v8/src/bootstrapper.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

5535 lines
239 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/bootstrapper.h"
#include "src/accessors.h"
#include "src/api-natives.h"
#include "src/api.h"
#include "src/base/ieee754.h"
#include "src/code-stubs.h"
#include "src/compiler.h"
#include "src/debug/debug.h"
#include "src/extensions/externalize-string-extension.h"
#include "src/extensions/free-buffer-extension.h"
#include "src/extensions/gc-extension.h"
#include "src/extensions/ignition-statistics-extension.h"
#include "src/extensions/statistics-extension.h"
#include "src/extensions/trigger-failure-extension.h"
#include "src/heap/heap.h"
#include "src/isolate-inl.h"
#include "src/objects/js-regexp.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/snapshot.h"
#include "src/wasm/wasm-js.h"
#if V8_INTL_SUPPORT
#include "src/objects/intl-objects.h"
#endif // V8_INTL_SUPPORT
namespace v8 {
namespace internal {
void SourceCodeCache::Initialize(Isolate* isolate, bool create_heap_objects) {
cache_ = create_heap_objects ? isolate->heap()->empty_fixed_array() : nullptr;
}
bool SourceCodeCache::Lookup(Vector<const char> name,
Handle<SharedFunctionInfo>* handle) {
for (int i = 0; i < cache_->length(); i += 2) {
SeqOneByteString* str = SeqOneByteString::cast(cache_->get(i));
if (str->IsUtf8EqualTo(name)) {
*handle = Handle<SharedFunctionInfo>(
SharedFunctionInfo::cast(cache_->get(i + 1)));
return true;
}
}
return false;
}
void SourceCodeCache::Add(Vector<const char> name,
Handle<SharedFunctionInfo> shared) {
Isolate* isolate = shared->GetIsolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
int length = cache_->length();
Handle<FixedArray> new_array = factory->NewFixedArray(length + 2, TENURED);
cache_->CopyTo(0, *new_array, 0, cache_->length());
cache_ = *new_array;
Handle<String> str =
factory->NewStringFromOneByte(Vector<const uint8_t>::cast(name), TENURED)
.ToHandleChecked();
DCHECK(!str.is_null());
cache_->set(length, *str);
cache_->set(length + 1, *shared);
Script::cast(shared->script())->set_type(type_);
}
Bootstrapper::Bootstrapper(Isolate* isolate)
: isolate_(isolate),
nesting_(0),
extensions_cache_(Script::TYPE_EXTENSION) {}
Handle<String> Bootstrapper::GetNativeSource(NativeType type, int index) {
NativesExternalStringResource* resource =
new NativesExternalStringResource(type, index);
Handle<ExternalOneByteString> source_code =
isolate_->factory()->NewNativeSourceString(resource);
isolate_->heap()->RegisterExternalString(*source_code);
DCHECK(source_code->is_short());
return source_code;
}
void Bootstrapper::Initialize(bool create_heap_objects) {
extensions_cache_.Initialize(isolate_, create_heap_objects);
}
static const char* GCFunctionName() {
bool flag_given =
FLAG_expose_gc_as != nullptr && strlen(FLAG_expose_gc_as) != 0;
return flag_given ? FLAG_expose_gc_as : "gc";
}
v8::Extension* Bootstrapper::free_buffer_extension_ = nullptr;
v8::Extension* Bootstrapper::gc_extension_ = nullptr;
v8::Extension* Bootstrapper::externalize_string_extension_ = nullptr;
v8::Extension* Bootstrapper::statistics_extension_ = nullptr;
v8::Extension* Bootstrapper::trigger_failure_extension_ = nullptr;
v8::Extension* Bootstrapper::ignition_statistics_extension_ = nullptr;
void Bootstrapper::InitializeOncePerProcess() {
free_buffer_extension_ = new FreeBufferExtension;
v8::RegisterExtension(free_buffer_extension_);
gc_extension_ = new GCExtension(GCFunctionName());
v8::RegisterExtension(gc_extension_);
externalize_string_extension_ = new ExternalizeStringExtension;
v8::RegisterExtension(externalize_string_extension_);
statistics_extension_ = new StatisticsExtension;
v8::RegisterExtension(statistics_extension_);
trigger_failure_extension_ = new TriggerFailureExtension;
v8::RegisterExtension(trigger_failure_extension_);
ignition_statistics_extension_ = new IgnitionStatisticsExtension;
v8::RegisterExtension(ignition_statistics_extension_);
}
void Bootstrapper::TearDownExtensions() {
delete free_buffer_extension_;
free_buffer_extension_ = nullptr;
delete gc_extension_;
gc_extension_ = nullptr;
delete externalize_string_extension_;
externalize_string_extension_ = nullptr;
delete statistics_extension_;
statistics_extension_ = nullptr;
delete trigger_failure_extension_;
trigger_failure_extension_ = nullptr;
delete ignition_statistics_extension_;
ignition_statistics_extension_ = nullptr;
}
void Bootstrapper::TearDown() {
extensions_cache_.Initialize(isolate_, false); // Yes, symmetrical
}
class Genesis BASE_EMBEDDED {
public:
Genesis(Isolate* isolate, MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
size_t context_snapshot_index,
v8::DeserializeEmbedderFieldsCallback embedder_fields_deserializer,
GlobalContextType context_type);
Genesis(Isolate* isolate, MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template);
~Genesis() { }
Isolate* isolate() const { return isolate_; }
Factory* factory() const { return isolate_->factory(); }
Builtins* builtins() const { return isolate_->builtins(); }
Heap* heap() const { return isolate_->heap(); }
Handle<Context> result() { return result_; }
Handle<JSGlobalProxy> global_proxy() { return global_proxy_; }
private:
Handle<Context> native_context() { return native_context_; }
// Creates some basic objects. Used for creating a context from scratch.
void CreateRoots();
// Creates the empty function. Used for creating a context from scratch.
Handle<JSFunction> CreateEmptyFunction(Isolate* isolate);
// Returns the %ThrowTypeError% intrinsic function.
// See ES#sec-%throwtypeerror% for details.
Handle<JSFunction> GetThrowTypeErrorIntrinsic();
void CreateSloppyModeFunctionMaps(Handle<JSFunction> empty);
void CreateStrictModeFunctionMaps(Handle<JSFunction> empty);
void CreateObjectFunction(Handle<JSFunction> empty);
void CreateIteratorMaps(Handle<JSFunction> empty);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
void CreateAsyncIteratorMaps(Handle<JSFunction> empty);
void CreateAsyncFunctionMaps(Handle<JSFunction> empty);
void CreateJSProxyMaps();
// Make the "arguments" and "caller" properties throw a TypeError on access.
void AddRestrictedFunctionProperties(Handle<JSFunction> empty);
// Creates the global objects using the global proxy and the template passed
// in through the API. We call this regardless of whether we are building a
// context from scratch or using a deserialized one from the partial snapshot
// but in the latter case we don't use the objects it produces directly, as
// we have to use the deserialized ones that are linked together with the
// rest of the context snapshot. At the end we link the global proxy and the
// context to each other.
Handle<JSGlobalObject> CreateNewGlobals(
v8::Local<v8::ObjectTemplate> global_proxy_template,
Handle<JSGlobalProxy> global_proxy);
// Similarly, we want to use the global that has been created by the templates
// passed through the API. The global from the snapshot is detached from the
// other objects in the snapshot.
void HookUpGlobalObject(Handle<JSGlobalObject> global_object);
// Hooks the given global proxy into the context in the case we do not
// replace the global object from the deserialized native context.
void HookUpGlobalProxy(Handle<JSGlobalProxy> global_proxy);
// The native context has a ScriptContextTable that store declarative bindings
// made in script scopes. Add a "this" binding to that table pointing to the
// global proxy.
void InstallGlobalThisBinding();
// New context initialization. Used for creating a context from scratch.
void InitializeGlobal(Handle<JSGlobalObject> global_object,
Handle<JSFunction> empty_function,
GlobalContextType context_type);
void InitializeExperimentalGlobal();
// Depending on the situation, expose and/or get rid of the utils object.
void ConfigureUtilsObject(GlobalContextType context_type);
#define DECLARE_FEATURE_INITIALIZATION(id, descr) \
void InitializeGlobal_##id();
HARMONY_INPROGRESS(DECLARE_FEATURE_INITIALIZATION)
HARMONY_STAGED(DECLARE_FEATURE_INITIALIZATION)
HARMONY_SHIPPING(DECLARE_FEATURE_INITIALIZATION)
#undef DECLARE_FEATURE_INITIALIZATION
enum ArrayBufferKind {
ARRAY_BUFFER,
SHARED_ARRAY_BUFFER,
};
Handle<JSFunction> CreateArrayBuffer(Handle<String> name,
ArrayBufferKind array_buffer_kind);
Handle<JSFunction> InstallInternalArray(Handle<JSObject> target,
const char* name,
ElementsKind elements_kind);
bool InstallNatives(GlobalContextType context_type);
Handle<JSFunction> InstallTypedArray(const char* name,
ElementsKind elements_kind);
bool InstallExtraNatives();
bool InstallExperimentalExtraNatives();
bool InstallDebuggerNatives();
void InstallBuiltinFunctionIds();
void InstallExperimentalBuiltinFunctionIds();
void InitializeNormalizedMapCaches();
enum ExtensionTraversalState {
UNVISITED, VISITED, INSTALLED
};
class ExtensionStates {
public:
ExtensionStates();
ExtensionTraversalState get_state(RegisteredExtension* extension);
void set_state(RegisteredExtension* extension,
ExtensionTraversalState state);
private:
base::HashMap map_;
DISALLOW_COPY_AND_ASSIGN(ExtensionStates);
};
// Used both for deserialized and from-scratch contexts to add the extensions
// provided.
static bool InstallExtensions(Handle<Context> native_context,
v8::ExtensionConfiguration* extensions);
static bool InstallAutoExtensions(Isolate* isolate,
ExtensionStates* extension_states);
static bool InstallRequestedExtensions(Isolate* isolate,
v8::ExtensionConfiguration* extensions,
ExtensionStates* extension_states);
static bool InstallExtension(Isolate* isolate,
const char* name,
ExtensionStates* extension_states);
static bool InstallExtension(Isolate* isolate,
v8::RegisteredExtension* current,
ExtensionStates* extension_states);
static bool InstallSpecialObjects(Handle<Context> native_context);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
bool ConfigureApiObject(Handle<JSObject> object,
Handle<ObjectTemplateInfo> object_template);
bool ConfigureGlobalObjects(
v8::Local<v8::ObjectTemplate> global_proxy_template);
// Migrates all properties from the 'from' object to the 'to'
// object and overrides the prototype in 'to' with the one from
// 'from'.
void TransferObject(Handle<JSObject> from, Handle<JSObject> to);
void TransferNamedProperties(Handle<JSObject> from, Handle<JSObject> to);
void TransferIndexedProperties(Handle<JSObject> from, Handle<JSObject> to);
static bool CallUtilsFunction(Isolate* isolate, const char* name);
static bool CompileExtension(Isolate* isolate, v8::Extension* extension);
Isolate* isolate_;
Handle<Context> result_;
Handle<Context> native_context_;
Handle<JSGlobalProxy> global_proxy_;
// Temporary function maps needed only during bootstrapping.
Handle<Map> strict_function_with_home_object_map_;
Handle<Map> strict_function_with_name_and_home_object_map_;
// %ThrowTypeError%. See ES#sec-%throwtypeerror% for details.
Handle<JSFunction> restricted_properties_thrower_;
BootstrapperActive active_;
friend class Bootstrapper;
};
void Bootstrapper::Iterate(RootVisitor* v) {
extensions_cache_.Iterate(v);
v->Synchronize(VisitorSynchronization::kExtensions);
}
Handle<Context> Bootstrapper::CreateEnvironment(
MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,
v8::DeserializeEmbedderFieldsCallback embedder_fields_deserializer,
GlobalContextType context_type) {
HandleScope scope(isolate_);
Handle<Context> env;
{
Genesis genesis(isolate_, maybe_global_proxy, global_proxy_template,
context_snapshot_index, embedder_fields_deserializer,
context_type);
env = genesis.result();
if (env.is_null() || !InstallExtensions(env, extensions)) {
return Handle<Context>();
}
}
// Log all maps created during bootstrapping.
if (FLAG_trace_maps) LOG(isolate_, LogMaps());
return scope.CloseAndEscape(env);
}
Handle<JSGlobalProxy> Bootstrapper::NewRemoteContext(
MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template) {
HandleScope scope(isolate_);
Handle<JSGlobalProxy> global_proxy;
{
Genesis genesis(isolate_, maybe_global_proxy, global_proxy_template);
global_proxy = genesis.global_proxy();
if (global_proxy.is_null()) return Handle<JSGlobalProxy>();
}
// Log all maps created during bootstrapping.
if (FLAG_trace_maps) LOG(isolate_, LogMaps());
return scope.CloseAndEscape(global_proxy);
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
void Bootstrapper::DetachGlobal(Handle<Context> env) {
Isolate* isolate = env->GetIsolate();
isolate->counters()->errors_thrown_per_context()->AddSample(
env->GetErrorsThrown());
Heap* heap = isolate->heap();
Handle<JSGlobalProxy> global_proxy(JSGlobalProxy::cast(env->global_proxy()));
global_proxy->set_native_context(heap->null_value());
JSObject::ForceSetPrototype(global_proxy, isolate->factory()->null_value());
global_proxy->map()->SetConstructor(heap->null_value());
if (FLAG_track_detached_contexts) {
env->GetIsolate()->AddDetachedContext(env);
}
}
namespace {
// Non-construct case.
V8_NOINLINE Handle<SharedFunctionInfo> SimpleCreateSharedFunctionInfo(
Isolate* isolate, Builtins::Name builtin_id, Handle<String> name, int len) {
Handle<Code> code = isolate->builtins()->builtin_handle(builtin_id);
const bool kNotConstructor = false;
Handle<SharedFunctionInfo> shared = isolate->factory()->NewSharedFunctionInfo(
name, code, kNotConstructor, kNormalFunction, builtin_id);
shared->set_internal_formal_parameter_count(len);
shared->set_length(len);
return shared;
}
// Construct case.
V8_NOINLINE Handle<SharedFunctionInfo>
SimpleCreateConstructorSharedFunctionInfo(Isolate* isolate,
Builtins::Name builtin_id,
Handle<String> name, int len) {
Handle<Code> code = isolate->builtins()->builtin_handle(builtin_id);
const bool kIsConstructor = true;
Handle<SharedFunctionInfo> shared = isolate->factory()->NewSharedFunctionInfo(
name, code, kIsConstructor, kNormalFunction, builtin_id);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->set_internal_formal_parameter_count(len);
shared->set_length(len);
return shared;
}
V8_NOINLINE void InstallFunction(Handle<JSObject> target,
Handle<Name> property_name,
Handle<JSFunction> function,
Handle<String> function_name,
PropertyAttributes attributes = DONT_ENUM) {
JSObject::AddProperty(target, property_name, function, attributes);
}
V8_NOINLINE void InstallFunction(Handle<JSObject> target,
Handle<JSFunction> function, Handle<Name> name,
PropertyAttributes attributes = DONT_ENUM) {
Handle<String> name_string = Name::ToFunctionName(name).ToHandleChecked();
InstallFunction(target, name, function, name_string, attributes);
}
V8_NOINLINE Handle<JSFunction> CreateFunction(
Isolate* isolate, Handle<String> name, InstanceType type, int instance_size,
int inobject_properties, MaybeHandle<Object> maybe_prototype,
Builtins::Name builtin_id) {
Handle<Code> code(isolate->builtins()->builtin(builtin_id));
Handle<Object> prototype;
Handle<JSFunction> result;
if (maybe_prototype.ToHandle(&prototype)) {
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithPrototype(
name, code, prototype, type, instance_size, inobject_properties,
builtin_id, IMMUTABLE);
result = isolate->factory()->NewFunction(args);
// Make the JSFunction's prototype object fast.
JSObject::MakePrototypesFast(handle(result->prototype(), isolate),
kStartAtReceiver, isolate);
} else {
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithoutPrototype(
name, code, builtin_id, LanguageMode::kStrict);
result = isolate->factory()->NewFunction(args);
}
// Make the resulting JSFunction object fast.
JSObject::MakePrototypesFast(result, kStartAtReceiver, isolate);
result->shared()->set_native(true);
return result;
}
V8_NOINLINE Handle<JSFunction> InstallFunction(
Handle<JSObject> target, Handle<Name> name, InstanceType type,
int instance_size, int inobject_properties,
MaybeHandle<Object> maybe_prototype, Builtins::Name call,
PropertyAttributes attributes) {
Handle<String> name_string = Name::ToFunctionName(name).ToHandleChecked();
Handle<JSFunction> function =
CreateFunction(target->GetIsolate(), name_string, type, instance_size,
inobject_properties, maybe_prototype, call);
InstallFunction(target, name, function, name_string, attributes);
return function;
}
V8_NOINLINE Handle<JSFunction> InstallFunction(
Handle<JSObject> target, const char* name, InstanceType type,
int instance_size, int inobject_properties,
MaybeHandle<Object> maybe_prototype, Builtins::Name call) {
Factory* const factory = target->GetIsolate()->factory();
PropertyAttributes attributes = DONT_ENUM;
return InstallFunction(target, factory->InternalizeUtf8String(name), type,
instance_size, inobject_properties, maybe_prototype,
call, attributes);
}
V8_NOINLINE Handle<JSFunction> SimpleCreateFunction(Isolate* isolate,
Handle<String> name,
Builtins::Name call,
int len, bool adapt) {
Handle<JSFunction> fun =
CreateFunction(isolate, name, JS_OBJECT_TYPE, JSObject::kHeaderSize, 0,
MaybeHandle<JSObject>(), call);
if (adapt) {
fun->shared()->set_internal_formal_parameter_count(len);
} else {
fun->shared()->DontAdaptArguments();
}
fun->shared()->set_length(len);
return fun;
}
V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
Handle<JSObject> base, Handle<Name> property_name,
Handle<String> function_name, Builtins::Name call, int len, bool adapt,
PropertyAttributes attrs = DONT_ENUM,
BuiltinFunctionId id = kInvalidBuiltinFunctionId) {
Handle<JSFunction> fun =
SimpleCreateFunction(base->GetIsolate(), function_name, call, len, adapt);
if (id != kInvalidBuiltinFunctionId) {
fun->shared()->set_builtin_function_id(id);
}
InstallFunction(base, fun, property_name, attrs);
return fun;
}
V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
Handle<JSObject> base, Handle<String> name, Builtins::Name call, int len,
bool adapt, PropertyAttributes attrs = DONT_ENUM,
BuiltinFunctionId id = kInvalidBuiltinFunctionId) {
return SimpleInstallFunction(base, name, name, call, len, adapt, attrs, id);
}
V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
Handle<JSObject> base, Handle<Name> property_name,
const char* function_name, Builtins::Name call, int len, bool adapt,
PropertyAttributes attrs = DONT_ENUM,
BuiltinFunctionId id = kInvalidBuiltinFunctionId) {
Factory* const factory = base->GetIsolate()->factory();
// Function name does not have to be internalized.
return SimpleInstallFunction(
base, property_name, factory->NewStringFromAsciiChecked(function_name),
call, len, adapt, attrs, id);
}
V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
Handle<JSObject> base, const char* name, Builtins::Name call, int len,
bool adapt, PropertyAttributes attrs = DONT_ENUM,
BuiltinFunctionId id = kInvalidBuiltinFunctionId) {
Factory* const factory = base->GetIsolate()->factory();
// Although function name does not have to be internalized the property name
// will be internalized during property addition anyway, so do it here now.
return SimpleInstallFunction(base, factory->InternalizeUtf8String(name), call,
len, adapt, attrs, id);
}
V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(Handle<JSObject> base,
const char* name,
Builtins::Name call,
int len, bool adapt,
BuiltinFunctionId id) {
return SimpleInstallFunction(base, name, call, len, adapt, DONT_ENUM, id);
}
V8_NOINLINE void SimpleInstallGetterSetter(Handle<JSObject> base,
Handle<String> name,
Builtins::Name call_getter,
Builtins::Name call_setter,
PropertyAttributes attribs) {
Isolate* const isolate = base->GetIsolate();
Handle<String> getter_name =
Name::ToFunctionName(name, isolate->factory()->get_string())
.ToHandleChecked();
Handle<JSFunction> getter =
SimpleCreateFunction(isolate, getter_name, call_getter, 0, true);
Handle<String> setter_name =
Name::ToFunctionName(name, isolate->factory()->set_string())
.ToHandleChecked();
Handle<JSFunction> setter =
SimpleCreateFunction(isolate, setter_name, call_setter, 1, true);
JSObject::DefineAccessor(base, name, getter, setter, attribs).Check();
}
V8_NOINLINE Handle<JSFunction> SimpleInstallGetter(Handle<JSObject> base,
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
Handle<Name> name,
Handle<Name> property_name,
Builtins::Name call,
bool adapt) {
Isolate* const isolate = base->GetIsolate();
Handle<String> getter_name =
Name::ToFunctionName(name, isolate->factory()->get_string())
.ToHandleChecked();
Handle<JSFunction> getter =
SimpleCreateFunction(isolate, getter_name, call, 0, adapt);
Handle<Object> setter = isolate->factory()->undefined_value();
JSObject::DefineAccessor(base, property_name, getter, setter, DONT_ENUM)
.Check();
return getter;
}
V8_NOINLINE Handle<JSFunction> SimpleInstallGetter(Handle<JSObject> base,
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
Handle<Name> name,
Builtins::Name call,
bool adapt) {
return SimpleInstallGetter(base, name, name, call, adapt);
}
V8_NOINLINE Handle<JSFunction> SimpleInstallGetter(Handle<JSObject> base,
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
Handle<Name> name,
Builtins::Name call,
bool adapt,
BuiltinFunctionId id) {
Handle<JSFunction> fun = SimpleInstallGetter(base, name, call, adapt);
fun->shared()->set_builtin_function_id(id);
return fun;
}
V8_NOINLINE void InstallConstant(Isolate* isolate, Handle<JSObject> holder,
const char* name, Handle<Object> value) {
JSObject::AddProperty(
holder, isolate->factory()->NewStringFromAsciiChecked(name), value,
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
}
V8_NOINLINE void InstallSpeciesGetter(Handle<JSFunction> constructor) {
Factory* factory = constructor->GetIsolate()->factory();
// TODO(adamk): We should be able to share a SharedFunctionInfo
// between all these JSFunctins.
