(do_not_cache)
// If not set an access may be performed on calling the associated JSFunction.
DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
// End flag bits ---------------------
DECL_CAST(FunctionTemplateInfo)
// Dispatched behavior.
DECL_PRINTER(FunctionTemplateInfo)
DECL_VERIFIER(FunctionTemplateInfo)
static const int kInvalidSerialNumber = 0;
static const int kCallCodeOffset = TemplateInfo::kHeaderSize;
static const int kPrototypeTemplateOffset =
kCallCodeOffset + kPointerSize;
static const int kPrototypeProviderTemplateOffset =
kPrototypeTemplateOffset + kPointerSize;
static const int kParentTemplateOffset =
kPrototypeProviderTemplateOffset + kPointerSize;
static const int kNamedPropertyHandlerOffset =
kParentTemplateOffset + kPointerSize;
static const int kIndexedPropertyHandlerOffset =
kNamedPropertyHandlerOffset + kPointerSize;
static const int kInstanceTemplateOffset =
kIndexedPropertyHandlerOffset + kPointerSize;
static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
static const int kSignatureOffset = kClassNameOffset + kPointerSize;
static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
static const int kAccessCheckInfoOffset =
kInstanceCallHandlerOffset + kPointerSize;
static const int kSharedFunctionInfoOffset =
kAccessCheckInfoOffset + kPointerSize;
static const int kFlagOffset = kSharedFunctionInfoOffset + kPointerSize;
static const int kLengthOffset = kFlagOffset + kPointerSize;
static const int kCachedPropertyNameOffset = kLengthOffset + kPointerSize;
static const int kSize = kCachedPropertyNameOffset + kPointerSize;
static Handle<SharedFunctionInfo> GetOrCreateSharedFunctionInfo(
Isolate* isolate, Handle<FunctionTemplateInfo> info,
MaybeHandle<Name> maybe_name);
// Returns parent function template or null.
inline FunctionTemplateInfo* GetParent(Isolate* isolate);
// Returns true if |object| is an instance of this function template.
inline bool IsTemplateFor(JSObject* object);
bool IsTemplateFor(Map* map);
inline bool instantiated();
// Helper function for cached accessors.
static MaybeHandle<Name> TryGetCachedPropertyName(Isolate* isolate,
Handle<Object> getter);
private:
// Bit position in the flag, from least significant bit position.
static const int kHiddenPrototypeBit = 0;
static const int kUndetectableBit = 1;
static const int kNeedsAccessCheckBit = 2;
static const int kReadOnlyPrototypeBit = 3;
static const int kRemovePrototypeBit = 4;
static const int kDoNotCacheBit = 5;
static const int kAcceptAnyReceiver = 6;
DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
};
class ObjectTemplateInfo: public TemplateInfo {
public:
DECL_ACCESSORS(constructor, Object)
DECL_ACCESSORS(data, Object)
DECL_INT_ACCESSORS(embedder_field_count)
DECL_BOOLEAN_ACCESSORS(immutable_proto)
DECL_CAST(ObjectTemplateInfo)
// Dispatched behavior.
DECL_PRINTER(ObjectTemplateInfo)
DECL_VERIFIER(ObjectTemplateInfo)
static const int kConstructorOffset = TemplateInfo::kHeaderSize;
// LSB is for immutable_proto, higher bits for embedder_field_count
static const int kDataOffset = kConstructorOffset + kPointerSize;
static const int kSize = kDataOffset + kPointerSize;
// Starting from given object template's constructor walk up the inheritance
// chain till a function template that has an instance template is found.
inline ObjectTemplateInfo* GetParent(Isolate* isolate);
private:
class IsImmutablePrototype : public BitField<bool, 0, 1> {};
class EmbedderFieldCount
: public BitField<int, IsImmutablePrototype::kNext, 29> {};
};
class StackFrameInfo : public Struct {
public:
DECL_INT_ACCESSORS(line_number)
DECL_INT_ACCESSORS(column_number)
DECL_INT_ACCESSORS(script_id)
DECL_ACCESSORS(script_name, Object)
DECL_ACCESSORS(script_name_or_source_url, Object)
DECL_ACCESSORS(function_name, Object)
DECL_BOOLEAN_ACCESSORS(is_eval)
DECL_BOOLEAN_ACCESSORS(is_constructor)
DECL_BOOLEAN_ACCESSORS(is_wasm)
DECL_INT_ACCESSORS(flag)
DECL_INT_ACCESSORS(id)
DECL_CAST(StackFrameInfo)
// Dispatched behavior.
DECL_PRINTER(StackFrameInfo)
DECL_VERIFIER(StackFrameInfo)
static const int kLineNumberIndex = Struct::kHeaderSize;
static const int kColumnNumberIndex = kLineNumberIndex + kPointerSize;
static const int kScriptIdIndex = kColumnNumberIndex + kPointerSize;
static const int kScriptNameIndex = kScriptIdIndex + kPointerSize;
static const int kScriptNameOrSourceUrlIndex =
kScriptNameIndex + kPointerSize;
static const int kFunctionNameIndex =
kScriptNameOrSourceUrlIndex + kPointerSize;
static const int kFlagIndex = kFunctionNameIndex + kPointerSize;
static const int kIdIndex = kFlagIndex + kPointerSize;
static const int kSize = kIdIndex + kPointerSize;
private:
// Bit position in the flag, from least significant bit position.
static const int kIsEvalBit = 0;
static const int kIsConstructorBit = 1;
static const int kIsWasmBit = 2;
DISALLOW_IMPLICIT_CONSTRUCTORS(StackFrameInfo);
};
class SourcePositionTableWithFrameCache : public Tuple2 {
public:
DECL_ACCESSORS(source_position_table, ByteArray)
DECL_ACCESSORS(stack_frame_cache, UnseededNumberDictionary)
DECL_CAST(SourcePositionTableWithFrameCache)
static const int kSourcePositionTableIndex = Struct::kHeaderSize;
static const int kStackFrameCacheIndex =
kSourcePositionTableIndex + kPointerSize;
static const int kSize = kStackFrameCacheIndex + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SourcePositionTableWithFrameCache);
};
// BooleanBit is a helper class for setting and getting a bit in an integer.
class BooleanBit : public AllStatic {
public:
static inline bool get(int value, int bit_position) {
return (value & (1 << bit_position)) != 0;
}
static inline int set(int value, int bit_position, bool v) {
if (v) {
value |= (1 << bit_position);
} else {
value &= ~(1 << bit_position);
}
return value;
}
};
} // NOLINT, false-positive due to second-order macros.
} // NOLINT, false-positive due to second-order macros.
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_H_