SimpleInstallGetter(constructor, factory->symbol_species_string(),
factory->species_symbol(), Builtins::kReturnReceiver,
true);
}
} // namespace
Handle<JSFunction> Genesis::CreateEmptyFunction(Isolate* isolate) {
Factory* factory = isolate->factory();
// Allocate the function map first and then patch the prototype later.
Handle<Map> empty_function_map = factory->CreateSloppyFunctionMap(
FUNCTION_WITHOUT_PROTOTYPE, MaybeHandle<JSFunction>());
empty_function_map->set_is_prototype_map(true);
DCHECK(!empty_function_map->is_dictionary_map());
// Allocate the empty function as the prototype for function according to
// ES#sec-properties-of-the-function-prototype-object
Handle<Code> code(BUILTIN_CODE(isolate, EmptyFunction));
NewFunctionArgs args =
NewFunctionArgs::ForBuiltin(factory->empty_string(), code,
empty_function_map, Builtins::kEmptyFunction);
Handle<JSFunction> empty_function = factory->NewFunction(args);
// --- E m p t y ---
Handle<String> source = factory->NewStringFromStaticChars("() {}");
Handle<Script> script = factory->NewScript(source);
script->set_type(Script::TYPE_NATIVE);
Handle<FixedArray> infos = factory->NewFixedArray(2);
script->set_shared_function_infos(*infos);
empty_function->shared()->set_raw_start_position(0);
empty_function->shared()->set_raw_end_position(source->length());
empty_function->shared()->set_function_literal_id(1);
empty_function->shared()->DontAdaptArguments();
SharedFunctionInfo::SetScript(handle(empty_function->shared()), script);
return empty_function;
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
void Genesis::CreateSloppyModeFunctionMaps(Handle<JSFunction> empty) {
Factory* factory = isolate_->factory();
Handle<Map> map;
//
// Allocate maps for sloppy functions without prototype.
//
map = factory->CreateSloppyFunctionMap(FUNCTION_WITHOUT_PROTOTYPE, empty);
native_context()->set_sloppy_function_without_prototype_map(*map);
//
// Allocate maps for sloppy functions with readonly prototype.
//
map =
factory->CreateSloppyFunctionMap(FUNCTION_WITH_READONLY_PROTOTYPE, empty);
native_context()->set_sloppy_function_with_readonly_prototype_map(*map);
//
// Allocate maps for sloppy functions with writable prototype.
//
map = factory->CreateSloppyFunctionMap(FUNCTION_WITH_WRITEABLE_PROTOTYPE,
empty);
native_context()->set_sloppy_function_map(*map);
map = factory->CreateSloppyFunctionMap(
FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE, empty);
native_context()->set_sloppy_function_with_name_map(*map);
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
Handle<JSFunction> Genesis::GetThrowTypeErrorIntrinsic() {
if (!restricted_properties_thrower_.is_null()) {
return restricted_properties_thrower_;
}
Handle<String> name(factory()->empty_string());
Handle<Code> code = BUILTIN_CODE(isolate(), StrictPoisonPillThrower);
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithoutPrototype(
name, code, Builtins::kStrictPoisonPillThrower, i::LanguageMode::kStrict);
Handle<JSFunction> function = factory()->NewFunction(args);
function->shared()->DontAdaptArguments();
// %ThrowTypeError% must not have a name property.
if (JSReceiver::DeleteProperty(function, factory()->name_string())
.IsNothing()) {
DCHECK(false);
}
// length needs to be non configurable.
Handle<Object> value(Smi::FromInt(function->shared()->GetLength()),
isolate());
JSObject::SetOwnPropertyIgnoreAttributes(
function, factory()->length_string(), value,
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY))
.Assert();
if (JSObject::PreventExtensions(function, kThrowOnError).IsNothing()) {
DCHECK(false);
}
JSObject::MigrateSlowToFast(function, 0, "Bootstrapping");
restricted_properties_thrower_ = function;
return function;
}
void Genesis::CreateStrictModeFunctionMaps(Handle<JSFunction> empty) {
Factory* factory = isolate_->factory();
Handle<Map> map;
//
// Allocate maps for strict functions without prototype.
//
map = factory->CreateStrictFunctionMap(FUNCTION_WITHOUT_PROTOTYPE, empty);
native_context()->set_strict_function_without_prototype_map(*map);
map = factory->CreateStrictFunctionMap(METHOD_WITH_NAME, empty);
native_context()->set_method_with_name_map(*map);
map = factory->CreateStrictFunctionMap(METHOD_WITH_HOME_OBJECT, empty);
native_context()->set_method_with_home_object_map(*map);
map =
factory->CreateStrictFunctionMap(METHOD_WITH_NAME_AND_HOME_OBJECT, empty);
native_context()->set_method_with_name_and_home_object_map(*map);
//
// Allocate maps for strict functions with writable prototype.
//
map = factory->CreateStrictFunctionMap(FUNCTION_WITH_WRITEABLE_PROTOTYPE,
empty);
native_context()->set_strict_function_map(*map);
map = factory->CreateStrictFunctionMap(
FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE, empty);
native_context()->set_strict_function_with_name_map(*map);
strict_function_with_home_object_map_ = factory->CreateStrictFunctionMap(
FUNCTION_WITH_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE, empty);
strict_function_with_name_and_home_object_map_ =
factory->CreateStrictFunctionMap(
FUNCTION_WITH_NAME_AND_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE, empty);
//
// Allocate maps for strict functions with readonly prototype.
//
map =
factory->CreateStrictFunctionMap(FUNCTION_WITH_READONLY_PROTOTYPE, empty);
native_context()->set_strict_function_with_readonly_prototype_map(*map);
//
// Allocate map for class functions.
//
map = factory->CreateClassFunctionMap(empty);
native_context()->set_class_function_map(*map);
// Now that the strict mode function map is available, set up the
// restricted "arguments" and "caller" getters.
AddRestrictedFunctionProperties(empty);
}
void Genesis::CreateObjectFunction(Handle<JSFunction> empty_function) {
Factory* factory = isolate_->factory();
// --- O b j e c t ---
int inobject_properties = JSObject::kInitialGlobalObjectUnusedPropertiesCount;
int instance_size =
JSObject::kHeaderSize + kPointerSize * inobject_properties;
Handle<JSFunction> object_fun = CreateFunction(
isolate_, factory->Object_string(), JS_OBJECT_TYPE, instance_size,
inobject_properties, factory->null_value(), Builtins::kObjectConstructor);
object_fun->shared()->set_length(1);
object_fun->shared()->DontAdaptArguments();
object_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate_, JSBuiltinsConstructStub));
native_context()->set_object_function(*object_fun);
{
// Finish setting up Object function's initial map.
Map* initial_map = object_fun->initial_map();
initial_map->set_elements_kind(HOLEY_ELEMENTS);
}
// Allocate a new prototype for the object function.
Handle<JSObject> object_function_prototype =
factory->NewFunctionPrototype(object_fun);
Handle<Map> map = Map::Copy(handle(object_function_prototype->map()),
"EmptyObjectPrototype");
map->set_is_prototype_map(true);
// Ban re-setting Object.prototype.__proto__ to prevent Proxy security bug
map->set_is_immutable_proto(true);
object_function_prototype->set_map(*map);
// Complete setting up empty function.
{
Handle<Map> empty_function_map(empty_function->map(), isolate_);
Map::SetPrototype(empty_function_map, object_function_prototype);
}
native_context()->set_initial_object_prototype(*object_function_prototype);
JSFunction::SetPrototype(object_fun, object_function_prototype);
{
// Set up slow map for Object.create(null) instances without in-object
// properties.
Handle<Map> map(object_fun->initial_map(), isolate_);
map = Map::CopyInitialMapNormalized(map);
Map::SetPrototype(map, factory->null_value());
native_context()->set_slow_object_with_null_prototype_map(*map);
// Set up slow map for literals with too many properties.
map = Map::Copy(map, "slow_object_with_object_prototype_map");
Map::SetPrototype(map, object_function_prototype);
native_context()->set_slow_object_with_object_prototype_map(*map);
}
}
namespace {
Handle<Map> CreateNonConstructorMap(Handle<Map> source_map,
Handle<JSObject> prototype,
const char* reason) {
Handle<Map> map = Map::Copy(source_map, reason);
// Ensure the resulting map has prototype slot (it is necessary for storing
// inital map even when the prototype property is not required).
if (!map->has_prototype_slot()) {
// Re-set the unused property fields after changing the instance size.
// TODO(ulan): Do not change instance size after map creation.
int unused_property_fields = map->UnusedPropertyFields();
map->set_instance_size(map->instance_size() + kPointerSize);
// The prototype slot shifts the in-object properties area by one slot.
map->SetInObjectPropertiesStartInWords(
map->GetInObjectPropertiesStartInWords() + 1);
map->set_has_prototype_slot(true);
map->SetInObjectUnusedPropertyFields(unused_property_fields);
}
map->set_is_constructor(false);
Map::SetPrototype(map, prototype);
return map;
}
} // namespace
void Genesis::CreateIteratorMaps(Handle<JSFunction> empty) {
// Create iterator-related meta-objects.
Handle<JSObject> iterator_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
SimpleInstallFunction(iterator_prototype, factory()->iterator_symbol(),
"[Symbol.iterator]", Builtins::kReturnReceiver, 0,
true);
native_context()->set_initial_iterator_prototype(*iterator_prototype);
Handle<JSObject> generator_object_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
native_context()->set_initial_generator_prototype(
*generator_object_prototype);
JSObject::ForceSetPrototype(generator_object_prototype, iterator_prototype);
Handle<JSObject> generator_function_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
JSObject::ForceSetPrototype(generator_function_prototype, empty);
JSObject::AddProperty(
generator_function_prototype, factory()->to_string_tag_symbol(),
factory()->NewStringFromAsciiChecked("GeneratorFunction"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSObject::AddProperty(generator_function_prototype,
factory()->prototype_string(),
generator_object_prototype,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSObject::AddProperty(generator_object_prototype,
factory()->constructor_string(),
generator_function_prototype,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSObject::AddProperty(generator_object_prototype,
factory()->to_string_tag_symbol(),
factory()->NewStringFromAsciiChecked("Generator"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
SimpleInstallFunction(generator_object_prototype, "next",
Builtins::kGeneratorPrototypeNext, 1, false);
SimpleInstallFunction(generator_object_prototype, "return",
Builtins::kGeneratorPrototypeReturn, 1, false);
SimpleInstallFunction(generator_object_prototype, "throw",
Builtins::kGeneratorPrototypeThrow, 1, false);
// Internal version of generator_prototype_next, flagged as non-native such
// that it doesn't show up in Error traces.
Handle<JSFunction> generator_next_internal =
SimpleCreateFunction(isolate(), factory()->next_string(),
Builtins::kGeneratorPrototypeNext, 1, false);
generator_next_internal->shared()->set_native(false);
native_context()->set_generator_next_internal(*generator_next_internal);
// Create maps for generator functions and their prototypes. Store those
// maps in the native context. The "prototype" property descriptor is
// writable, non-enumerable, and non-configurable (as per ES6 draft
// 04-14-15, section 25.2.4.3).
// Generator functions do not have "caller" or "arguments" accessors.
Handle<Map> map;
map = CreateNonConstructorMap(isolate()->strict_function_map(),
generator_function_prototype,
"GeneratorFunction");
native_context()->set_generator_function_map(*map);
map = CreateNonConstructorMap(isolate()->strict_function_with_name_map(),
generator_function_prototype,
"GeneratorFunction with name");
native_context()->set_generator_function_with_name_map(*map);
map = CreateNonConstructorMap(strict_function_with_home_object_map_,
generator_function_prototype,
"GeneratorFunction with home object");
native_context()->set_generator_function_with_home_object_map(*map);
map = CreateNonConstructorMap(strict_function_with_name_and_home_object_map_,
generator_function_prototype,
"GeneratorFunction with name and home object");
native_context()->set_generator_function_with_name_and_home_object_map(*map);
Handle<JSFunction> object_function(native_context()->object_function());
Handle<Map> generator_object_prototype_map = Map::Create(isolate(), 0);
Map::SetPrototype(generator_object_prototype_map, generator_object_prototype);
native_context()->set_generator_object_prototype_map(
*generator_object_prototype_map);
}
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
void Genesis::CreateAsyncIteratorMaps(Handle<JSFunction> empty) {
// %AsyncIteratorPrototype%
// proposal-async-iteration/#sec-asynciteratorprototype
Handle<JSObject> async_iterator_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
SimpleInstallFunction(
async_iterator_prototype, factory()->async_iterator_symbol(),
"[Symbol.asyncIterator]", Builtins::kReturnReceiver, 0, true);
// %AsyncFromSyncIteratorPrototype%
// proposal-async-iteration/#sec-%asyncfromsynciteratorprototype%-object
Handle<JSObject> async_from_sync_iterator_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
SimpleInstallFunction(async_from_sync_iterator_prototype,
factory()->next_string(),
Builtins::kAsyncFromSyncIteratorPrototypeNext, 1, true);
SimpleInstallFunction(
async_from_sync_iterator_prototype, factory()->return_string(),
Builtins::kAsyncFromSyncIteratorPrototypeReturn, 1, true);
SimpleInstallFunction(
async_from_sync_iterator_prototype, factory()->throw_string(),
Builtins::kAsyncFromSyncIteratorPrototypeThrow, 1, true);
JSObject::AddProperty(
async_from_sync_iterator_prototype, factory()->to_string_tag_symbol(),
factory()->NewStringFromAsciiChecked("Async-from-Sync Iterator"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSObject::ForceSetPrototype(async_from_sync_iterator_prototype,
async_iterator_prototype);
Handle<Map> async_from_sync_iterator_map = factory()->NewMap(
JS_ASYNC_FROM_SYNC_ITERATOR_TYPE, JSAsyncFromSyncIterator::kSize);
Map::SetPrototype(async_from_sync_iterator_map,
async_from_sync_iterator_prototype);
native_context()->set_async_from_sync_iterator_map(
*async_from_sync_iterator_map);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
// Async Generators
Handle<String> AsyncGeneratorFunction_string =
factory()->NewStringFromAsciiChecked("AsyncGeneratorFunction", TENURED);
Handle<JSObject> async_generator_object_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
Handle<JSObject> async_generator_function_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
// %AsyncGenerator% / %AsyncGeneratorFunction%.prototype
JSObject::ForceSetPrototype(async_generator_function_prototype, empty);
// The value of AsyncGeneratorFunction.prototype.prototype is the
// %AsyncGeneratorPrototype% intrinsic object.
// This property has the attributes
// { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
JSObject::AddProperty(async_generator_function_prototype,
factory()->prototype_string(),
async_generator_object_prototype,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSObject::AddProperty(async_generator_function_prototype,
factory()->to_string_tag_symbol(),
AsyncGeneratorFunction_string,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// %AsyncGeneratorPrototype%
JSObject::ForceSetPrototype(async_generator_object_prototype,
async_iterator_prototype);
native_context()->set_initial_async_generator_prototype(
*async_generator_object_prototype);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
JSObject::AddProperty(async_generator_object_prototype,
factory()->to_string_tag_symbol(),
factory()->NewStringFromAsciiChecked("AsyncGenerator"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
SimpleInstallFunction(async_generator_object_prototype, "next",
Builtins::kAsyncGeneratorPrototypeNext, 1, false);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
SimpleInstallFunction(async_generator_object_prototype, "return",
Builtins::kAsyncGeneratorPrototypeReturn, 1, false);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
SimpleInstallFunction(async_generator_object_prototype, "throw",
Builtins::kAsyncGeneratorPrototypeThrow, 1, false);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
// Create maps for generator functions and their prototypes. Store those
// maps in the native context. The "prototype" property descriptor is
// writable, non-enumerable, and non-configurable (as per ES6 draft
// 04-14-15, section 25.2.4.3).
// Async Generator functions do not have "caller" or "arguments" accessors.
Handle<Map> map;
map = CreateNonConstructorMap(isolate()->strict_function_map(),
async_generator_function_prototype,
"AsyncGeneratorFunction");
native_context()->set_async_generator_function_map(*map);
map = CreateNonConstructorMap(isolate()->strict_function_with_name_map(),
async_generator_function_prototype,
"AsyncGeneratorFunction with name");
native_context()->set_async_generator_function_with_name_map(*map);
map = CreateNonConstructorMap(strict_function_with_home_object_map_,
async_generator_function_prototype,
"AsyncGeneratorFunction with home object");
native_context()->set_async_generator_function_with_home_object_map(*map);
map = CreateNonConstructorMap(
strict_function_with_name_and_home_object_map_,
async_generator_function_prototype,
"AsyncGeneratorFunction with name and home object");
native_context()->set_async_generator_function_with_name_and_home_object_map(
*map);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
Handle<JSFunction> object_function(native_context()->object_function());
Handle<Map> async_generator_object_prototype_map = Map::Create(isolate(), 0);
Map::SetPrototype(async_generator_object_prototype_map,
async_generator_object_prototype);
native_context()->set_async_generator_object_prototype_map(
*async_generator_object_prototype_map);
}
void Genesis::CreateAsyncFunctionMaps(Handle<JSFunction> empty) {
// %AsyncFunctionPrototype% intrinsic
Handle<JSObject> async_function_prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
JSObject::ForceSetPrototype(async_function_prototype, empty);
JSObject::AddProperty(async_function_prototype,
factory()->to_string_tag_symbol(),
factory()->NewStringFromAsciiChecked("AsyncFunction"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
Handle<Map> map;
map = CreateNonConstructorMap(
isolate()->strict_function_without_prototype_map(),
async_function_prototype, "AsyncFunction");
native_context()->set_async_function_map(*map);
map = CreateNonConstructorMap(isolate()->method_with_name_map(),
async_function_prototype,
"AsyncFunction with name");
native_context()->set_async_function_with_name_map(*map);
map = CreateNonConstructorMap(isolate()->method_with_home_object_map(),
async_function_prototype,
"AsyncFunction with home object");
native_context()->set_async_function_with_home_object_map(*map);
map = CreateNonConstructorMap(
isolate()->method_with_name_and_home_object_map(),
async_function_prototype, "AsyncFunction with name and home object");
native_context()->set_async_function_with_name_and_home_object_map(*map);
}
void Genesis::CreateJSProxyMaps() {
// Allocate maps for all Proxy types.
// Next to the default proxy, we need maps indicating callable and
// constructable proxies.
Handle<Map> proxy_map = factory()->NewMap(JS_PROXY_TYPE, JSProxy::kSize,
TERMINAL_FAST_ELEMENTS_KIND);
proxy_map->set_is_dictionary_map(true);
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
proxy_map->set_may_have_interesting_symbols(true);
native_context()->set_proxy_map(*proxy_map);
Handle<Map> proxy_callable_map = Map::Copy(proxy_map, "callable Proxy");
proxy_callable_map->set_is_callable(true);
native_context()->set_proxy_callable_map(*proxy_callable_map);
proxy_callable_map->SetConstructor(native_context()->function_function());
Handle<Map> proxy_constructor_map =
Map::Copy(proxy_callable_map, "constructor Proxy");
proxy_constructor_map->set_is_constructor(true);
native_context()->set_proxy_constructor_map(*proxy_constructor_map);
{
Handle<Map> map =
factory()->NewMap(JS_OBJECT_TYPE, JSProxyRevocableResult::kSize,
TERMINAL_FAST_ELEMENTS_KIND, 2);
Map::EnsureDescriptorSlack(map, 2);
{ // proxy
Descriptor d = Descriptor::DataField(factory()->proxy_string(),
JSProxyRevocableResult::kProxyIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // revoke
Descriptor d = Descriptor::DataField(factory()->revoke_string(),
JSProxyRevocableResult::kRevokeIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
Map::SetPrototype(map, isolate()->initial_object_prototype());
map->SetConstructor(native_context()->object_function());
native_context()->set_proxy_revocable_result_map(*map);
}
}
namespace {
void ReplaceAccessors(Handle<Map> map, Handle<String> name,
PropertyAttributes attributes,
Handle<AccessorPair> accessor_pair) {
DescriptorArray* descriptors = map->instance_descriptors();
int idx = descriptors->SearchWithCache(map->GetIsolate(), *name, *map);
Descriptor d = Descriptor::AccessorConstant(name, accessor_pair, attributes);
descriptors->Replace(idx, &d);
}
} // namespace
void Genesis::AddRestrictedFunctionProperties(Handle<JSFunction> empty) {
PropertyAttributes rw_attribs = static_cast<PropertyAttributes>(DONT_ENUM);
Handle<JSFunction> thrower = GetThrowTypeErrorIntrinsic();
Handle<AccessorPair> accessors = factory()->NewAccessorPair();
accessors->set_getter(*thrower);
accessors->set_setter(*thrower);
Handle<Map> map(empty->map());
ReplaceAccessors(map, factory()->arguments_string(), rw_attribs, accessors);
ReplaceAccessors(map, factory()->caller_string(), rw_attribs, accessors);
}
static void AddToWeakNativeContextList(Context* context) {
DCHECK(context->IsNativeContext());
Isolate* isolate = context->GetIsolate();
Heap* heap = isolate->heap();
#ifdef DEBUG
{ // NOLINT
DCHECK(context->next_context_link()->IsUndefined(isolate));
// Check that context is not in the list yet.
for (Object* current = heap->native_contexts_list();
!current->IsUndefined(isolate);
current = Context::cast(current)->next_context_link()) {
DCHECK(current != context);
}
}
#endif
context->set(Context::NEXT_CONTEXT_LINK, heap->native_contexts_list(),
UPDATE_WEAK_WRITE_BARRIER);
heap->set_native_contexts_list(context);
}
void Genesis::CreateRoots() {
// Allocate the native context FixedArray first and then patch the
// closure and extension object later (we need the empty function
// and the global object, but in order to create those, we need the
// native context).
native_context_ = factory()->NewNativeContext();
AddToWeakNativeContextList(*native_context());
isolate()->set_context(*native_context());
// Allocate the message listeners object.
{
Handle<TemplateList> list = TemplateList::New(isolate(), 1);
native_context()->set_message_listeners(*list);
}
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
void Genesis::InstallGlobalThisBinding() {
Handle<ScriptContextTable> script_contexts(
native_context()->script_context_table());
Handle<ScopeInfo> scope_info = ScopeInfo::CreateGlobalThisBinding(isolate());
Handle<JSFunction> closure(native_context()->closure());
Handle<Context> context = factory()->NewScriptContext(closure, scope_info);
// Go ahead and hook it up while we're at it.
int slot = scope_info->ReceiverContextSlotIndex();
DCHECK_EQ(slot, Context::MIN_CONTEXT_SLOTS);
context->set(slot, native_context()->global_proxy());
Handle<ScriptContextTable> new_script_contexts =
ScriptContextTable::Extend(script_contexts, context);
native_context()->set_script_context_table(*new_script_contexts);
}
Handle<JSGlobalObject> Genesis::CreateNewGlobals(
v8::Local<v8::ObjectTemplate> global_proxy_template,
Handle<JSGlobalProxy> global_proxy) {
// The argument global_proxy_template aka data is an ObjectTemplateInfo.
// It has a constructor pointer that points at global_constructor which is a
// FunctionTemplateInfo.
// The global_proxy_constructor is used to (re)initialize the
// global_proxy. The global_proxy_constructor also has a prototype_template
// pointer that points at js_global_object_template which is an
// ObjectTemplateInfo.
// That in turn has a constructor pointer that points at
// js_global_object_constructor which is a FunctionTemplateInfo.
// js_global_object_constructor is used to make js_global_object_function
// js_global_object_function is used to make the new global_object.
//
// --- G l o b a l ---
// Step 1: Create a fresh JSGlobalObject.
Handle<JSFunction> js_global_object_function;
Handle<ObjectTemplateInfo> js_global_object_template;
if (!global_proxy_template.IsEmpty()) {
// Get prototype template of the global_proxy_template.
Handle<ObjectTemplateInfo> data =
v8::Utils::OpenHandle(*global_proxy_template);
Handle<FunctionTemplateInfo> global_constructor =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(data->constructor()));
Handle<Object> proto_template(global_constructor->prototype_template(),
isolate());
if (!proto_template->IsUndefined(isolate())) {
js_global_object_template =
Handle<ObjectTemplateInfo>::cast(proto_template);
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
}
}
if (js_global_object_template.is_null()) {
Handle<String> name(factory()->empty_string());
Handle<Code> code = BUILTIN_CODE(isolate(), Illegal);
Handle<JSObject> prototype =
factory()->NewFunctionPrototype(isolate()->object_function());
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithPrototype(
name, code, prototype, JS_GLOBAL_OBJECT_TYPE, JSGlobalObject::kSize, 0,
Builtins::kIllegal, MUTABLE);
js_global_object_function = factory()->NewFunction(args);
#ifdef DEBUG
LookupIterator it(prototype, factory()->constructor_string(),
LookupIterator::OWN_SKIP_INTERCEPTOR);
Handle<Object> value = Object::GetProperty(&it).ToHandleChecked();
DCHECK(it.IsFound());
DCHECK_EQ(*isolate()->object_function(), *value);
#endif
} else {
Handle<FunctionTemplateInfo> js_global_object_constructor(
FunctionTemplateInfo::cast(js_global_object_template->constructor()));
js_global_object_function = ApiNatives::CreateApiFunction(
isolate(), js_global_object_constructor, factory()->the_hole_value(),
ApiNatives::GlobalObjectType);
}
js_global_object_function->initial_map()->set_is_prototype_map(true);
js_global_object_function->initial_map()->set_is_dictionary_map(true);
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
js_global_object_function->initial_map()->set_may_have_interesting_symbols(
true);
Handle<JSGlobalObject> global_object =
factory()->NewJSGlobalObject(js_global_object_function);
// Step 2: (re)initialize the global proxy object.
Handle<JSFunction> global_proxy_function;
if (global_proxy_template.IsEmpty()) {
Handle<String> name(factory()->empty_string());
Handle<Code> code = BUILTIN_CODE(isolate(), Illegal);
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithPrototype(
name, code, factory()->the_hole_value(), JS_GLOBAL_PROXY_TYPE,
JSGlobalProxy::SizeWithEmbedderFields(0), 0, Builtins::kIllegal,
MUTABLE);
global_proxy_function = factory()->NewFunction(args);
} else {
Handle<ObjectTemplateInfo> data =
v8::Utils::OpenHandle(*global_proxy_template);
Handle<FunctionTemplateInfo> global_constructor(
FunctionTemplateInfo::cast(data->constructor()));
global_proxy_function = ApiNatives::CreateApiFunction(
isolate(), global_constructor, factory()->the_hole_value(),
ApiNatives::GlobalProxyType);
}
global_proxy_function->initial_map()->set_is_access_check_needed(true);
global_proxy_function->initial_map()->set_has_hidden_prototype(true);
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
global_proxy_function->initial_map()->set_may_have_interesting_symbols(true);
native_context()->set_global_proxy_function(*global_proxy_function);
// Set global_proxy.__proto__ to js_global after ConfigureGlobalObjects
// Return the global proxy.
factory()->ReinitializeJSGlobalProxy(global_proxy, global_proxy_function);
// Set the native context for the global object.
global_object->set_native_context(*native_context());
global_object->set_global_proxy(*global_proxy);
// Set the native context of the global proxy.
global_proxy->set_native_context(*native_context());
// Set the global proxy of the native context. If the native context has been
// deserialized, the global proxy is already correctly set up by the
// deserializer. Otherwise it's undefined.
DCHECK(native_context()
->get(Context::GLOBAL_PROXY_INDEX)
->IsUndefined(isolate()) ||
native_context()->global_proxy() == *global_proxy);
native_context()->set_global_proxy(*global_proxy);
return global_object;
}
void Genesis::HookUpGlobalProxy(Handle<JSGlobalProxy> global_proxy) {
// Re-initialize the global proxy with the global proxy function from the
// snapshot, and then set up the link to the native context.
Handle<JSFunction> global_proxy_function(
native_context()->global_proxy_function());
factory()->ReinitializeJSGlobalProxy(global_proxy, global_proxy_function);
Handle<JSObject> global_object(
JSObject::cast(native_context()->global_object()));
JSObject::ForceSetPrototype(global_proxy, global_object);
global_proxy->set_native_context(*native_context());
DCHECK(native_context()->global_proxy() == *global_proxy);
}
void Genesis::HookUpGlobalObject(Handle<JSGlobalObject> global_object) {
Handle<JSGlobalObject> global_object_from_snapshot(
JSGlobalObject::cast(native_context()->extension()));
native_context()->set_extension(*global_object);
native_context()->set_security_token(*global_object);
TransferNamedProperties(global_object_from_snapshot, global_object);
TransferIndexedProperties(global_object_from_snapshot, global_object);
}
static void InstallWithIntrinsicDefaultProto(Isolate* isolate,
Handle<JSFunction> function,
int context_index) {
Handle<Smi> index(Smi::FromInt(context_index), isolate);
JSObject::AddProperty(
function, isolate->factory()->native_context_index_symbol(), index, NONE);
isolate->native_context()->set(context_index, *function);
}
static void InstallError(Isolate* isolate, Handle<JSObject> global,
Handle<String> name, int context_index) {
Factory* factory = isolate->factory();
Handle<JSFunction> error_fun = InstallFunction(
global, name, JS_ERROR_TYPE, JSObject::kHeaderSize, 0,
factory->the_hole_value(), Builtins::kErrorConstructor, DONT_ENUM);
error_fun->shared()->DontAdaptArguments();
error_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, ErrorConstructor));
error_fun->shared()->set_length(1);
if (context_index == Context::ERROR_FUNCTION_INDEX) {
SimpleInstallFunction(error_fun, "captureStackTrace",
Builtins::kErrorCaptureStackTrace, 2, false);
}
InstallWithIntrinsicDefaultProto(isolate, error_fun, context_index);
{
// Setup %XXXErrorPrototype%.
Handle<JSObject> prototype(JSObject::cast(error_fun->instance_prototype()));
JSObject::AddProperty(prototype, factory->name_string(), name, DONT_ENUM);
JSObject::AddProperty(prototype, factory->message_string(),
factory->empty_string(), DONT_ENUM);
if (context_index == Context::ERROR_FUNCTION_INDEX) {
Handle<JSFunction> to_string_fun =
SimpleInstallFunction(prototype, factory->toString_string(),
Builtins::kErrorPrototypeToString, 0, true);
isolate->native_context()->set_error_to_string(*to_string_fun);
isolate->native_context()->set_initial_error_prototype(*prototype);
} else {
DCHECK(isolate->native_context()->error_to_string()->IsJSFunction());
InstallFunction(prototype, isolate->error_to_string(),
factory->toString_string(), DONT_ENUM);
Handle<JSFunction> global_error = isolate->error_function();
CHECK(JSReceiver::SetPrototype(error_fun, global_error, false,
kThrowOnError)
.FromMaybe(false));
CHECK(JSReceiver::SetPrototype(prototype,
handle(global_error->prototype(), isolate),
false, kThrowOnError)
.FromMaybe(false));
}
}
Handle<Map> initial_map(error_fun->initial_map());
Map::EnsureDescriptorSlack(initial_map, 1);
{
Handle<AccessorInfo> info = factory->error_stack_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, DONT_ENUM);
initial_map->AppendDescriptor(&d);
}
}
namespace {
void InstallMakeError(Isolate* isolate, int builtin_id, int context_index) {
Handle<Code> code(isolate->builtins()->builtin(builtin_id));
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithPrototype(
isolate->factory()->empty_string(), code,
isolate->factory()->the_hole_value(), JS_OBJECT_TYPE,
JSObject::kHeaderSize, 0, builtin_id, MUTABLE);
Handle<JSFunction> function = isolate->factory()->NewFunction(args);
function->shared()->DontAdaptArguments();
isolate->native_context()->set(context_index, *function);
}
} // namespace
// This is only called if we are not using snapshots. The equivalent
// work in the snapshot case is done in HookUpGlobalObject.
void Genesis::InitializeGlobal(Handle<JSGlobalObject> global_object,
Handle<JSFunction> empty_function,
GlobalContextType context_type) {
// --- N a t i v e C o n t e x t ---
// Use the empty function as closure (no scope info).
native_context()->set_closure(*empty_function);
native_context()->set_previous(nullptr);
// Set extension and global object.
native_context()->set_extension(*global_object);
// Security setup: Set the security token of the native context to the global
// object. This makes the security check between two different contexts fail
// by default even in case of global object reinitialization.
native_context()->set_security_token(*global_object);
Isolate* isolate = global_object->GetIsolate();
Factory* factory = isolate->factory();
Handle<ScriptContextTable> script_context_table =
factory->NewScriptContextTable();
native_context()->set_script_context_table(*script_context_table);
InstallGlobalThisBinding();
{ // --- O b j e c t ---
Handle<String> object_name = factory->Object_string();
Handle<JSFunction> object_function = isolate->object_function();
JSObject::AddProperty(global_object, object_name, object_function,
DONT_ENUM);
SimpleInstallFunction(object_function, factory->assign_string(),
Builtins::kObjectAssign, 2, false);
SimpleInstallFunction(object_function, "getOwnPropertyDescriptor",
Builtins::kObjectGetOwnPropertyDescriptor, 2, false);
SimpleInstallFunction(object_function,
factory->getOwnPropertyDescriptors_string(),
Builtins::kObjectGetOwnPropertyDescriptors, 1, false);
SimpleInstallFunction(object_function, "getOwnPropertyNames",
Builtins::kObjectGetOwnPropertyNames, 1, false);
SimpleInstallFunction(object_function, "getOwnPropertySymbols",
Builtins::kObjectGetOwnPropertySymbols, 1, false);
SimpleInstallFunction(object_function, "is",
Builtins::kObjectIs, 2, true);
SimpleInstallFunction(object_function, "preventExtensions",
Builtins::kObjectPreventExtensions, 1, false);
SimpleInstallFunction(object_function, "seal",
Builtins::kObjectSeal, 1, false);
Handle<JSFunction> object_create =
SimpleInstallFunction(object_function, factory->create_string(),
Builtins::kObjectCreate, 2, false);
native_context()->set_object_create(*object_create);
Handle<JSFunction> object_define_properties = SimpleInstallFunction(
object_function, "defineProperties",
Builtins::kObjectDefineProperties, 2, true);
native_context()->set_object_define_properties(*object_define_properties);
Handle<JSFunction> object_define_property = SimpleInstallFunction(
object_function, factory->defineProperty_string(),
Builtins::kObjectDefineProperty, 3, true);
native_context()->set_object_define_property(*object_define_property);
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
SimpleInstallFunction(object_function, "freeze", Builtins::kObjectFreeze, 1,
false);
Handle<JSFunction> object_get_prototype_of = SimpleInstallFunction(
object_function, "getPrototypeOf", Builtins::kObjectGetPrototypeOf,
1, false);
native_context()->set_object_get_prototype_of(*object_get_prototype_of);
SimpleInstallFunction(object_function, "setPrototypeOf",
Builtins::kObjectSetPrototypeOf, 2, false);
Handle<JSFunction> object_is_extensible = SimpleInstallFunction(
object_function, "isExtensible", Builtins::kObjectIsExtensible,
1, false);
native_context()->set_object_is_extensible(*object_is_extensible);
Handle<JSFunction> object_is_frozen = SimpleInstallFunction(
object_function, "isFrozen", Builtins::kObjectIsFrozen, 1, false);
native_context()->set_object_is_frozen(*object_is_frozen);
Handle<JSFunction> object_is_sealed = SimpleInstallFunction(
object_function, "isSealed", Builtins::kObjectIsSealed, 1, false);
native_context()->set_object_is_sealed(*object_is_sealed);
Handle<JSFunction> object_keys = SimpleInstallFunction(
object_function, "keys", Builtins::kObjectKeys, 1, true);
native_context()->set_object_keys(*object_keys);
SimpleInstallFunction(object_function, factory->entries_string(),
Builtins::kObjectEntries, 1, true);
SimpleInstallFunction(object_function, factory->values_string(),
Builtins::kObjectValues, 1, true);
SimpleInstallFunction(isolate->initial_object_prototype(),
"__defineGetter__", Builtins::kObjectDefineGetter, 2,
true);
SimpleInstallFunction(isolate->initial_object_prototype(),
"__defineSetter__", Builtins::kObjectDefineSetter, 2,
true);
SimpleInstallFunction(isolate->initial_object_prototype(), "hasOwnProperty",
[turbofan] Optimize O.p.hasOwnProperty inside for-in. Optimize the common pattern for (var i in o) { if (Object.prototype.hasOwnProperty.call(o, i)) { // do something } } which is part of the guard-for-in style in ESLint (see the documentation at https://eslint.org/docs/rules/guard-for-in for details). This pattern also shows up in React and Ember applications quite a lot (and is tested by the appropriate Speedometer benchmarks, although not dominating those benchmarks, since they spent a lot of time in non-TurboFan'ed code). This improves the forInHasOwnProperty and forInHasOwnPropertySafe micro- benchmarks in v8:6702, which look like this function forInHasOwnProperty(o) { var result = 0; for (var i in o) { if (o.hasOwnProperty(i)) { result += 1; } } return result; } function forInHasOwnPropertySafe(o) { var result = 0; for (var i in o) { if (Object.prototype.hasOwnProperty.call(o, i)) { result += 1; } } return result; } by around 4x and allows for additional optimizations in the future, by also elimiating the megamorphic load when accessing the enumerated properties. This changes the interpreter ForInNext bytecode to collect more precise feedback about the for-in state, which now consists of three individual states: UNINITIALIZED, MEGAMORPHIC and GENERIC. The MEGAMORPHIC state means that the ForInNext has only seen objects with a usable enum cache thus far, whereas GENERIC means that we have seen some slow-mode for..in objects as well. R=jarin@chromium.org Bug: v8:6702 Change-Id: Ibcd75ea9b58c3b4f9219f11bc37eb04a2b985604 Reviewed-on: https://chromium-review.googlesource.com/636964 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47632}
2017-08-28 05:26:15 +00:00
Builtins::kObjectPrototypeHasOwnProperty, 1, true);
SimpleInstallFunction(isolate->initial_object_prototype(),
"__lookupGetter__", Builtins::kObjectLookupGetter, 1,
true);
SimpleInstallFunction(isolate->initial_object_prototype(),
"__lookupSetter__", Builtins::kObjectLookupSetter, 1,
true);
[builtins] Properly optimize Object.prototype.isPrototypeOf. Port the baseline implementation of Object.prototype.isPrototypeOf to the CodeStubAssembler, sharing the existing prototype chain lookup logic with the instanceof / OrdinaryHasInstance implementation. Based on that, do the same in TurboFan, introducing a new JSHasInPrototypeChain operator, which encapsulates the central prototype chain walk logic. This speeds up Object.prototype.isPrototypeOf by more than a factor of four, so that the code A.prototype.isPrototypeOf(a) is now performance-wise on par with a instanceof A for the case where A is a regular constructor function and a is an instance of A. Since instanceof does more than just the fundamental prototype chain lookup, it was discovered in Node core that O.p.isPrototypeOf would be a more appropriate alternative for certain sanity checks, since it's less vulnerable to monkey-patching. In addition, the Object builtin would also avoid the performance-cliff associated with instanceof (due to the Symbol.hasInstance hook), as for example hit by https://github.com/nodejs/node/pull/13403#issuecomment-305915874. The main blocker was the missing performance of isPrototypeOf, since it was still a JS builtin backed by a runtime call. This CL also adds more test coverage for the Object.prototype.isPrototypeOf builtin, especially when called from optimized code. CQ_INCLUDE_TRYBOTS=master.tryserver.chromium.linux:linux_chromium_rel_ng BUG=v8:5269,v8:5989,v8:6483 R=jgruber@chromium.org Review-Url: https://codereview.chromium.org/2934893002 Cr-Commit-Position: refs/heads/master@{#45925}
2017-06-13 19:14:00 +00:00
SimpleInstallFunction(isolate->initial_object_prototype(), "isPrototypeOf",
Builtins::kObjectPrototypeIsPrototypeOf, 1, true);
SimpleInstallFunction(
isolate->initial_object_prototype(), "propertyIsEnumerable",
Builtins::kObjectPrototypePropertyIsEnumerable, 1, false);
Handle<JSFunction> object_to_string = SimpleInstallFunction(
isolate->initial_object_prototype(), factory->toString_string(),
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
Builtins::kObjectPrototypeToString, 0, true);
native_context()->set_object_to_string(*object_to_string);
Handle<JSFunction> object_value_of = SimpleInstallFunction(
isolate->initial_object_prototype(), "valueOf",
Builtins::kObjectPrototypeValueOf, 0, true);
native_context()->set_object_value_of(*object_value_of);
SimpleInstallGetterSetter(isolate->initial_object_prototype(),
factory->proto_string(),
Builtins::kObjectPrototypeGetProto,
Builtins::kObjectPrototypeSetProto, DONT_ENUM);
SimpleInstallFunction(isolate->initial_object_prototype(), "toLocaleString",
Builtins::kObjectPrototypeToLocaleString, 0, true);
}
Handle<JSObject> global(native_context()->global_object());
{ // --- F u n c t i o n ---
Handle<JSFunction> prototype = empty_function;
Handle<JSFunction> function_fun = InstallFunction(
global, "Function", JS_FUNCTION_TYPE, JSFunction::kSizeWithPrototype, 0,
prototype, Builtins::kFunctionConstructor);
// Function instances are sloppy by default.
function_fun->set_prototype_or_initial_map(*isolate->sloppy_function_map());
function_fun->shared()->DontAdaptArguments();
function_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, FunctionConstructor));
function_fun->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(isolate, function_fun,
Context::FUNCTION_FUNCTION_INDEX);
// Setup the methods on the %FunctionPrototype%.
JSObject::AddProperty(prototype, factory->constructor_string(),
function_fun, DONT_ENUM);
SimpleInstallFunction(prototype, factory->apply_string(),
Builtins::kFunctionPrototypeApply, 2, false);
SimpleInstallFunction(prototype, factory->bind_string(),
Builtins::kFastFunctionPrototypeBind, 1, false);
SimpleInstallFunction(prototype, factory->call_string(),
Builtins::kFunctionPrototypeCall, 1, false);
SimpleInstallFunction(prototype, factory->toString_string(),
Builtins::kFunctionPrototypeToString, 0, false);
// Install the @@hasInstance function.
Handle<JSFunction> has_instance = SimpleInstallFunction(
prototype, factory->has_instance_symbol(), "[Symbol.hasInstance]",
Builtins::kFunctionPrototypeHasInstance, 1, true,
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY),
kFunctionHasInstance);
native_context()->set_function_has_instance(*has_instance);
// Complete setting up function maps.
{
isolate->sloppy_function_map()->SetConstructor(*function_fun);
isolate->sloppy_function_with_name_map()->SetConstructor(*function_fun);
isolate->sloppy_function_with_readonly_prototype_map()->SetConstructor(
*function_fun);
isolate->strict_function_map()->SetConstructor(*function_fun);
isolate->strict_function_with_name_map()->SetConstructor(*function_fun);
strict_function_with_home_object_map_->SetConstructor(*function_fun);
strict_function_with_name_and_home_object_map_->SetConstructor(
*function_fun);
isolate->strict_function_with_readonly_prototype_map()->SetConstructor(
*function_fun);
isolate->class_function_map()->SetConstructor(*function_fun);
}
}
{ // --- A s y n c F r o m S y n c I t e r a t o r
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate, Builtins::kAsyncIteratorValueUnwrap, factory->empty_string(),
1);
native_context()->set_async_iterator_value_unwrap_shared_fun(*info);
}
{ // --- A r r a y ---
Handle<JSFunction> array_function = InstallFunction(
global, "Array", JS_ARRAY_TYPE, JSArray::kSize, 0,
isolate->initial_object_prototype(), Builtins::kArrayConstructor);
array_function->shared()->DontAdaptArguments();
array_function->shared()->set_builtin_function_id(kArrayConstructor);
// This seems a bit hackish, but we need to make sure Array.length
// is 1.
array_function->shared()->set_length(1);
Handle<Map> initial_map(array_function->initial_map());
// This assert protects an optimization in
// HGraphBuilder::JSArrayBuilder::EmitMapCode()
DCHECK(initial_map->elements_kind() == GetInitialFastElementsKind());
Map::EnsureDescriptorSlack(initial_map, 1);
PropertyAttributes attribs = static_cast<PropertyAttributes>(
DONT_ENUM | DONT_DELETE);
{ // Add length.
Descriptor d = Descriptor::AccessorConstant(
factory->length_string(), factory->array_length_accessor(), attribs);
initial_map->AppendDescriptor(&d);
}
InstallWithIntrinsicDefaultProto(isolate, array_function,
Context::ARRAY_FUNCTION_INDEX);
InstallSpeciesGetter(array_function);
// Cache the array maps, needed by ArrayConstructorStub
CacheInitialJSArrayMaps(native_context(), initial_map);
ArrayConstructorStub array_constructor_stub(isolate);
Handle<Code> code = array_constructor_stub.GetCode();
array_function->shared()->SetConstructStub(*code);
// Set up %ArrayPrototype%.
// The %ArrayPrototype% has TERMINAL_FAST_ELEMENTS_KIND in order to ensure
// that constant functions stay constant after turning prototype to setup
// mode and back when constant field tracking is enabled.
Handle<JSArray> proto =
factory->NewJSArray(0, TERMINAL_FAST_ELEMENTS_KIND, TENURED);
JSFunction::SetPrototype(array_function, proto);
native_context()->set_initial_array_prototype(*proto);
Handle<JSFunction> is_arraylike = SimpleInstallFunction(
array_function, "isArray", Builtins::kArrayIsArray, 1, true);
native_context()->set_is_arraylike(*is_arraylike);
SimpleInstallFunction(array_function, "from", Builtins::kArrayFrom, 1,
false);
SimpleInstallFunction(array_function, "of", Builtins::kArrayOf, 0, false);
JSObject::AddProperty(proto, factory->constructor_string(), array_function,
DONT_ENUM);
SimpleInstallFunction(proto, "concat", Builtins::kArrayConcat, 1, false);
SimpleInstallFunction(proto, "find", Builtins::kArrayPrototypeFind, 1,
false);
SimpleInstallFunction(proto, "findIndex",
Builtins::kArrayPrototypeFindIndex, 1, false);
SimpleInstallFunction(proto, "pop", Builtins::kArrayPrototypePop, 0, false);
SimpleInstallFunction(proto, "push", Builtins::kArrayPrototypePush, 1,
false);
SimpleInstallFunction(proto, "shift", Builtins::kArrayPrototypeShift, 0,
false);
SimpleInstallFunction(proto, "unshift", Builtins::kArrayUnshift, 1, false);
Reimplement Array.prototype.slice in CSA and C++ Previously, V8's slice was implemented in a combination of C++ and a Javascript fallback. The disadvantage of this approach was that the fast-path required a call through the CEntryStub, which introduced considerable overhead for small arrays with fast elements kinds. Now the implementation primarily uses the CSA to generate both the full spec-complaint implementation as well as fast paths for argument objects and arrays with fast elements kinds. The CSA implementation uses a C++ implementation fallback in select situations where the the complexity of a CSA implementation would be too great and the CEntryStub overhead is not decisive (e.g. slices of dictionary elements arrays). Performance results on semi-random arrays with small number of elements (old vs. new): smi copy: 48.7 ms vs. 12 ms smi slice: 43.5 ms 14.8 ms object copy: 35.5 ms 7.7 ms object slice: 38.7 ms 8.8 ms dictionary slice: 2398.3 ms vs. 5.4 ms fast sloppy arguments slice: 9.6 ms vs. 7.2 ms slow sloppy arguments slice: 28.9 ms vs. 8.5 ms As a bonus, the new implementation is fully spec-compliant and fixes at least one existing bug. The design document for Array.prototype builtin rework can be found at https://goo.gl/wFHe2n Bug: v8:1956,v8:6601,v8:6710,v8:6978 Change-Id: Ia0155bedcf39b4577605ff754f416c2af938efb7 Reviewed-on: https://chromium-review.googlesource.com/574710 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48853}
2017-10-23 18:41:42 +00:00
if (FLAG_enable_experimental_builtins) {
SimpleInstallFunction(proto, "slice", Builtins::kArrayPrototypeSlice, 2,
Reimplement Array.prototype.slice in CSA and C++ Previously, V8's slice was implemented in a combination of C++ and a Javascript fallback. The disadvantage of this approach was that the fast-path required a call through the CEntryStub, which introduced considerable overhead for small arrays with fast elements kinds. Now the implementation primarily uses the CSA to generate both the full spec-complaint implementation as well as fast paths for argument objects and arrays with fast elements kinds. The CSA implementation uses a C++ implementation fallback in select situations where the the complexity of a CSA implementation would be too great and the CEntryStub overhead is not decisive (e.g. slices of dictionary elements arrays). Performance results on semi-random arrays with small number of elements (old vs. new): smi copy: 48.7 ms vs. 12 ms smi slice: 43.5 ms 14.8 ms object copy: 35.5 ms 7.7 ms object slice: 38.7 ms 8.8 ms dictionary slice: 2398.3 ms vs. 5.4 ms fast sloppy arguments slice: 9.6 ms vs. 7.2 ms slow sloppy arguments slice: 28.9 ms vs. 8.5 ms As a bonus, the new implementation is fully spec-compliant and fixes at least one existing bug. The design document for Array.prototype builtin rework can be found at https://goo.gl/wFHe2n Bug: v8:1956,v8:6601,v8:6710,v8:6978 Change-Id: Ia0155bedcf39b4577605ff754f416c2af938efb7 Reviewed-on: https://chromium-review.googlesource.com/574710 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48853}
2017-10-23 18:41:42 +00:00
false);
} else {
SimpleInstallFunction(proto, "slice", Builtins::kArraySlice, 2, false);
}
SimpleInstallFunction(proto, "splice", Builtins::kArraySplice, 2, false);
SimpleInstallFunction(proto, "includes", Builtins::kArrayIncludes, 1,
false);
SimpleInstallFunction(proto, "indexOf", Builtins::kArrayIndexOf, 1, false);
SimpleInstallFunction(proto, "keys", Builtins::kArrayPrototypeKeys, 0, true,
kArrayKeys);
SimpleInstallFunction(proto, "entries", Builtins::kArrayPrototypeEntries, 0,
true, kArrayEntries);
SimpleInstallFunction(proto, factory->iterator_symbol(), "values",
Builtins::kArrayPrototypeValues, 0, true, DONT_ENUM,
kArrayValues);
SimpleInstallFunction(proto, "forEach", Builtins::kArrayForEach, 1, false);
SimpleInstallFunction(proto, "filter", Builtins::kArrayFilter, 1, false);
SimpleInstallFunction(proto, "map", Builtins::kArrayMap, 1, false);
SimpleInstallFunction(proto, "every", Builtins::kArrayEvery, 1, false);
SimpleInstallFunction(proto, "some", Builtins::kArraySome, 1, false);
SimpleInstallFunction(proto, "reduce", Builtins::kArrayReduce, 1, false);
SimpleInstallFunction(proto, "reduceRight", Builtins::kArrayReduceRight, 1,
false);
}
{ // --- A r r a y I t e r a t o r ---
Handle<JSObject> iterator_prototype(
native_context()->initial_iterator_prototype());
Handle<JSObject> array_iterator_prototype =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::ForceSetPrototype(array_iterator_prototype, iterator_prototype);
JSObject::AddProperty(
array_iterator_prototype, factory->to_string_tag_symbol(),
factory->ArrayIterator_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
SimpleInstallFunction(array_iterator_prototype, "next",
Builtins::kArrayIteratorPrototypeNext, 0, true,
kArrayIteratorNext);
[es2015] Refactor the JSArrayIterator. This changes the JSArrayIterator to always have only a single instance type, instead of the zoo of instance types that we had before, and which became less useful with the specification update to when "next" is loaded from the iterator now. This greatly simplifies the baseline implementation of the array iterator, which now only looks at the iterated object during %ArrayIteratorPrototype%.next invocations. In TurboFan we introduce a new JSCreateArrayIterator operator, that holds the IterationKind and get's the iterated object as input. When optimizing %ArrayIteratorPrototype%.next in the JSCallReducer, we check whether the receiver is a JSCreateArrayIterator, and if so, we try to infer maps for the iterated object from there. If we find any, we speculatively assume that these won't have changed during iteration (as we did before with the previous approach), and generate fast code for both JSArray and JSTypedArray iteration. Drive-by-fix: Drop the fast_array_iteration protector, it's not necessary anymore since we have the deoptimization guard bit in the JSCallReducer now. This addresses the performance cliff noticed in webpack 4. The minimal repro on the tracking bug goes from console.timeEnd: mono, 124.773000 console.timeEnd: poly, 670.353000 to console.timeEnd: mono, 118.709000 console.timeEnd: poly, 141.393000 so that's a 4.7x improvement. Also make presubmit happy by adding the missing #undef's. Bug: v8:7510, v7:7514 Change-Id: I79a46bfa2cd0f0710e09365ef72519b1bbb667b5 Reviewed-on: https://chromium-review.googlesource.com/946098 Reviewed-by: Sigurd Schneider <sigurds@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51725}
2018-03-02 19:31:01 +00:00
Handle<JSFunction> array_iterator_function =
CreateFunction(isolate, factory->ArrayIterator_string(),
JS_ARRAY_ITERATOR_TYPE, JSArrayIterator::kSize, 0,
array_iterator_prototype, Builtins::kIllegal);
array_iterator_function->shared()->set_native(false);
[es2015] Refactor the JSArrayIterator. This changes the JSArrayIterator to always have only a single instance type, instead of the zoo of instance types that we had before, and which became less useful with the specification update to when "next" is loaded from the iterator now. This greatly simplifies the baseline implementation of the array iterator, which now only looks at the iterated object during %ArrayIteratorPrototype%.next invocations. In TurboFan we introduce a new JSCreateArrayIterator operator, that holds the IterationKind and get's the iterated object as input. When optimizing %ArrayIteratorPrototype%.next in the JSCallReducer, we check whether the receiver is a JSCreateArrayIterator, and if so, we try to infer maps for the iterated object from there. If we find any, we speculatively assume that these won't have changed during iteration (as we did before with the previous approach), and generate fast code for both JSArray and JSTypedArray iteration. Drive-by-fix: Drop the fast_array_iteration protector, it's not necessary anymore since we have the deoptimization guard bit in the JSCallReducer now. This addresses the performance cliff noticed in webpack 4. The minimal repro on the tracking bug goes from console.timeEnd: mono, 124.773000 console.timeEnd: poly, 670.353000 to console.timeEnd: mono, 118.709000 console.timeEnd: poly, 141.393000 so that's a 4.7x improvement. Also make presubmit happy by adding the missing #undef's. Bug: v8:7510, v7:7514 Change-Id: I79a46bfa2cd0f0710e09365ef72519b1bbb667b5 Reviewed-on: https://chromium-review.googlesource.com/946098 Reviewed-by: Sigurd Schneider <sigurds@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51725}
2018-03-02 19:31:01 +00:00
native_context()->set_initial_array_iterator_map(
array_iterator_function->initial_map());
native_context()->set_initial_array_iterator_prototype(
*array_iterator_prototype);
}
{ // --- N u m b e r ---
Handle<JSFunction> number_fun = InstallFunction(
global, "Number", JS_VALUE_TYPE, JSValue::kSize, 0,
isolate->initial_object_prototype(), Builtins::kNumberConstructor);
number_fun->shared()->set_builtin_function_id(kNumberConstructor);
number_fun->shared()->DontAdaptArguments();
number_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
number_fun->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(isolate, number_fun,
Context::NUMBER_FUNCTION_INDEX);
// Create the %NumberPrototype%
Handle<JSValue> prototype =
Handle<JSValue>::cast(factory->NewJSObject(number_fun, TENURED));
prototype->set_value(Smi::kZero);
JSFunction::SetPrototype(number_fun, prototype);
// Install the "constructor" property on the {prototype}.
JSObject::AddProperty(prototype, factory->constructor_string(), number_fun,
DONT_ENUM);
// Install the Number.prototype methods.
SimpleInstallFunction(prototype, "toExponential",
Builtins::kNumberPrototypeToExponential, 1, false);
SimpleInstallFunction(prototype, "toFixed",
Builtins::kNumberPrototypeToFixed, 1, false);
SimpleInstallFunction(prototype, "toPrecision",
Builtins::kNumberPrototypeToPrecision, 1, false);
SimpleInstallFunction(prototype, "toString",
Builtins::kNumberPrototypeToString, 1, false);
SimpleInstallFunction(prototype, "valueOf",
Builtins::kNumberPrototypeValueOf, 0, true);
// Install Intl fallback functions.
SimpleInstallFunction(prototype, "toLocaleString",
Builtins::kNumberPrototypeToLocaleString, 0, false);
// Install the Number functions.
SimpleInstallFunction(number_fun, "isFinite", Builtins::kNumberIsFinite, 1,
true);
SimpleInstallFunction(number_fun, "isInteger", Builtins::kNumberIsInteger,
1, true);
SimpleInstallFunction(number_fun, "isNaN", Builtins::kNumberIsNaN, 1, true);
SimpleInstallFunction(number_fun, "isSafeInteger",
Builtins::kNumberIsSafeInteger, 1, true);
// Install Number.parseFloat and Global.parseFloat.
Handle<JSFunction> parse_float_fun = SimpleInstallFunction(
number_fun, "parseFloat", Builtins::kNumberParseFloat, 1, true);
JSObject::AddProperty(global_object,
factory->NewStringFromAsciiChecked("parseFloat"),
parse_float_fun, DONT_ENUM);
// Install Number.parseInt and Global.parseInt.
Handle<JSFunction> parse_int_fun = SimpleInstallFunction(
number_fun, "parseInt", Builtins::kNumberParseInt, 2, true);
JSObject::AddProperty(global_object,
factory->NewStringFromAsciiChecked("parseInt"),
parse_int_fun, DONT_ENUM);
// Install Number constants
double kMaxValue = 1.7976931348623157e+308;
double kMinValue = 5e-324;
double kMaxSafeInt = 9007199254740991;
double kMinSafeInt = -9007199254740991;
double kEPS = 2.220446049250313e-16;
Handle<Object> infinity = factory->infinity_value();
Handle<Object> nan = factory->nan_value();
Handle<String> nan_name = factory->NewStringFromAsciiChecked("NaN");
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("MAX_VALUE"),
factory->NewNumber(kMaxValue),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("MIN_VALUE"),
factory->NewNumber(kMinValue),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, nan_name, nan,
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("NEGATIVE_INFINITY"),
factory->NewNumber(-V8_INFINITY),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("POSITIVE_INFINITY"),
infinity,
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("MAX_SAFE_INTEGER"),
factory->NewNumber(kMaxSafeInt),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("MIN_SAFE_INTEGER"),
factory->NewNumber(kMinSafeInt),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
number_fun, factory->NewStringFromAsciiChecked("EPSILON"),
factory->NewNumber(kEPS),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
global, factory->NewStringFromAsciiChecked("Infinity"), infinity,
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
global, nan_name, nan,
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
JSObject::AddProperty(
global, factory->NewStringFromAsciiChecked("undefined"),
factory->undefined_value(),
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY));
}
{ // --- B o o l e a n ---
Handle<JSFunction> boolean_fun = InstallFunction(
global, "Boolean", JS_VALUE_TYPE, JSValue::kSize, 0,
isolate->initial_object_prototype(), Builtins::kBooleanConstructor);
boolean_fun->shared()->DontAdaptArguments();
boolean_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
boolean_fun->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(isolate, boolean_fun,
Context::BOOLEAN_FUNCTION_INDEX);
// Create the %BooleanPrototype%
Handle<JSValue> prototype =
Handle<JSValue>::cast(factory->NewJSObject(boolean_fun, TENURED));
prototype->set_value(isolate->heap()->false_value());
JSFunction::SetPrototype(boolean_fun, prototype);
// Install the "constructor" property on the {prototype}.
JSObject::AddProperty(prototype, factory->constructor_string(), boolean_fun,
DONT_ENUM);
// Install the Boolean.prototype methods.
SimpleInstallFunction(prototype, "toString",
Builtins::kBooleanPrototypeToString, 0, true);
SimpleInstallFunction(prototype, "valueOf",
Builtins::kBooleanPrototypeValueOf, 0, true);
}
{ // --- S t r i n g ---
Handle<JSFunction> string_fun = InstallFunction(
global, "String", JS_VALUE_TYPE, JSValue::kSize, 0,
isolate->initial_object_prototype(), Builtins::kStringConstructor);
string_fun->shared()->set_builtin_function_id(kStringConstructor);
string_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
string_fun->shared()->DontAdaptArguments();
string_fun->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(isolate, string_fun,
Context::STRING_FUNCTION_INDEX);
Handle<Map> string_map =
Handle<Map>(native_context()->string_function()->initial_map());
string_map->set_elements_kind(FAST_STRING_WRAPPER_ELEMENTS);
Map::EnsureDescriptorSlack(string_map, 1);
PropertyAttributes attribs = static_cast<PropertyAttributes>(
DONT_ENUM | DONT_DELETE | READ_ONLY);
{ // Add length.
Descriptor d = Descriptor::AccessorConstant(
factory->length_string(), factory->string_length_accessor(), attribs);
string_map->AppendDescriptor(&d);
}
// Install the String.fromCharCode function.
SimpleInstallFunction(string_fun, "fromCharCode",
Builtins::kStringFromCharCode, 1, false);
// Install the String.fromCodePoint function.
SimpleInstallFunction(string_fun, "fromCodePoint",
Builtins::kStringFromCodePoint, 1, false);
// Install the String.raw function.
SimpleInstallFunction(string_fun, "raw", Builtins::kStringRaw, 1, false);
// Create the %StringPrototype%
Handle<JSValue> prototype =
Handle<JSValue>::cast(factory->NewJSObject(string_fun, TENURED));
prototype->set_value(isolate->heap()->empty_string());
JSFunction::SetPrototype(string_fun, prototype);
native_context()->set_initial_string_prototype(*prototype);
// Install the "constructor" property on the {prototype}.
JSObject::AddProperty(prototype, factory->constructor_string(), string_fun,
DONT_ENUM);
// Install the String.prototype methods.
SimpleInstallFunction(prototype, "anchor", Builtins::kStringPrototypeAnchor,
1, true);
SimpleInstallFunction(prototype, "big", Builtins::kStringPrototypeBig, 0,
true);
SimpleInstallFunction(prototype, "blink", Builtins::kStringPrototypeBlink,
0, true);
SimpleInstallFunction(prototype, "bold", Builtins::kStringPrototypeBold, 0,
true);
SimpleInstallFunction(prototype, "charAt", Builtins::kStringPrototypeCharAt,
1, true);
SimpleInstallFunction(prototype, "charCodeAt",
Builtins::kStringPrototypeCharCodeAt, 1, true);
SimpleInstallFunction(prototype, "codePointAt",
Builtins::kStringPrototypeCodePointAt, 1, true);
SimpleInstallFunction(prototype, "concat", Builtins::kStringPrototypeConcat,
1, false);
SimpleInstallFunction(prototype, "endsWith",
Builtins::kStringPrototypeEndsWith, 1, false);
SimpleInstallFunction(prototype, "fontcolor",
Builtins::kStringPrototypeFontcolor, 1, true);
SimpleInstallFunction(prototype, "fontsize",
Builtins::kStringPrototypeFontsize, 1, true);
SimpleInstallFunction(prototype, "fixed", Builtins::kStringPrototypeFixed,
0, true);
SimpleInstallFunction(prototype, "includes",
Builtins::kStringPrototypeIncludes, 1, false);
SimpleInstallFunction(prototype, "indexOf",
Builtins::kStringPrototypeIndexOf, 1, false);
SimpleInstallFunction(prototype, "italics",
Builtins::kStringPrototypeItalics, 0, true);
SimpleInstallFunction(prototype, "lastIndexOf",
Builtins::kStringPrototypeLastIndexOf, 1, false);
SimpleInstallFunction(prototype, "link", Builtins::kStringPrototypeLink, 1,
true);
SimpleInstallFunction(prototype, "localeCompare",
Builtins::kStringPrototypeLocaleCompare, 1, true);
SimpleInstallFunction(prototype, "match", Builtins::kStringPrototypeMatch,
1, true);
#ifdef V8_INTL_SUPPORT
SimpleInstallFunction(prototype, "normalize",
Builtins::kStringPrototypeNormalizeIntl, 0, false);
#else
SimpleInstallFunction(prototype, "normalize",
Builtins::kStringPrototypeNormalize, 0, false);
#endif // V8_INTL_SUPPORT
SimpleInstallFunction(prototype, "padEnd", Builtins::kStringPrototypePadEnd,
1, false);
SimpleInstallFunction(prototype, "padStart",
Builtins::kStringPrototypePadStart, 1, false);
SimpleInstallFunction(prototype, "repeat", Builtins::kStringPrototypeRepeat,
1, true);
SimpleInstallFunction(prototype, "replace",
Builtins::kStringPrototypeReplace, 2, true);
SimpleInstallFunction(prototype, "search", Builtins::kStringPrototypeSearch,
1, true);
SimpleInstallFunction(prototype, "slice", Builtins::kStringPrototypeSlice,
2, false);
SimpleInstallFunction(prototype, "small", Builtins::kStringPrototypeSmall,
0, true);
SimpleInstallFunction(prototype, "split", Builtins::kStringPrototypeSplit,
2, false);
SimpleInstallFunction(prototype, "strike", Builtins::kStringPrototypeStrike,
0, true);
SimpleInstallFunction(prototype, "sub", Builtins::kStringPrototypeSub, 0,
true);
SimpleInstallFunction(prototype, "substr", Builtins::kStringPrototypeSubstr,
2, false);
SimpleInstallFunction(prototype, "substring",
Builtins::kStringPrototypeSubstring, 2, false);
SimpleInstallFunction(prototype, "sup", Builtins::kStringPrototypeSup, 0,
true);
SimpleInstallFunction(prototype, "startsWith",
Builtins::kStringPrototypeStartsWith, 1, false);
SimpleInstallFunction(prototype, "toString",
Builtins::kStringPrototypeToString, 0, true);
SimpleInstallFunction(prototype, "trim", Builtins::kStringPrototypeTrim, 0,
false);
SimpleInstallFunction(prototype, "trimLeft",
Builtins::kStringPrototypeTrimStart, 0, false);
SimpleInstallFunction(prototype, "trimRight",
Builtins::kStringPrototypeTrimEnd, 0, false);
#ifdef V8_INTL_SUPPORT
SimpleInstallFunction(prototype, "toLowerCase",
Builtins::kStringPrototypeToLowerCaseIntl, 0, true);
SimpleInstallFunction(prototype, "toUpperCase",
Builtins::kStringPrototypeToUpperCaseIntl, 0, false);
#else
SimpleInstallFunction(prototype, "toLocaleLowerCase",
Builtins::kStringPrototypeToLocaleLowerCase, 0,
false);
SimpleInstallFunction(prototype, "toLocaleUpperCase",
Builtins::kStringPrototypeToLocaleUpperCase, 0,
false);
SimpleInstallFunction(prototype, "toLowerCase",
Builtins::kStringPrototypeToLowerCase, 0, false);
SimpleInstallFunction(prototype, "toUpperCase",
Builtins::kStringPrototypeToUpperCase, 0, false);
#endif
SimpleInstallFunction(prototype, "valueOf",
Builtins::kStringPrototypeValueOf, 0, true);
SimpleInstallFunction(prototype, factory->iterator_symbol(),
"[Symbol.iterator]",
Builtins::kStringPrototypeIterator, 0, true,
DONT_ENUM, kStringIterator);
}
{ // --- S t r i n g I t e r a t o r ---
Handle<JSObject> iterator_prototype(
native_context()->initial_iterator_prototype());
Handle<JSObject> string_iterator_prototype =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::ForceSetPrototype(string_iterator_prototype, iterator_prototype);
JSObject::AddProperty(
string_iterator_prototype, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("String Iterator"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
SimpleInstallFunction(string_iterator_prototype, "next",
Builtins::kStringIteratorPrototypeNext, 0, true,
kStringIteratorNext);
Handle<JSFunction> string_iterator_function = CreateFunction(
isolate, factory->NewStringFromAsciiChecked("StringIterator"),
JS_STRING_ITERATOR_TYPE, JSStringIterator::kSize, 0,
string_iterator_prototype, Builtins::kIllegal);
string_iterator_function->shared()->set_native(false);
native_context()->set_string_iterator_map(
string_iterator_function->initial_map());
}
{ // --- S y m b o l ---
Handle<JSFunction> symbol_fun = InstallFunction(
global, "Symbol", JS_VALUE_TYPE, JSValue::kSize, 0,
factory->the_hole_value(), Builtins::kSymbolConstructor);
symbol_fun->shared()->set_builtin_function_id(kSymbolConstructor);
symbol_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
symbol_fun->shared()->set_length(0);
symbol_fun->shared()->DontAdaptArguments();
native_context()->set_symbol_function(*symbol_fun);
// Install the Symbol.for and Symbol.keyFor functions.
SimpleInstallFunction(symbol_fun, "for", Builtins::kSymbolFor, 1, false);
SimpleInstallFunction(symbol_fun, "keyFor", Builtins::kSymbolKeyFor, 1,
false);
// Install well-known symbols.
InstallConstant(isolate, symbol_fun, "asyncIterator",
factory->async_iterator_symbol());
InstallConstant(isolate, symbol_fun, "hasInstance",
factory->has_instance_symbol());
InstallConstant(isolate, symbol_fun, "isConcatSpreadable",
factory->is_concat_spreadable_symbol());
InstallConstant(isolate, symbol_fun, "iterator",
factory->iterator_symbol());
InstallConstant(isolate, symbol_fun, "match", factory->match_symbol());
InstallConstant(isolate, symbol_fun, "replace", factory->replace_symbol());
InstallConstant(isolate, symbol_fun, "search", factory->search_symbol());
InstallConstant(isolate, symbol_fun, "species", factory->species_symbol());
InstallConstant(isolate, symbol_fun, "split", factory->split_symbol());
InstallConstant(isolate, symbol_fun, "toPrimitive",
factory->to_primitive_symbol());
InstallConstant(isolate, symbol_fun, "toStringTag",
factory->to_string_tag_symbol());
InstallConstant(isolate, symbol_fun, "unscopables",
factory->unscopables_symbol());
// Setup %SymbolPrototype%.
Handle<JSObject> prototype(
JSObject::cast(symbol_fun->instance_prototype()));
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("Symbol"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Install the Symbol.prototype methods.
SimpleInstallFunction(prototype, "toString",
Builtins::kSymbolPrototypeToString, 0, true);
SimpleInstallFunction(prototype, "valueOf",
Builtins::kSymbolPrototypeValueOf, 0, true);
// Install the @@toPrimitive function.
Handle<JSFunction> to_primitive = InstallFunction(
prototype, factory->to_primitive_symbol(), JS_OBJECT_TYPE,
JSObject::kHeaderSize, 0, MaybeHandle<JSObject>(),
Builtins::kSymbolPrototypeToPrimitive,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Set the expected parameters for @@toPrimitive to 1; required by builtin.
to_primitive->shared()->set_internal_formal_parameter_count(1);
// Set the length for the function to satisfy ECMA-262.
to_primitive->shared()->set_length(1);
}
{ // --- D a t e ---
Handle<JSFunction> date_fun =
InstallFunction(global, "Date", JS_DATE_TYPE, JSDate::kSize, 0,
factory->the_hole_value(), Builtins::kDateConstructor);
InstallWithIntrinsicDefaultProto(isolate, date_fun,
Context::DATE_FUNCTION_INDEX);
date_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
date_fun->shared()->set_length(7);
date_fun->shared()->DontAdaptArguments();
// Install the Date.now, Date.parse and Date.UTC functions.
SimpleInstallFunction(date_fun, "now", Builtins::kDateNow, 0, false);
SimpleInstallFunction(date_fun, "parse", Builtins::kDateParse, 1, false);
SimpleInstallFunction(date_fun, "UTC", Builtins::kDateUTC, 7, false);
// Setup %DatePrototype%.
Handle<JSObject> prototype(JSObject::cast(date_fun->instance_prototype()));
// Install the Date.prototype methods.
SimpleInstallFunction(prototype, "toString",
Builtins::kDatePrototypeToString, 0, false);
SimpleInstallFunction(prototype, "toDateString",
Builtins::kDatePrototypeToDateString, 0, false);
SimpleInstallFunction(prototype, "toTimeString",
Builtins::kDatePrototypeToTimeString, 0, false);
SimpleInstallFunction(prototype, "toISOString",
Builtins::kDatePrototypeToISOString, 0, false);
Handle<JSFunction> to_utc_string =
SimpleInstallFunction(prototype, "toUTCString",
Builtins::kDatePrototypeToUTCString, 0, false);
InstallFunction(prototype, to_utc_string,
factory->InternalizeUtf8String("toGMTString"), DONT_ENUM);
SimpleInstallFunction(prototype, "getDate", Builtins::kDatePrototypeGetDate,
0, true);
SimpleInstallFunction(prototype, "setDate", Builtins::kDatePrototypeSetDate,
1, false);
SimpleInstallFunction(prototype, "getDay", Builtins::kDatePrototypeGetDay,
0, true);
SimpleInstallFunction(prototype, "getFullYear",
Builtins::kDatePrototypeGetFullYear, 0, true);
SimpleInstallFunction(prototype, "setFullYear",
Builtins::kDatePrototypeSetFullYear, 3, false);
SimpleInstallFunction(prototype, "getHours",
Builtins::kDatePrototypeGetHours, 0, true);
SimpleInstallFunction(prototype, "setHours",
Builtins::kDatePrototypeSetHours, 4, false);
SimpleInstallFunction(prototype, "getMilliseconds",
Builtins::kDatePrototypeGetMilliseconds, 0, true);
SimpleInstallFunction(prototype, "setMilliseconds",
Builtins::kDatePrototypeSetMilliseconds, 1, false);
SimpleInstallFunction(prototype, "getMinutes",
Builtins::kDatePrototypeGetMinutes, 0, true);
SimpleInstallFunction(prototype, "setMinutes",
Builtins::kDatePrototypeSetMinutes, 3, false);
SimpleInstallFunction(prototype, "getMonth",
Builtins::kDatePrototypeGetMonth, 0, true);
SimpleInstallFunction(prototype, "setMonth",
Builtins::kDatePrototypeSetMonth, 2, false);
SimpleInstallFunction(prototype, "getSeconds",
Builtins::kDatePrototypeGetSeconds, 0, true);
SimpleInstallFunction(prototype, "setSeconds",
Builtins::kDatePrototypeSetSeconds, 2, false);
SimpleInstallFunction(prototype, "getTime", Builtins::kDatePrototypeGetTime,
0, true);
SimpleInstallFunction(prototype, "setTime", Builtins::kDatePrototypeSetTime,
1, false);
SimpleInstallFunction(prototype, "getTimezoneOffset",
Builtins::kDatePrototypeGetTimezoneOffset, 0, true);
SimpleInstallFunction(prototype, "getUTCDate",
Builtins::kDatePrototypeGetUTCDate, 0, true);
SimpleInstallFunction(prototype, "setUTCDate",
Builtins::kDatePrototypeSetUTCDate, 1, false);
SimpleInstallFunction(prototype, "getUTCDay",
Builtins::kDatePrototypeGetUTCDay, 0, true);
SimpleInstallFunction(prototype, "getUTCFullYear",
Builtins::kDatePrototypeGetUTCFullYear, 0, true);
SimpleInstallFunction(prototype, "setUTCFullYear",
Builtins::kDatePrototypeSetUTCFullYear, 3, false);
SimpleInstallFunction(prototype, "getUTCHours",
Builtins::kDatePrototypeGetUTCHours, 0, true);
SimpleInstallFunction(prototype, "setUTCHours",
Builtins::kDatePrototypeSetUTCHours, 4, false);
SimpleInstallFunction(prototype, "getUTCMilliseconds",
Builtins::kDatePrototypeGetUTCMilliseconds, 0, true);
SimpleInstallFunction(prototype, "setUTCMilliseconds",
Builtins::kDatePrototypeSetUTCMilliseconds, 1, false);
SimpleInstallFunction(prototype, "getUTCMinutes",
Builtins::kDatePrototypeGetUTCMinutes, 0, true);
SimpleInstallFunction(prototype, "setUTCMinutes",
Builtins::kDatePrototypeSetUTCMinutes, 3, false);
SimpleInstallFunction(prototype, "getUTCMonth",
Builtins::kDatePrototypeGetUTCMonth, 0, true);
SimpleInstallFunction(prototype, "setUTCMonth",
Builtins::kDatePrototypeSetUTCMonth, 2, false);
SimpleInstallFunction(prototype, "getUTCSeconds",
Builtins::kDatePrototypeGetUTCSeconds, 0, true);
SimpleInstallFunction(prototype, "setUTCSeconds",
Builtins::kDatePrototypeSetUTCSeconds, 2, false);
SimpleInstallFunction(prototype, "valueOf", Builtins::kDatePrototypeValueOf,
0, true);
SimpleInstallFunction(prototype, "getYear", Builtins::kDatePrototypeGetYear,
0, true);
SimpleInstallFunction(prototype, "setYear", Builtins::kDatePrototypeSetYear,
1, false);
SimpleInstallFunction(prototype, "toJSON", Builtins::kDatePrototypeToJson,
1, false);
// Install Intl fallback functions.
SimpleInstallFunction(prototype, "toLocaleString",
Builtins::kDatePrototypeToString, 0, false);
SimpleInstallFunction(prototype, "toLocaleDateString",
Builtins::kDatePrototypeToDateString, 0, false);
SimpleInstallFunction(prototype, "toLocaleTimeString",
Builtins::kDatePrototypeToTimeString, 0, false);
// Install the @@toPrimitive function.
Handle<JSFunction> to_primitive = InstallFunction(
prototype, factory->to_primitive_symbol(), JS_OBJECT_TYPE,
JSObject::kHeaderSize, 0, MaybeHandle<JSObject>(),
Builtins::kDatePrototypeToPrimitive,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Set the expected parameters for @@toPrimitive to 1; required by builtin.
to_primitive->shared()->set_internal_formal_parameter_count(1);
// Set the length for the function to satisfy ECMA-262.
to_primitive->shared()->set_length(1);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateConstructorSharedFunctionInfo(
isolate, Builtins::kPromiseGetCapabilitiesExecutor,
factory->empty_string(), 2);
native_context()->set_promise_get_capabilities_executor_shared_fun(*info);
}
{ // -- P r o m i s e
Handle<JSFunction> promise_fun = InstallFunction(
global, "Promise", JS_PROMISE_TYPE, JSPromise::kSizeWithEmbedderFields,
0, factory->the_hole_value(), Builtins::kPromiseConstructor);
InstallWithIntrinsicDefaultProto(isolate, promise_fun,
Context::PROMISE_FUNCTION_INDEX);
Handle<SharedFunctionInfo> shared(promise_fun->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->set_internal_formal_parameter_count(1);
shared->set_length(1);
InstallSpeciesGetter(promise_fun);
SimpleInstallFunction(promise_fun, "all", Builtins::kPromiseAll, 1, true);
SimpleInstallFunction(promise_fun, "race", Builtins::kPromiseRace, 1, true);
SimpleInstallFunction(promise_fun, "resolve",
Builtins::kPromiseResolveTrampoline, 1, true);
SimpleInstallFunction(promise_fun, "reject", Builtins::kPromiseReject, 1,
true);
// Setup %PromisePrototype%.
Handle<JSObject> prototype(
JSObject::cast(promise_fun->instance_prototype()));
native_context()->set_promise_prototype(*prototype);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Promise_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
Handle<JSFunction> promise_then =
SimpleInstallFunction(prototype, isolate->factory()->then_string(),
Builtins::kPromisePrototypeThen, 2, true);
native_context()->set_promise_then(*promise_then);
Handle<JSFunction> promise_catch = SimpleInstallFunction(
prototype, "catch", Builtins::kPromisePrototypeCatch, 1, true);
native_context()->set_promise_catch(*promise_catch);
// Force the Promise constructor to fast properties, so that we can use the
// fast paths for various things like
//
// x instanceof Promise
//
// etc. We should probably come up with a more principled approach once
// the JavaScript builtins are gone.
JSObject::MigrateSlowToFast(Handle<JSObject>::cast(promise_fun), 0,
"Bootstrapping");
Handle<Map> prototype_map(prototype->map());
Map::SetShouldBeFastPrototypeMap(prototype_map, true, isolate);
{ // Internal: IsPromise
Handle<JSFunction> function = SimpleCreateFunction(
isolate, factory->empty_string(), Builtins::kIsPromise, 1, false);
native_context()->set_is_promise(*function);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
isolate, Builtins::kPromiseCapabilityDefaultResolve,
factory->empty_string(), 1);
info->set_native(true);
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
native_context()->set_promise_capability_default_resolve_shared_fun(
*info);
info = SimpleCreateSharedFunctionInfo(
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
isolate, Builtins::kPromiseCapabilityDefaultReject,
factory->empty_string(), 1);
info->set_native(true);
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
native_context()->set_promise_capability_default_reject_shared_fun(*info);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate, Builtins::kPromiseAllResolveElementClosure,
factory->empty_string(), 1);
native_context()->set_promise_all_resolve_element_shared_fun(*info);
}
// Force the Promise constructor to fast properties, so that we can use the
// fast paths for various things like
//
// x instanceof Promise
//
// etc. We should probably come up with a more principled approach once
// the JavaScript builtins are gone.
JSObject::MigrateSlowToFast(promise_fun, 0, "Bootstrapping");
}
{ // -- R e g E x p
// Builtin functions for RegExp.prototype.
Handle<JSFunction> regexp_fun = InstallFunction(
global, "RegExp", JS_REGEXP_TYPE,
JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize,
JSRegExp::kInObjectFieldCount, factory->the_hole_value(),
Builtins::kRegExpConstructor);
InstallWithIntrinsicDefaultProto(isolate, regexp_fun,
Context::REGEXP_FUNCTION_INDEX);
Handle<SharedFunctionInfo> shared(regexp_fun->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->set_internal_formal_parameter_count(2);
shared->set_length(2);
{
// Setup %RegExpPrototype%.
Handle<JSObject> prototype(
JSObject::cast(regexp_fun->instance_prototype()));
{
Handle<JSFunction> fun = SimpleInstallFunction(
prototype, factory->exec_string(), Builtins::kRegExpPrototypeExec,
1, true, DONT_ENUM);
native_context()->set_regexp_exec_function(*fun);
}
SimpleInstallGetter(prototype, factory->dotAll_string(),
Builtins::kRegExpPrototypeDotAllGetter, true);
SimpleInstallGetter(prototype, factory->flags_string(),
Builtins::kRegExpPrototypeFlagsGetter, true);
SimpleInstallGetter(prototype, factory->global_string(),
Builtins::kRegExpPrototypeGlobalGetter, true);
SimpleInstallGetter(prototype, factory->ignoreCase_string(),
Builtins::kRegExpPrototypeIgnoreCaseGetter, true);
SimpleInstallGetter(prototype, factory->multiline_string(),
Builtins::kRegExpPrototypeMultilineGetter, true);
SimpleInstallGetter(prototype, factory->source_string(),
Builtins::kRegExpPrototypeSourceGetter, true);
SimpleInstallGetter(prototype, factory->sticky_string(),
Builtins::kRegExpPrototypeStickyGetter, true);
SimpleInstallGetter(prototype, factory->unicode_string(),
Builtins::kRegExpPrototypeUnicodeGetter, true);
SimpleInstallFunction(prototype, "compile",
Builtins::kRegExpPrototypeCompile, 2, true,
DONT_ENUM);
SimpleInstallFunction(prototype, factory->toString_string(),
Builtins::kRegExpPrototypeToString, 0, false,
DONT_ENUM);
SimpleInstallFunction(prototype, "test", Builtins::kRegExpPrototypeTest,
1, true, DONT_ENUM);
SimpleInstallFunction(prototype, factory->match_symbol(),
"[Symbol.match]", Builtins::kRegExpPrototypeMatch,
1, true);
SimpleInstallFunction(prototype, factory->replace_symbol(),
"[Symbol.replace]",
Builtins::kRegExpPrototypeReplace, 2, false);
SimpleInstallFunction(prototype, factory->search_symbol(),
"[Symbol.search]", Builtins::kRegExpPrototypeSearch,
1, true);
SimpleInstallFunction(prototype, factory->split_symbol(),
"[Symbol.split]", Builtins::kRegExpPrototypeSplit,
2, false);
Handle<Map> prototype_map(prototype->map());
Map::SetShouldBeFastPrototypeMap(prototype_map, true, isolate);
// Store the initial RegExp.prototype map. This is used in fast-path
// checks. Do not alter the prototype after this point.
native_context()->set_regexp_prototype_map(*prototype_map);
}
{
// RegExp getters and setters.
InstallSpeciesGetter(regexp_fun);
// Static properties set by a successful match.
const PropertyAttributes no_enum = DONT_ENUM;
SimpleInstallGetterSetter(regexp_fun, factory->input_string(),
Builtins::kRegExpInputGetter,
Builtins::kRegExpInputSetter, no_enum);
SimpleInstallGetterSetter(
regexp_fun, factory->InternalizeUtf8String("$_"),
Builtins::kRegExpInputGetter, Builtins::kRegExpInputSetter, no_enum);
SimpleInstallGetterSetter(
regexp_fun, factory->InternalizeUtf8String("lastMatch"),
Builtins::kRegExpLastMatchGetter, Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(
regexp_fun, factory->InternalizeUtf8String("$&"),
Builtins::kRegExpLastMatchGetter, Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(
regexp_fun, factory->InternalizeUtf8String("lastParen"),
Builtins::kRegExpLastParenGetter, Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(
regexp_fun, factory->InternalizeUtf8String("$+"),
Builtins::kRegExpLastParenGetter, Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(regexp_fun,
factory->InternalizeUtf8String("leftContext"),
Builtins::kRegExpLeftContextGetter,
Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(regexp_fun,
factory->InternalizeUtf8String("$`"),
Builtins::kRegExpLeftContextGetter,
Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(regexp_fun,
factory->InternalizeUtf8String("rightContext"),
Builtins::kRegExpRightContextGetter,
Builtins::kEmptyFunction, no_enum);
SimpleInstallGetterSetter(regexp_fun,
factory->InternalizeUtf8String("$'"),
Builtins::kRegExpRightContextGetter,
Builtins::kEmptyFunction, no_enum);
#define INSTALL_CAPTURE_GETTER(i) \
SimpleInstallGetterSetter( \
regexp_fun, factory->InternalizeUtf8String("$" #i), \
Builtins::kRegExpCapture##i##Getter, Builtins::kEmptyFunction, no_enum)
INSTALL_CAPTURE_GETTER(1);
INSTALL_CAPTURE_GETTER(2);
INSTALL_CAPTURE_GETTER(3);
INSTALL_CAPTURE_GETTER(4);
INSTALL_CAPTURE_GETTER(5);
INSTALL_CAPTURE_GETTER(6);
INSTALL_CAPTURE_GETTER(7);
INSTALL_CAPTURE_GETTER(8);
INSTALL_CAPTURE_GETTER(9);
#undef INSTALL_CAPTURE_GETTER
}
DCHECK(regexp_fun->has_initial_map());
Handle<Map> initial_map(regexp_fun->initial_map());
DCHECK_EQ(1, initial_map->GetInObjectProperties());
Map::EnsureDescriptorSlack(initial_map, 1);
// ECMA-262, section 15.10.7.5.
PropertyAttributes writable =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
Descriptor d = Descriptor::DataField(factory->lastIndex_string(),
JSRegExp::kLastIndexFieldIndex,
writable, Representation::Tagged());
initial_map->AppendDescriptor(&d);
{ // Internal: RegExpInternalMatch
Handle<JSFunction> function =
SimpleCreateFunction(isolate, isolate->factory()->empty_string(),
Builtins::kRegExpInternalMatch, 2, true);
native_context()->set(Context::REGEXP_INTERNAL_MATCH, *function);
}
// Create the last match info. One for external use, and one for internal
// use when we don't want to modify the externally visible match info.
Handle<RegExpMatchInfo> last_match_info = factory->NewRegExpMatchInfo();
native_context()->set_regexp_last_match_info(*last_match_info);
Handle<RegExpMatchInfo> internal_match_info = factory->NewRegExpMatchInfo();
native_context()->set_regexp_internal_match_info(*internal_match_info);
// Force the RegExp constructor to fast properties, so that we can use the
// fast paths for various things like
//
// x instanceof RegExp
//
// etc. We should probably come up with a more principled approach once
// the JavaScript builtins are gone.
JSObject::MigrateSlowToFast(regexp_fun, 0, "Bootstrapping");
}
{ // -- E r r o r
InstallError(isolate, global, factory->Error_string(),
Context::ERROR_FUNCTION_INDEX);
InstallMakeError(isolate, Builtins::kMakeError, Context::MAKE_ERROR_INDEX);
}
{ // -- E v a l E r r o r
InstallError(isolate, global, factory->EvalError_string(),
Context::EVAL_ERROR_FUNCTION_INDEX);
}
{ // -- R a n g e E r r o r
InstallError(isolate, global, factory->RangeError_string(),
Context::RANGE_ERROR_FUNCTION_INDEX);
InstallMakeError(isolate, Builtins::kMakeRangeError,
Context::MAKE_RANGE_ERROR_INDEX);
}
{ // -- R e f e r e n c e E r r o r
InstallError(isolate, global, factory->ReferenceError_string(),
Context::REFERENCE_ERROR_FUNCTION_INDEX);
}
{ // -- S y n t a x E r r o r
InstallError(isolate, global, factory->SyntaxError_string(),
Context::SYNTAX_ERROR_FUNCTION_INDEX);
InstallMakeError(isolate, Builtins::kMakeSyntaxError,
Context::MAKE_SYNTAX_ERROR_INDEX);
}
{ // -- T y p e E r r o r
InstallError(isolate, global, factory->TypeError_string(),
Context::TYPE_ERROR_FUNCTION_INDEX);
InstallMakeError(isolate, Builtins::kMakeTypeError,
Context::MAKE_TYPE_ERROR_INDEX);
}
{ // -- U R I E r r o r
InstallError(isolate, global, factory->URIError_string(),
Context::URI_ERROR_FUNCTION_INDEX);
InstallMakeError(isolate, Builtins::kMakeURIError,
Context::MAKE_URI_ERROR_INDEX);
}
{ // -- C o m p i l e E r r o r
Handle<JSObject> dummy = factory->NewJSObject(isolate->object_function());
InstallError(isolate, dummy, factory->CompileError_string(),
Context::WASM_COMPILE_ERROR_FUNCTION_INDEX);
// -- L i n k E r r o r
InstallError(isolate, dummy, factory->LinkError_string(),
Context::WASM_LINK_ERROR_FUNCTION_INDEX);
// -- R u n t i m e E r r o r
InstallError(isolate, dummy, factory->RuntimeError_string(),
Context::WASM_RUNTIME_ERROR_FUNCTION_INDEX);
}
// Initialize the embedder data slot.
native_context()->set_embedder_data(*factory->empty_fixed_array());
{ // -- J S O N
Handle<String> name = factory->InternalizeUtf8String("JSON");
Handle<JSObject> json_object =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::AddProperty(global, name, json_object, DONT_ENUM);
SimpleInstallFunction(json_object, "parse", Builtins::kJsonParse, 2, false);
SimpleInstallFunction(json_object, "stringify", Builtins::kJsonStringify, 3,
true);
JSObject::AddProperty(
json_object, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("JSON"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
{ // -- M a t h
Handle<String> name = factory->InternalizeUtf8String("Math");
Handle<JSObject> math =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::AddProperty(global, name, math, DONT_ENUM);
SimpleInstallFunction(math, "abs", Builtins::kMathAbs, 1, true);
SimpleInstallFunction(math, "acos", Builtins::kMathAcos, 1, true);
SimpleInstallFunction(math, "acosh", Builtins::kMathAcosh, 1, true);
SimpleInstallFunction(math, "asin", Builtins::kMathAsin, 1, true);
SimpleInstallFunction(math, "asinh", Builtins::kMathAsinh, 1, true);
SimpleInstallFunction(math, "atan", Builtins::kMathAtan, 1, true);
SimpleInstallFunction(math, "atanh", Builtins::kMathAtanh, 1, true);
SimpleInstallFunction(math, "atan2", Builtins::kMathAtan2, 2, true);
SimpleInstallFunction(math, "ceil", Builtins::kMathCeil, 1, true);
SimpleInstallFunction(math, "cbrt", Builtins::kMathCbrt, 1, true);
SimpleInstallFunction(math, "expm1", Builtins::kMathExpm1, 1, true);
SimpleInstallFunction(math, "clz32", Builtins::kMathClz32, 1, true);
SimpleInstallFunction(math, "cos", Builtins::kMathCos, 1, true);
SimpleInstallFunction(math, "cosh", Builtins::kMathCosh, 1, true);
SimpleInstallFunction(math, "exp", Builtins::kMathExp, 1, true);
Handle<JSFunction> math_floor =
SimpleInstallFunction(math, "floor", Builtins::kMathFloor, 1, true);
native_context()->set_math_floor(*math_floor);
SimpleInstallFunction(math, "fround", Builtins::kMathFround, 1, true);
SimpleInstallFunction(math, "hypot", Builtins::kMathHypot, 2, false);
SimpleInstallFunction(math, "imul", Builtins::kMathImul, 2, true);
SimpleInstallFunction(math, "log", Builtins::kMathLog, 1, true);
SimpleInstallFunction(math, "log1p", Builtins::kMathLog1p, 1, true);
SimpleInstallFunction(math, "log2", Builtins::kMathLog2, 1, true);
SimpleInstallFunction(math, "log10", Builtins::kMathLog10, 1, true);
SimpleInstallFunction(math, "max", Builtins::kMathMax, 2, false);
SimpleInstallFunction(math, "min", Builtins::kMathMin, 2, false);
Handle<JSFunction> math_pow =
SimpleInstallFunction(math, "pow", Builtins::kMathPow, 2, true);
native_context()->set_math_pow(*math_pow);
SimpleInstallFunction(math, "random", Builtins::kMathRandom, 0, true);
SimpleInstallFunction(math, "round", Builtins::kMathRound, 1, true);
SimpleInstallFunction(math, "sign", Builtins::kMathSign, 1, true);
SimpleInstallFunction(math, "sin", Builtins::kMathSin, 1, true);
SimpleInstallFunction(math, "sinh", Builtins::kMathSinh, 1, true);
SimpleInstallFunction(math, "sqrt", Builtins::kMathSqrt, 1, true);
SimpleInstallFunction(math, "tan", Builtins::kMathTan, 1, true);
SimpleInstallFunction(math, "tanh", Builtins::kMathTanh, 1, true);
SimpleInstallFunction(math, "trunc", Builtins::kMathTrunc, 1, true);
// Install math constants.
double const kE = base::ieee754::exp(1.0);
double const kPI = 3.1415926535897932;
InstallConstant(isolate, math, "E", factory->NewNumber(kE));
InstallConstant(isolate, math, "LN10",
factory->NewNumber(base::ieee754::log(10.0)));
InstallConstant(isolate, math, "LN2",
factory->NewNumber(base::ieee754::log(2.0)));
InstallConstant(isolate, math, "LOG10E",
factory->NewNumber(base::ieee754::log10(kE)));
InstallConstant(isolate, math, "LOG2E",
factory->NewNumber(base::ieee754::log2(kE)));
InstallConstant(isolate, math, "PI", factory->NewNumber(kPI));
InstallConstant(isolate, math, "SQRT1_2",
factory->NewNumber(std::sqrt(0.5)));
InstallConstant(isolate, math, "SQRT2", factory->NewNumber(std::sqrt(2.0)));
JSObject::AddProperty(
math, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("Math"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
{ // -- C o n s o l e
Handle<String> name = factory->InternalizeUtf8String("console");
NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
name, isolate->strict_function_map(), LanguageMode::kStrict);
Handle<JSFunction> cons = factory->NewFunction(args);
Handle<JSObject> empty = factory->NewJSObject(isolate->object_function());
JSFunction::SetPrototype(cons, empty);
Handle<JSObject> console = factory->NewJSObject(cons, TENURED);
DCHECK(console->IsJSObject());
JSObject::AddProperty(global, name, console, DONT_ENUM);
SimpleInstallFunction(console, "debug", Builtins::kConsoleDebug, 1, false,
NONE);
SimpleInstallFunction(console, "error", Builtins::kConsoleError, 1, false,
NONE);
SimpleInstallFunction(console, "info", Builtins::kConsoleInfo, 1, false,
NONE);
SimpleInstallFunction(console, "log", Builtins::kConsoleLog, 1, false,
NONE);
SimpleInstallFunction(console, "warn", Builtins::kConsoleWarn, 1, false,
NONE);
SimpleInstallFunction(console, "dir", Builtins::kConsoleDir, 1, false,
NONE);
SimpleInstallFunction(console, "dirxml", Builtins::kConsoleDirXml, 1, false,
NONE);
SimpleInstallFunction(console, "table", Builtins::kConsoleTable, 1, false,
NONE);
SimpleInstallFunction(console, "trace", Builtins::kConsoleTrace, 1, false,
NONE);
SimpleInstallFunction(console, "group", Builtins::kConsoleGroup, 1, false,
NONE);
SimpleInstallFunction(console, "groupCollapsed",
Builtins::kConsoleGroupCollapsed, 1, false, NONE);
SimpleInstallFunction(console, "groupEnd", Builtins::kConsoleGroupEnd, 1,
false, NONE);
SimpleInstallFunction(console, "clear", Builtins::kConsoleClear, 1, false,
NONE);
SimpleInstallFunction(console, "count", Builtins::kConsoleCount, 1, false,
NONE);
SimpleInstallFunction(console, "assert", Builtins::kFastConsoleAssert, 1,
false, NONE);
SimpleInstallFunction(console, "markTimeline",
Builtins::kConsoleMarkTimeline, 1, false, NONE);
SimpleInstallFunction(console, "profile", Builtins::kConsoleProfile, 1,
false, NONE);
SimpleInstallFunction(console, "profileEnd", Builtins::kConsoleProfileEnd,
1, false, NONE);
SimpleInstallFunction(console, "timeline", Builtins::kConsoleTimeline, 1,
false, NONE);
SimpleInstallFunction(console, "timelineEnd", Builtins::kConsoleTimelineEnd,
1, false, NONE);
SimpleInstallFunction(console, "time", Builtins::kConsoleTime, 1, false,
NONE);
SimpleInstallFunction(console, "timeEnd", Builtins::kConsoleTimeEnd, 1,
false, NONE);
SimpleInstallFunction(console, "timeStamp", Builtins::kConsoleTimeStamp, 1,
false, NONE);
SimpleInstallFunction(console, "context", Builtins::kConsoleContext, 1,
true, NONE);
JSObject::AddProperty(
console, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("Object"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
#ifdef V8_INTL_SUPPORT
{ // -- I n t l
Handle<String> name = factory->InternalizeUtf8String("Intl");
Handle<JSObject> intl =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::AddProperty(global, name, intl, DONT_ENUM);
{
Handle<JSFunction> date_time_format_constructor = InstallFunction(
intl, "DateTimeFormat", JS_OBJECT_TYPE, DateFormat::kSize, 0,
factory->the_hole_value(), Builtins::kIllegal);
native_context()->set_intl_date_time_format_function(
*date_time_format_constructor);
Handle<JSObject> prototype(
JSObject::cast(date_time_format_constructor->prototype()), isolate);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Object_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
{
Handle<JSFunction> number_format_constructor = InstallFunction(
intl, "NumberFormat", JS_OBJECT_TYPE, NumberFormat::kSize, 0,
factory->the_hole_value(), Builtins::kIllegal);
native_context()->set_intl_number_format_function(
*number_format_constructor);
Handle<JSObject> prototype(
JSObject::cast(number_format_constructor->prototype()), isolate);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Object_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
{
Handle<JSFunction> collator_constructor =
InstallFunction(intl, "Collator", JS_OBJECT_TYPE, Collator::kSize, 0,
factory->the_hole_value(), Builtins::kIllegal);
native_context()->set_intl_collator_function(*collator_constructor);
Handle<JSObject> prototype(
JSObject::cast(collator_constructor->prototype()), isolate);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Object_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
{
Handle<JSFunction> v8_break_iterator_constructor = InstallFunction(
intl, "v8BreakIterator", JS_OBJECT_TYPE, V8BreakIterator::kSize, 0,
factory->the_hole_value(), Builtins::kIllegal);
native_context()->set_intl_v8_break_iterator_function(
*v8_break_iterator_constructor);
Handle<JSObject> prototype(
JSObject::cast(v8_break_iterator_constructor->prototype()), isolate);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Object_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
}
#endif // V8_INTL_SUPPORT
{ // -- A r r a y B u f f e r
Handle<String> name = factory->ArrayBuffer_string();
Handle<JSFunction> array_buffer_fun = CreateArrayBuffer(name, ARRAY_BUFFER);
JSObject::AddProperty(global, name, array_buffer_fun, DONT_ENUM);
InstallWithIntrinsicDefaultProto(isolate, array_buffer_fun,
Context::ARRAY_BUFFER_FUN_INDEX);
InstallSpeciesGetter(array_buffer_fun);
Handle<JSFunction> array_buffer_noinit_fun = SimpleCreateFunction(
isolate,
factory->NewStringFromAsciiChecked(
"arrayBufferConstructor_DoNotInitialize"),
Builtins::kArrayBufferConstructor_DoNotInitialize, 1, false);
native_context()->set_array_buffer_noinit_fun(*array_buffer_noinit_fun);
}
{ // -- S h a r e d A r r a y B u f f e r
Handle<String> name = factory->SharedArrayBuffer_string();
Handle<JSFunction> shared_array_buffer_fun =
CreateArrayBuffer(name, SHARED_ARRAY_BUFFER);
InstallWithIntrinsicDefaultProto(isolate, shared_array_buffer_fun,
Context::SHARED_ARRAY_BUFFER_FUN_INDEX);
InstallSpeciesGetter(shared_array_buffer_fun);
}
{ // -- A t o m i c s
Handle<JSObject> atomics_object =
factory->NewJSObject(isolate->object_function(), TENURED);
native_context()->set_atomics_object(*atomics_object);
SimpleInstallFunction(atomics_object, "load", Builtins::kAtomicsLoad, 2,
true);
SimpleInstallFunction(atomics_object, "store", Builtins::kAtomicsStore, 3,
true);
SimpleInstallFunction(atomics_object, "add", Builtins::kAtomicsAdd, 3,
true);
SimpleInstallFunction(atomics_object, "sub", Builtins::kAtomicsSub, 3,
true);
SimpleInstallFunction(atomics_object, "and", Builtins::kAtomicsAnd, 3,
true);
SimpleInstallFunction(atomics_object, "or", Builtins::kAtomicsOr, 3, true);
SimpleInstallFunction(atomics_object, "xor", Builtins::kAtomicsXor, 3,
true);
SimpleInstallFunction(atomics_object, "exchange",
Builtins::kAtomicsExchange, 3, true);
SimpleInstallFunction(atomics_object, "compareExchange",
Builtins::kAtomicsCompareExchange, 4, true);
SimpleInstallFunction(atomics_object, "isLockFree",
Builtins::kAtomicsIsLockFree, 1, true);
SimpleInstallFunction(atomics_object, "wait", Builtins::kAtomicsWait, 4,
true);
SimpleInstallFunction(atomics_object, "wake", Builtins::kAtomicsWake, 3,
true);
}
{ // -- T y p e d A r r a y
Handle<JSFunction> typed_array_fun =
CreateFunction(isolate, factory->InternalizeUtf8String("TypedArray"),
JS_TYPED_ARRAY_TYPE, JSTypedArray::kSize, 0,
factory->the_hole_value(), Builtins::kIllegal);
typed_array_fun->shared()->set_native(false);
InstallSpeciesGetter(typed_array_fun);
native_context()->set_typed_array_function(*typed_array_fun);
SimpleInstallFunction(typed_array_fun, "of", Builtins::kTypedArrayOf, 0,
false);
SimpleInstallFunction(typed_array_fun, "from", Builtins::kTypedArrayFrom, 1,
false);
// Setup %TypedArrayPrototype%.
Handle<JSObject> prototype(
JSObject::cast(typed_array_fun->instance_prototype()));
native_context()->set_typed_array_prototype(*prototype);
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
// Install the "buffer", "byteOffset", "byteLength", "length"
// and @@toStringTag getters on the {prototype}.
SimpleInstallGetter(prototype, factory->buffer_string(),
Builtins::kTypedArrayPrototypeBuffer, false);
SimpleInstallGetter(prototype, factory->byte_length_string(),
Builtins::kTypedArrayPrototypeByteLength, true,
kTypedArrayByteLength);
SimpleInstallGetter(prototype, factory->byte_offset_string(),
Builtins::kTypedArrayPrototypeByteOffset, true,
kTypedArrayByteOffset);
SimpleInstallGetter(prototype, factory->length_string(),
Builtins::kTypedArrayPrototypeLength, true,
kTypedArrayLength);
[es2015] Optimize TypedArray.prototype[Symbol.toStringTag]. The TypedArray.prototype[Symbol.toStringTag] getter is currently the best (and as far as I can tell only definitely side-effect free) way to check whether an arbitrary object is a TypedArray - either generally TypedArray or a specific one like Uint8Array. Using the getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now adapted it starting with https://github.com/nodejs/node/pull/15663 for the isTypedArray and isUint8Array type checks in lib/internal/util/types.js now. The getter returns either the string with the TypedArray subclass name (i.e. "Uint8Array") or undefined if the receiver is not a TypedArray. This can be implemented with a simple elements kind dispatch, instead of checking the instance type and then loading the class name from the constructor, which requires a loop walking up the transition tree. This CL ports the builtin to CSA and TurboFan, and changes the logic to a simple elements kind check. On the micro-benchmark mentioned in the referenced bug, the time goes from testIsArrayBufferView: 565 ms. testIsTypedArray: 2403 ms. testIsUint8Array: 3847 ms. to testIsArrayBufferView: 566 ms. testIsTypedArray: 965 ms. testIsUint8Array: 965 ms. which presents an up to 4x improvement. Bug: v8:6874 Change-Id: I9c330b4529d9631df2f052acf023c6a4fae69611 Reviewed-on: https://chromium-review.googlesource.com/695021 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48254}
2017-10-02 05:28:41 +00:00
SimpleInstallGetter(prototype, factory->to_string_tag_symbol(),
Builtins::kTypedArrayPrototypeToStringTag, true,
kTypedArrayToStringTag);
// Install "keys", "values" and "entries" methods on the {prototype}.
SimpleInstallFunction(prototype, "entries",
Builtins::kTypedArrayPrototypeEntries, 0, true,
kTypedArrayEntries);
SimpleInstallFunction(prototype, "keys", Builtins::kTypedArrayPrototypeKeys,
0, true, kTypedArrayKeys);
Handle<JSFunction> values = SimpleInstallFunction(
prototype, "values", Builtins::kTypedArrayPrototypeValues, 0, true,
kTypedArrayValues);
JSObject::AddProperty(prototype, factory->iterator_symbol(), values,
DONT_ENUM);
// TODO(caitp): alphasort accessors/methods
SimpleInstallFunction(prototype, "copyWithin",
Builtins::kTypedArrayPrototypeCopyWithin, 2, false);
SimpleInstallFunction(prototype, "every",
Builtins::kTypedArrayPrototypeEvery, 1, false);
SimpleInstallFunction(prototype, "fill",
Builtins::kTypedArrayPrototypeFill, 1, false);
SimpleInstallFunction(prototype, "filter",
Builtins::kTypedArrayPrototypeFilter, 1, false);
SimpleInstallFunction(prototype, "find", Builtins::kTypedArrayPrototypeFind,
1, false);
SimpleInstallFunction(prototype, "findIndex",
Builtins::kTypedArrayPrototypeFindIndex, 1, false);
SimpleInstallFunction(prototype, "forEach",
Builtins::kTypedArrayPrototypeForEach, 1, false);
SimpleInstallFunction(prototype, "includes",
Builtins::kTypedArrayPrototypeIncludes, 1, false);
SimpleInstallFunction(prototype, "indexOf",
Builtins::kTypedArrayPrototypeIndexOf, 1, false);
SimpleInstallFunction(prototype, "lastIndexOf",
Builtins::kTypedArrayPrototypeLastIndexOf, 1, false);
SimpleInstallFunction(prototype, "map", Builtins::kTypedArrayPrototypeMap,
1, false);
SimpleInstallFunction(prototype, "reverse",
Builtins::kTypedArrayPrototypeReverse, 0, false);
SimpleInstallFunction(prototype, "reduce",
Builtins::kTypedArrayPrototypeReduce, 1, false);
SimpleInstallFunction(prototype, "reduceRight",
Builtins::kTypedArrayPrototypeReduceRight, 1, false);
SimpleInstallFunction(prototype, "set", Builtins::kTypedArrayPrototypeSet,
1, false);
SimpleInstallFunction(prototype, "slice",
Builtins::kTypedArrayPrototypeSlice, 2, false);
SimpleInstallFunction(prototype, "some", Builtins::kTypedArrayPrototypeSome,
1, false);
SimpleInstallFunction(prototype, "subarray",
Builtins::kTypedArrayPrototypeSubArray, 2, false);
}
{ // -- T y p e d A r r a y s
#define INSTALL_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
{ \
Handle<JSFunction> fun = \
InstallTypedArray(#Type "Array", TYPE##_ELEMENTS); \
InstallWithIntrinsicDefaultProto(isolate, fun, \
Context::TYPE##_ARRAY_FUN_INDEX); \
}
TYPED_ARRAYS(INSTALL_TYPED_ARRAY)
#undef INSTALL_TYPED_ARRAY
}
{ // -- D a t a V i e w
Handle<JSFunction> data_view_fun = InstallFunction(
global, "DataView", JS_DATA_VIEW_TYPE,
JSDataView::kSizeWithEmbedderFields, 0, factory->the_hole_value(),
Builtins::kDataViewConstructor);
InstallWithIntrinsicDefaultProto(isolate, data_view_fun,
Context::DATA_VIEW_FUN_INDEX);
data_view_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
data_view_fun->shared()->set_length(3);
data_view_fun->shared()->DontAdaptArguments();
// Setup %DataViewPrototype%.
Handle<JSObject> prototype(
JSObject::cast(data_view_fun->instance_prototype()));
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("DataView"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Install the "buffer", "byteOffset" and "byteLength" getters
// on the {prototype}.
SimpleInstallGetter(prototype, factory->buffer_string(),
Builtins::kDataViewPrototypeGetBuffer, false,
kDataViewBuffer);
SimpleInstallGetter(prototype, factory->byte_length_string(),
Builtins::kDataViewPrototypeGetByteLength, false,
kDataViewByteLength);
SimpleInstallGetter(prototype, factory->byte_offset_string(),
Builtins::kDataViewPrototypeGetByteOffset, false,
kDataViewByteOffset);
SimpleInstallFunction(prototype, "getInt8",
Builtins::kDataViewPrototypeGetInt8, 1, false);
SimpleInstallFunction(prototype, "setInt8",
Builtins::kDataViewPrototypeSetInt8, 2, false);
SimpleInstallFunction(prototype, "getUint8",
Builtins::kDataViewPrototypeGetUint8, 1, false);
SimpleInstallFunction(prototype, "setUint8",
Builtins::kDataViewPrototypeSetUint8, 2, false);
SimpleInstallFunction(prototype, "getInt16",
Builtins::kDataViewPrototypeGetInt16, 1, false);
SimpleInstallFunction(prototype, "setInt16",
Builtins::kDataViewPrototypeSetInt16, 2, false);
SimpleInstallFunction(prototype, "getUint16",
Builtins::kDataViewPrototypeGetUint16, 1, false);
SimpleInstallFunction(prototype, "setUint16",
Builtins::kDataViewPrototypeSetUint16, 2, false);
SimpleInstallFunction(prototype, "getInt32",
Builtins::kDataViewPrototypeGetInt32, 1, false);
SimpleInstallFunction(prototype, "setInt32",
Builtins::kDataViewPrototypeSetInt32, 2, false);
SimpleInstallFunction(prototype, "getUint32",
Builtins::kDataViewPrototypeGetUint32, 1, false);
SimpleInstallFunction(prototype, "setUint32",
Builtins::kDataViewPrototypeSetUint32, 2, false);
SimpleInstallFunction(prototype, "getFloat32",
Builtins::kDataViewPrototypeGetFloat32, 1, false);
SimpleInstallFunction(prototype, "setFloat32",
Builtins::kDataViewPrototypeSetFloat32, 2, false);
SimpleInstallFunction(prototype, "getFloat64",
Builtins::kDataViewPrototypeGetFloat64, 1, false);
SimpleInstallFunction(prototype, "setFloat64",
Builtins::kDataViewPrototypeSetFloat64, 2, false);
}
{ // -- M a p
{
Handle<String> index_string = isolate->factory()->zero_string();
uint32_t field =
StringHasher::MakeArrayIndexHash(0, index_string->length());
index_string->set_hash_field(field);
index_string = isolate->factory()->one_string();
field = StringHasher::MakeArrayIndexHash(1, index_string->length());
index_string->set_hash_field(field);
}
Handle<JSFunction> js_map_fun =
InstallFunction(global, "Map", JS_MAP_TYPE, JSMap::kSize, 0,
factory->the_hole_value(), Builtins::kMapConstructor);
InstallWithIntrinsicDefaultProto(isolate, js_map_fun,
Context::JS_MAP_FUN_INDEX);
Handle<SharedFunctionInfo> shared(js_map_fun->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->DontAdaptArguments();
shared->set_length(0);
// Setup %MapPrototype%.
Handle<JSObject> prototype(
JSObject::cast(js_map_fun->instance_prototype()));
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Map_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
Handle<JSFunction> map_get = SimpleInstallFunction(
prototype, "get", Builtins::kMapPrototypeGet, 1, true);
native_context()->set_map_get(*map_get);
Handle<JSFunction> map_set = SimpleInstallFunction(
prototype, "set", Builtins::kMapPrototypeSet, 2, true);
native_context()->set_map_set(*map_set);
Handle<JSFunction> map_has = SimpleInstallFunction(
prototype, "has", Builtins::kMapPrototypeHas, 1, true);
native_context()->set_map_has(*map_has);
Handle<JSFunction> map_delete = SimpleInstallFunction(
prototype, "delete", Builtins::kMapPrototypeDelete, 1, true);
native_context()->set_map_delete(*map_delete);
SimpleInstallFunction(prototype, "clear", Builtins::kMapPrototypeClear, 0,
true);
Handle<JSFunction> entries = SimpleInstallFunction(
prototype, "entries", Builtins::kMapPrototypeEntries, 0, true);
JSObject::AddProperty(prototype, factory->iterator_symbol(), entries,
DONT_ENUM);
SimpleInstallFunction(prototype, "forEach", Builtins::kMapPrototypeForEach,
1, false);
SimpleInstallFunction(prototype, "keys", Builtins::kMapPrototypeKeys, 0,
true);
SimpleInstallGetter(prototype, factory->InternalizeUtf8String("size"),
[turbofan] Inline Map and Set iterators into optimized code. This CL inlines the following builtins into TurboFan - %MapIteratorPrototype%.next - %SetIteratorPrototype%.next following the design that we are using for Array iteration already (different instance types for the different kinds of iterators). Details can be found in the relevant design document at: https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8 The key to great performance here is to ensure that the inlined code allows escape analysis and scalar replacement of aggregates to remove the allocations for the iterator itself as well as the iterator results and potential key/value arrays in the simple case of a for-of loop (and by extension also in other constructs that reduce to for-of loops internally), i.e.: const s = new Set; // ... do something with s for (const x of s) { // ... } Here the for-of loop shouldn't perform any allocations of helper objects. Drive-by-fix: Replace the ExistsJSMapWithness in JSBuiltinReducer with a more general HasInstanceTypeWitness, similar to what's in JSCallReducer. Also migrate the {Map,Set}.prototype.size getter inlining to the JSBuiltinReducer, so that everything is in a single place. R=jgruber@chromium.org Bug: v8:6344, v8:6571, chromium:740122 Change-Id: I09cb506fe26ed3e10d7dcb2f95ec4415e639582d Reviewed-on: https://chromium-review.googlesource.com/570159 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#46655}
2017-07-14 05:35:21 +00:00
Builtins::kMapPrototypeGetSize, true,
BuiltinFunctionId::kMapSize);
SimpleInstallFunction(prototype, "values", Builtins::kMapPrototypeValues, 0,
true);
native_context()->set_initial_map_prototype_map(prototype->map());
InstallSpeciesGetter(js_map_fun);
}
{ // -- S e t
Handle<JSFunction> js_set_fun =
InstallFunction(global, "Set", JS_SET_TYPE, JSSet::kSize, 0,
factory->the_hole_value(), Builtins::kSetConstructor);
InstallWithIntrinsicDefaultProto(isolate, js_set_fun,
Context::JS_SET_FUN_INDEX);
Handle<SharedFunctionInfo> shared(js_set_fun->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->DontAdaptArguments();
shared->set_length(0);
// Setup %SetPrototype%.
Handle<JSObject> prototype(
JSObject::cast(js_set_fun->instance_prototype()));
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), factory->Set_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
Handle<JSFunction> set_has = SimpleInstallFunction(
prototype, "has", Builtins::kSetPrototypeHas, 1, true);
native_context()->set_set_has(*set_has);
Handle<JSFunction> set_add = SimpleInstallFunction(
prototype, "add", Builtins::kSetPrototypeAdd, 1, true);
native_context()->set_set_add(*set_add);
Handle<JSFunction> set_delete = SimpleInstallFunction(
prototype, "delete", Builtins::kSetPrototypeDelete, 1, true);
native_context()->set_set_delete(*set_delete);
SimpleInstallFunction(prototype, "clear", Builtins::kSetPrototypeClear, 0,
true);
SimpleInstallFunction(prototype, "entries", Builtins::kSetPrototypeEntries,
0, true);
SimpleInstallFunction(prototype, "forEach", Builtins::kSetPrototypeForEach,
1, false);
SimpleInstallGetter(prototype, factory->InternalizeUtf8String("size"),
[turbofan] Inline Map and Set iterators into optimized code. This CL inlines the following builtins into TurboFan - %MapIteratorPrototype%.next - %SetIteratorPrototype%.next following the design that we are using for Array iteration already (different instance types for the different kinds of iterators). Details can be found in the relevant design document at: https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8 The key to great performance here is to ensure that the inlined code allows escape analysis and scalar replacement of aggregates to remove the allocations for the iterator itself as well as the iterator results and potential key/value arrays in the simple case of a for-of loop (and by extension also in other constructs that reduce to for-of loops internally), i.e.: const s = new Set; // ... do something with s for (const x of s) { // ... } Here the for-of loop shouldn't perform any allocations of helper objects. Drive-by-fix: Replace the ExistsJSMapWithness in JSBuiltinReducer with a more general HasInstanceTypeWitness, similar to what's in JSCallReducer. Also migrate the {Map,Set}.prototype.size getter inlining to the JSBuiltinReducer, so that everything is in a single place. R=jgruber@chromium.org Bug: v8:6344, v8:6571, chromium:740122 Change-Id: I09cb506fe26ed3e10d7dcb2f95ec4415e639582d Reviewed-on: https://chromium-review.googlesource.com/570159 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#46655}
2017-07-14 05:35:21 +00:00
Builtins::kSetPrototypeGetSize, true,
BuiltinFunctionId::kSetSize);
Handle<JSFunction> values = SimpleInstallFunction(
prototype, "values", Builtins::kSetPrototypeValues, 0, true);
JSObject::AddProperty(prototype, factory->keys_string(), values, DONT_ENUM);
JSObject::AddProperty(prototype, factory->iterator_symbol(), values,
DONT_ENUM);
native_context()->set_initial_set_prototype_map(prototype->map());
InstallSpeciesGetter(js_set_fun);
}
{ // -- J S M o d u l e N a m e s p a c e
Handle<Map> map = factory->NewMap(
JS_MODULE_NAMESPACE_TYPE, JSModuleNamespace::kSize,
TERMINAL_FAST_ELEMENTS_KIND, JSModuleNamespace::kInObjectFieldCount);
Map::SetPrototype(map, isolate->factory()->null_value());
Map::EnsureDescriptorSlack(map, 1);
native_context()->set_js_module_namespace_map(*map);
{ // Install @@toStringTag.
PropertyAttributes attribs =
static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
Descriptor d =
Descriptor::DataField(factory->to_string_tag_symbol(),
JSModuleNamespace::kToStringTagFieldIndex,
attribs, Representation::Tagged());
map->AppendDescriptor(&d);
}
}
{ // -- I t e r a t o r R e s u l t
Handle<Map> map = factory->NewMap(JS_OBJECT_TYPE, JSIteratorResult::kSize,
TERMINAL_FAST_ELEMENTS_KIND, 2);
Map::SetPrototype(map, isolate->initial_object_prototype());
Map::EnsureDescriptorSlack(map, 2);
{ // value
Descriptor d = Descriptor::DataField(factory->value_string(),
JSIteratorResult::kValueIndex, NONE,
Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // done
Descriptor d = Descriptor::DataField(factory->done_string(),
JSIteratorResult::kDoneIndex, NONE,
Representation::Tagged());
map->AppendDescriptor(&d);
}
map->SetConstructor(native_context()->object_function());
native_context()->set_iterator_result_map(*map);
}
{ // -- W e a k M a p
Handle<JSFunction> cons = InstallFunction(
global, "WeakMap", JS_WEAK_MAP_TYPE, JSWeakMap::kSize, 0,
factory->the_hole_value(), Builtins::kWeakMapConstructor);
InstallWithIntrinsicDefaultProto(isolate, cons,
Context::JS_WEAK_MAP_FUN_INDEX);
Handle<SharedFunctionInfo> shared(cons->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->DontAdaptArguments();
shared->set_length(0);
// Setup %WeakMapPrototype%.
Handle<JSObject> prototype(JSObject::cast(cons->instance_prototype()));
SimpleInstallFunction(prototype, "delete",
Builtins::kWeakMapPrototypeDelete, 1, true);
SimpleInstallFunction(prototype, "get", Builtins::kWeakMapGet, 1, true);
SimpleInstallFunction(prototype, "has", Builtins::kWeakMapHas, 1, true);
Handle<JSFunction> weakmap_set = SimpleInstallFunction(
prototype, "set", Builtins::kWeakMapPrototypeSet, 2, true);
native_context()->set_weakmap_set(*weakmap_set);
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("WeakMap"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
native_context()->set_initial_weakmap_prototype_map(prototype->map());
}
{ // -- W e a k S e t
Handle<JSFunction> cons = InstallFunction(
global, "WeakSet", JS_WEAK_SET_TYPE, JSWeakSet::kSize, 0,
factory->the_hole_value(), Builtins::kWeakSetConstructor);
InstallWithIntrinsicDefaultProto(isolate, cons,
Context::JS_WEAK_SET_FUN_INDEX);
Handle<SharedFunctionInfo> shared(cons->shared(), isolate);
shared->SetConstructStub(*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
shared->DontAdaptArguments();
shared->set_length(0);
// Setup %WeakSetPrototype%.
Handle<JSObject> prototype(JSObject::cast(cons->instance_prototype()));
SimpleInstallFunction(prototype, "delete",
Builtins::kWeakSetPrototypeDelete, 1, true);
SimpleInstallFunction(prototype, "has", Builtins::kWeakSetHas, 1, true);
Handle<JSFunction> weakset_add = SimpleInstallFunction(
prototype, "add", Builtins::kWeakSetPrototypeAdd, 1, true);
native_context()->set_weakset_add(*weakset_add);
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(),
factory->NewStringFromAsciiChecked("WeakSet"),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
native_context()->set_initial_weakset_prototype_map(prototype->map());
}
{ // -- P r o x y
CreateJSProxyMaps();
// Proxy function map has prototype slot for storing initial map but does
// not have a prototype property.
Handle<Map> proxy_function_map =
Map::Copy(isolate->strict_function_without_prototype_map(), "Proxy");
// Re-set the unused property fields after changing the instance size.
// TODO(ulan): Do not change instance size after map creation.
int unused_property_fields = proxy_function_map->UnusedPropertyFields();
proxy_function_map->set_instance_size(JSFunction::kSizeWithPrototype);
// The prototype slot shifts the in-object properties area by one slot.
proxy_function_map->SetInObjectPropertiesStartInWords(
proxy_function_map->GetInObjectPropertiesStartInWords() + 1);
proxy_function_map->set_has_prototype_slot(true);
proxy_function_map->set_is_constructor(true);
proxy_function_map->SetInObjectUnusedPropertyFields(unused_property_fields);
Handle<String> name = factory->Proxy_string();
Handle<Code> code(BUILTIN_CODE(isolate, ProxyConstructor));
NewFunctionArgs args = NewFunctionArgs::ForBuiltin(
name, code, proxy_function_map, Builtins::kProxyConstructor);
Handle<JSFunction> proxy_function = factory->NewFunction(args);
JSFunction::SetInitialMap(proxy_function, isolate->proxy_map(),
factory->null_value());
proxy_function->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, JSBuiltinsConstructStub));
proxy_function->shared()->set_internal_formal_parameter_count(2);
proxy_function->shared()->set_length(2);
native_context()->set_proxy_function(*proxy_function);
InstallFunction(global, name, proxy_function, factory->Object_string());
SimpleInstallFunction(proxy_function, "revocable",
Builtins::kProxyRevocable, 2, true);
{ // Internal: ProxyRevoke
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate, Builtins::kProxyRevoke, factory->empty_string(), 0);
native_context()->set_proxy_revoke_shared_fun(*info);
}
}
{ // -- R e f l e c t
Handle<String> reflect_string = factory->InternalizeUtf8String("Reflect");
Handle<JSObject> reflect =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::AddProperty(global, reflect_string, reflect, DONT_ENUM);
Handle<JSFunction> define_property =
SimpleInstallFunction(reflect, factory->defineProperty_string(),
Builtins::kReflectDefineProperty, 3, true);
native_context()->set_reflect_define_property(*define_property);
Handle<JSFunction> delete_property =
SimpleInstallFunction(reflect, factory->deleteProperty_string(),
Builtins::kReflectDeleteProperty, 2, true);
native_context()->set_reflect_delete_property(*delete_property);
Handle<JSFunction> apply = SimpleInstallFunction(
reflect, factory->apply_string(), Builtins::kReflectApply, 3, false);
native_context()->set_reflect_apply(*apply);
Handle<JSFunction> construct =
SimpleInstallFunction(reflect, factory->construct_string(),
Builtins::kReflectConstruct, 2, false);
native_context()->set_reflect_construct(*construct);
SimpleInstallFunction(reflect, factory->get_string(), Builtins::kReflectGet,
2, false);
SimpleInstallFunction(reflect, factory->getOwnPropertyDescriptor_string(),
Builtins::kReflectGetOwnPropertyDescriptor, 2, true);
SimpleInstallFunction(reflect, factory->getPrototypeOf_string(),
Builtins::kReflectGetPrototypeOf, 1, true);
SimpleInstallFunction(reflect, factory->has_string(), Builtins::kReflectHas,
2, true);
SimpleInstallFunction(reflect, factory->isExtensible_string(),
Builtins::kReflectIsExtensible, 1, true);
SimpleInstallFunction(reflect, factory->ownKeys_string(),
Builtins::kReflectOwnKeys, 1, true);
SimpleInstallFunction(reflect, factory->preventExtensions_string(),
Builtins::kReflectPreventExtensions, 1, true);
SimpleInstallFunction(reflect, factory->set_string(), Builtins::kReflectSet,
3, false);
SimpleInstallFunction(reflect, factory->setPrototypeOf_string(),
Builtins::kReflectSetPrototypeOf, 2, true);
}
{ // --- B o u n d F u n c t i o n
Handle<Map> map =
factory->NewMap(JS_BOUND_FUNCTION_TYPE, JSBoundFunction::kSize,
TERMINAL_FAST_ELEMENTS_KIND, 0);
map->SetConstructor(native_context()->object_function());
map->set_is_callable(true);
Map::SetPrototype(map, empty_function);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
Map::EnsureDescriptorSlack(map, 2);
{ // length
Descriptor d = Descriptor::AccessorConstant(
factory->length_string(), factory->bound_function_length_accessor(),
roc_attribs);
map->AppendDescriptor(&d);
}
{ // name
Descriptor d = Descriptor::AccessorConstant(
factory->name_string(), factory->bound_function_name_accessor(),
roc_attribs);
map->AppendDescriptor(&d);
}
native_context()->set_bound_function_without_constructor_map(*map);
map = Map::Copy(map, "IsConstructor");
map->set_is_constructor(true);
native_context()->set_bound_function_with_constructor_map(*map);
}
{ // --- sloppy arguments map
Handle<String> arguments_string = factory->Arguments_string();
NewFunctionArgs args = NewFunctionArgs::ForBuiltinWithPrototype(
arguments_string, BUILTIN_CODE(isolate, Illegal),
isolate->initial_object_prototype(), JS_ARGUMENTS_TYPE,
JSSloppyArgumentsObject::kSize, 2, Builtins::kIllegal, MUTABLE);
Handle<JSFunction> function = factory->NewFunction(args);
Handle<Map> map(function->initial_map());
// Create the descriptor array for the arguments object.
Map::EnsureDescriptorSlack(map, 2);
{ // length
Descriptor d = Descriptor::DataField(
factory->length_string(), JSSloppyArgumentsObject::kLengthIndex,
DONT_ENUM, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // callee
Descriptor d = Descriptor::DataField(
factory->callee_string(), JSSloppyArgumentsObject::kCalleeIndex,
DONT_ENUM, Representation::Tagged());
map->AppendDescriptor(&d);
}
// @@iterator method is added later.
native_context()->set_sloppy_arguments_map(*map);
DCHECK(!map->is_dictionary_map());
DCHECK(IsObjectElementsKind(map->elements_kind()));
}
{ // --- fast and slow aliased arguments map
Handle<Map> map = isolate->sloppy_arguments_map();
map = Map::Copy(map, "FastAliasedArguments");
map->set_elements_kind(FAST_SLOPPY_ARGUMENTS_ELEMENTS);
DCHECK_EQ(2, map->GetInObjectProperties());
native_context()->set_fast_aliased_arguments_map(*map);
map = Map::Copy(map, "SlowAliasedArguments");
map->set_elements_kind(SLOW_SLOPPY_ARGUMENTS_ELEMENTS);
DCHECK_EQ(2, map->GetInObjectProperties());
native_context()->set_slow_aliased_arguments_map(*map);
}
{ // --- strict mode arguments map
const PropertyAttributes attributes =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
// Create the ThrowTypeError function.
Handle<AccessorPair> callee = factory->NewAccessorPair();
Handle<JSFunction> poison = GetThrowTypeErrorIntrinsic();
// Install the ThrowTypeError function.
callee->set_getter(*poison);
callee->set_setter(*poison);
// Create the map. Allocate one in-object field for length.
Handle<Map> map = factory->NewMap(
JS_ARGUMENTS_TYPE, JSStrictArgumentsObject::kSize, PACKED_ELEMENTS, 1);
// Create the descriptor array for the arguments object.
Map::EnsureDescriptorSlack(map, 2);
{ // length
Descriptor d = Descriptor::DataField(
factory->length_string(), JSStrictArgumentsObject::kLengthIndex,
DONT_ENUM, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // callee
Descriptor d = Descriptor::AccessorConstant(factory->callee_string(),
callee, attributes);
map->AppendDescriptor(&d);
}
// @@iterator method is added later.
DCHECK_EQ(native_context()->object_function()->prototype(),
*isolate->initial_object_prototype());
Map::SetPrototype(map, isolate->initial_object_prototype());
// Copy constructor from the sloppy arguments boilerplate.
map->SetConstructor(
native_context()->sloppy_arguments_map()->GetConstructor());
native_context()->set_strict_arguments_map(*map);
DCHECK(!map->is_dictionary_map());
DCHECK(IsObjectElementsKind(map->elements_kind()));
}
{ // --- context extension
// Create a function for the context extension objects.
Handle<JSFunction> context_extension_fun =
CreateFunction(isolate, factory->empty_string(),
JS_CONTEXT_EXTENSION_OBJECT_TYPE, JSObject::kHeaderSize,
0, factory->the_hole_value(), Builtins::kIllegal);
native_context()->set_context_extension_function(*context_extension_fun);
}
{
// Set up the call-as-function delegate.
Handle<JSFunction> delegate =
SimpleCreateFunction(isolate, factory->empty_string(),
Builtins::kHandleApiCallAsFunction, 0, false);
native_context()->set_call_as_function_delegate(*delegate);
}
{
// Set up the call-as-constructor delegate.
Handle<JSFunction> delegate =
SimpleCreateFunction(isolate, factory->empty_string(),
Builtins::kHandleApiCallAsConstructor, 0, false);
native_context()->set_call_as_constructor_delegate(*delegate);
}
} // NOLINT(readability/fn_size)
Handle<JSFunction> Genesis::InstallTypedArray(const char* name,
ElementsKind elements_kind) {
Handle<JSObject> global = Handle<JSObject>(native_context()->global_object());
Handle<JSObject> typed_array_prototype =
Handle<JSObject>(isolate()->typed_array_prototype());
Handle<JSFunction> typed_array_function =
Handle<JSFunction>(isolate()->typed_array_function());
Handle<JSFunction> result = InstallFunction(
global, name, JS_TYPED_ARRAY_TYPE, JSTypedArray::kSizeWithEmbedderFields,
0, factory()->the_hole_value(), Builtins::kTypedArrayConstructor);
result->initial_map()->set_elements_kind(elements_kind);
result->shared()->DontAdaptArguments();
result->shared()->set_length(3);
result->shared()->SetConstructStub(
*BUILTIN_CODE(isolate_, JSBuiltinsConstructStub));
CHECK(JSObject::SetPrototype(result, typed_array_function, false, kDontThrow)
.FromJust());
Handle<Smi> bytes_per_element(
Smi::FromInt(1 << ElementsKindToShiftSize(elements_kind)), isolate());
InstallConstant(isolate(), result, "BYTES_PER_ELEMENT", bytes_per_element);
// Setup prototype object.
DCHECK(result->prototype()->IsJSObject());
Handle<JSObject> prototype(JSObject::cast(result->prototype()), isolate());
CHECK(JSObject::SetPrototype(prototype, typed_array_prototype, false,
kDontThrow)
.FromJust());
InstallConstant(isolate(), prototype, "BYTES_PER_ELEMENT", bytes_per_element);
return result;
}
void Genesis::InitializeExperimentalGlobal() {
#define FEATURE_INITIALIZE_GLOBAL(id, descr) InitializeGlobal_##id();
HARMONY_INPROGRESS(FEATURE_INITIALIZE_GLOBAL)
HARMONY_STAGED(FEATURE_INITIALIZE_GLOBAL)
HARMONY_SHIPPING(FEATURE_INITIALIZE_GLOBAL)
#undef FEATURE_INITIALIZE_GLOBAL
}
bool Bootstrapper::CompileBuiltin(Isolate* isolate, int index) {
Vector<const char> name = Natives::GetScriptName(index);
Handle<String> source_code =
isolate->bootstrapper()->GetNativeSource(CORE, index);
// We pass in extras_utils so that builtin code can set it up for later use
// by actual extras code, compiled with CompileExtraBuiltin.
Handle<Object> global = isolate->global_object();
Handle<Object> utils = isolate->natives_utils_object();
Handle<Object> extras_utils = isolate->extras_utils_object();
Handle<Object> args[] = {global, utils, extras_utils};
return Bootstrapper::CompileNative(isolate, name, source_code,
arraysize(args), args, NATIVES_CODE);
}
bool Bootstrapper::CompileExtraBuiltin(Isolate* isolate, int index) {
HandleScope scope(isolate);
Vector<const char> name = ExtraNatives::GetScriptName(index);
Handle<String> source_code =
isolate->bootstrapper()->GetNativeSource(EXTRAS, index);
Handle<Object> global = isolate->global_object();
Handle<Object> binding = isolate->extras_binding_object();
Handle<Object> extras_utils = isolate->extras_utils_object();
Handle<Object> args[] = {global, binding, extras_utils};
return Bootstrapper::CompileNative(isolate, name, source_code,
arraysize(args), args, EXTENSION_CODE);
}
bool Bootstrapper::CompileExperimentalExtraBuiltin(Isolate* isolate,
int index) {
HandleScope scope(isolate);
Vector<const char> name = ExperimentalExtraNatives::GetScriptName(index);
Handle<String> source_code =
isolate->bootstrapper()->GetNativeSource(EXPERIMENTAL_EXTRAS, index);
Handle<Object> global = isolate->global_object();
Handle<Object> binding = isolate->extras_binding_object();
Handle<Object> extras_utils = isolate->extras_utils_object();
Handle<Object> args[] = {global, binding, extras_utils};
return Bootstrapper::CompileNative(isolate, name, source_code,
arraysize(args), args, EXTENSION_CODE);
}
bool Bootstrapper::CompileNative(Isolate* isolate, Vector<const char> name,
Handle<String> source, int argc,
Handle<Object> argv[],
NativesFlag natives_flag) {
SuppressDebug compiling_natives(isolate->debug());
Handle<Context> context(isolate->context());
Handle<String> script_name =
isolate->factory()->NewStringFromUtf8(name).ToHandleChecked();
MaybeHandle<SharedFunctionInfo> maybe_function_info =
Compiler::GetSharedFunctionInfoForScript(
source, Compiler::ScriptDetails(script_name), ScriptOriginOptions(),
nullptr, nullptr, ScriptCompiler::kNoCompileOptions,
ScriptCompiler::kNoCacheNoReason, natives_flag);
Handle<SharedFunctionInfo> function_info;
if (!maybe_function_info.ToHandle(&function_info)) return false;
DCHECK(context->IsNativeContext());
Handle<JSFunction> fun =
isolate->factory()->NewFunctionFromSharedFunctionInfo(function_info,
context);
Handle<Object> receiver = isolate->factory()->undefined_value();
// For non-extension scripts, run script to get the function wrapper.
Handle<Object> wrapper;
if (!Execution::TryCall(isolate, fun, receiver, 0, nullptr,
Execution::MessageHandling::kKeepPending, nullptr)
.ToHandle(&wrapper)) {
return false;
}
// Then run the function wrapper.
return !Execution::TryCall(isolate, Handle<JSFunction>::cast(wrapper),
receiver, argc, argv,
Execution::MessageHandling::kKeepPending, nullptr)
.is_null();
}
bool Genesis::CallUtilsFunction(Isolate* isolate, const char* name) {
Handle<JSObject> utils =
Handle<JSObject>::cast(isolate->natives_utils_object());
Handle<String> name_string =
isolate->factory()->NewStringFromAsciiChecked(name);
Handle<Object> fun = JSObject::GetDataProperty(utils, name_string);
Handle<Object> receiver = isolate->factory()->undefined_value();
Handle<Object> args[] = {utils};
return !Execution::TryCall(isolate, fun, receiver, 1, args,
Execution::MessageHandling::kKeepPending, nullptr)
.is_null();
}
bool Genesis::CompileExtension(Isolate* isolate, v8::Extension* extension) {
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<SharedFunctionInfo> function_info;
Handle<String> source =
isolate->factory()
->NewExternalStringFromOneByte(extension->source())
.ToHandleChecked();
DCHECK(source->IsOneByteRepresentation());
// If we can't find the function in the cache, we compile a new
// function and insert it into the cache.
Vector<const char> name = CStrVector(extension->name());
SourceCodeCache* cache = isolate->bootstrapper()->extensions_cache();
Handle<Context> context(isolate->context());
DCHECK(context->IsNativeContext());
if (!cache->Lookup(name, &function_info)) {
Handle<String> script_name =
factory->NewStringFromUtf8(name).ToHandleChecked();
MaybeHandle<SharedFunctionInfo> maybe_function_info =
Compiler::GetSharedFunctionInfoForScript(
source, Compiler::ScriptDetails(script_name), ScriptOriginOptions(),
extension, nullptr, ScriptCompiler::kNoCompileOptions,
ScriptCompiler::kNoCacheBecauseV8Extension, EXTENSION_CODE);
if (!maybe_function_info.ToHandle(&function_info)) return false;
cache->Add(name, function_info);
}
// Set up the function context. Conceptually, we should clone the
// function before overwriting the context but since we're in a
// single-threaded environment it is not strictly necessary.
Handle<JSFunction> fun =
factory->NewFunctionFromSharedFunctionInfo(function_info, context);
// Call function using either the runtime object or the global
// object as the receiver. Provide no parameters.
Handle<Object> receiver = isolate->global_object();
return !Execution::TryCall(isolate, fun, receiver, 0, nullptr,
Execution::MessageHandling::kKeepPending, nullptr)
.is_null();
}
static Handle<JSObject> ResolveBuiltinIdHolder(Handle<Context> native_context,
const char* holder_expr) {
Isolate* isolate = native_context->GetIsolate();
Factory* factory = isolate->factory();
Handle<JSGlobalObject> global(native_context->global_object());
const char* period_pos = strchr(holder_expr, '.');
if (period_pos == nullptr) {
return Handle<JSObject>::cast(
Object::GetPropertyOrElement(
global, factory->InternalizeUtf8String(holder_expr))
.ToHandleChecked());
}
const char* inner = period_pos + 1;
DCHECK(!strchr(inner, '.'));
Vector<const char> property(holder_expr,
static_cast<int>(period_pos - holder_expr));
Handle<String> property_string = factory->InternalizeUtf8String(property);
DCHECK(!property_string.is_null());
Handle<JSObject> object = Handle<JSObject>::cast(
JSReceiver::GetProperty(global, property_string).ToHandleChecked());
if (strcmp("prototype", inner) == 0) {
Handle<JSFunction> function = Handle<JSFunction>::cast(object);
return Handle<JSObject>(JSObject::cast(function->prototype()));
}
Handle<String> inner_string = factory->InternalizeUtf8String(inner);
DCHECK(!inner_string.is_null());
Handle<Object> value =
JSReceiver::GetProperty(object, inner_string).ToHandleChecked();
return Handle<JSObject>::cast(value);
}
void Genesis::ConfigureUtilsObject(GlobalContextType context_type) {
switch (context_type) {
// We still need the utils object to find debug functions.
case DEBUG_CONTEXT:
return;
// Expose the natives in global if a valid name for it is specified.
case FULL_CONTEXT: {
// We still need the utils object after deserialization.
if (isolate()->serializer_enabled()) return;
if (FLAG_expose_natives_as == nullptr) break;
if (strlen(FLAG_expose_natives_as) == 0) break;
HandleScope scope(isolate());
Handle<String> natives_key =
factory()->InternalizeUtf8String(FLAG_expose_natives_as);
uint32_t dummy_index;
if (natives_key->AsArrayIndex(&dummy_index)) break;
Handle<Object> utils = isolate()->natives_utils_object();
Handle<JSObject> global = isolate()->global_object();
JSObject::AddProperty(global, natives_key, utils, DONT_ENUM);
break;
}
}
// The utils object can be removed for cases that reach this point.
native_context()->set_natives_utils_object(heap()->undefined_value());
native_context()->set_extras_utils_object(heap()->undefined_value());
}
void Bootstrapper::ExportFromRuntime(Isolate* isolate,
Handle<JSObject> container) {
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<Context> native_context = isolate->native_context();
#define EXPORT_PRIVATE_SYMBOL(NAME) \
Handle<String> NAME##_name = factory->NewStringFromAsciiChecked(#NAME); \
JSObject::AddProperty(container, NAME##_name, factory->NAME(), NONE);
PRIVATE_SYMBOL_LIST(EXPORT_PRIVATE_SYMBOL)
#undef EXPORT_PRIVATE_SYMBOL
#define EXPORT_PUBLIC_SYMBOL(NAME, DESCRIPTION) \
Handle<String> NAME##_name = factory->NewStringFromAsciiChecked(#NAME); \
JSObject::AddProperty(container, NAME##_name, factory->NAME(), NONE);
PUBLIC_SYMBOL_LIST(EXPORT_PUBLIC_SYMBOL)
WELL_KNOWN_SYMBOL_LIST(EXPORT_PUBLIC_SYMBOL)
#undef EXPORT_PUBLIC_SYMBOL
Handle<JSObject> iterator_prototype(
native_context->initial_iterator_prototype());
JSObject::AddProperty(container,
factory->InternalizeUtf8String("IteratorPrototype"),
iterator_prototype, NONE);
{
PrototypeIterator iter(native_context->generator_function_map());
Handle<JSObject> generator_function_prototype(iter.GetCurrent<JSObject>());
JSObject::AddProperty(
container, factory->InternalizeUtf8String("GeneratorFunctionPrototype"),
generator_function_prototype, NONE);
Handle<JSFunction> generator_function_function = InstallFunction(
container, "GeneratorFunction", JS_FUNCTION_TYPE,
JSFunction::kSizeWithPrototype, 0, generator_function_prototype,
Builtins::kGeneratorFunctionConstructor);
generator_function_function->set_prototype_or_initial_map(
native_context->generator_function_map());
generator_function_function->shared()->DontAdaptArguments();
generator_function_function->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, GeneratorFunctionConstructor));
generator_function_function->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(
isolate, generator_function_function,
Context::GENERATOR_FUNCTION_FUNCTION_INDEX);
JSObject::ForceSetPrototype(generator_function_function,
isolate->function_function());
JSObject::AddProperty(
generator_function_prototype, factory->constructor_string(),
generator_function_function,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
native_context->generator_function_map()->SetConstructor(
*generator_function_function);
}
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
{
PrototypeIterator iter(native_context->async_generator_function_map());
Handle<JSObject> async_generator_function_prototype(
iter.GetCurrent<JSObject>());
Handle<JSFunction> async_generator_function_function = InstallFunction(
container, "AsyncGeneratorFunction", JS_FUNCTION_TYPE,
JSFunction::kSizeWithPrototype, 0, async_generator_function_prototype,
Builtins::kAsyncGeneratorFunctionConstructor);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
async_generator_function_function->set_prototype_or_initial_map(
native_context->async_generator_function_map());
async_generator_function_function->shared()->DontAdaptArguments();
async_generator_function_function->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, AsyncGeneratorFunctionConstructor));
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
async_generator_function_function->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(
isolate, async_generator_function_function,
Context::ASYNC_GENERATOR_FUNCTION_FUNCTION_INDEX);
JSObject::ForceSetPrototype(async_generator_function_function,
isolate->function_function());
JSObject::AddProperty(
async_generator_function_prototype, factory->constructor_string(),
async_generator_function_function,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
native_context->async_generator_function_map()->SetConstructor(
*async_generator_function_function);
}
{ // -- S e t I t e r a t o r
Handle<String> name = factory->SetIterator_string();
// Setup %SetIteratorPrototype%.
Handle<JSObject> prototype =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::ForceSetPrototype(prototype, iterator_prototype);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), name,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Install the next function on the {prototype}.
SimpleInstallFunction(prototype, "next",
Builtins::kSetIteratorPrototypeNext, 0, true,
kSetIteratorNext);
// Setup SetIterator constructor.
Handle<JSFunction> set_iterator_function =
InstallFunction(container, "SetIterator", JS_SET_VALUE_ITERATOR_TYPE,
JSSetIterator::kSize, 0, prototype, Builtins::kIllegal);
set_iterator_function->shared()->set_native(false);
Handle<Map> set_value_iterator_map(set_iterator_function->initial_map(),
isolate);
native_context->set_set_value_iterator_map(*set_value_iterator_map);
Handle<Map> set_key_value_iterator_map =
Map::Copy(set_value_iterator_map, "JS_SET_KEY_VALUE_ITERATOR_TYPE");
set_key_value_iterator_map->set_instance_type(
JS_SET_KEY_VALUE_ITERATOR_TYPE);
native_context->set_set_key_value_iterator_map(*set_key_value_iterator_map);
}
{ // -- M a p I t e r a t o r
Handle<String> name = factory->MapIterator_string();
// Setup %MapIteratorPrototype%.
Handle<JSObject> prototype =
factory->NewJSObject(isolate->object_function(), TENURED);
JSObject::ForceSetPrototype(prototype, iterator_prototype);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
prototype, factory->to_string_tag_symbol(), name,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Install the next function on the {prototype}.
SimpleInstallFunction(prototype, "next",
Builtins::kMapIteratorPrototypeNext, 0, true,
kMapIteratorNext);
// Setup MapIterator constructor.
Handle<JSFunction> map_iterator_function =
InstallFunction(container, "MapIterator", JS_MAP_KEY_ITERATOR_TYPE,
JSMapIterator::kSize, 0, prototype, Builtins::kIllegal);
map_iterator_function->shared()->set_native(false);
Handle<Map> map_key_iterator_map(map_iterator_function->initial_map(),
isolate);
native_context->set_map_key_iterator_map(*map_key_iterator_map);
Handle<Map> map_key_value_iterator_map =
Map::Copy(map_key_iterator_map, "JS_MAP_KEY_VALUE_ITERATOR_TYPE");
map_key_value_iterator_map->set_instance_type(
JS_MAP_KEY_VALUE_ITERATOR_TYPE);
native_context->set_map_key_value_iterator_map(*map_key_value_iterator_map);
Handle<Map> map_value_iterator_map =
Map::Copy(map_key_iterator_map, "JS_MAP_VALUE_ITERATOR_TYPE");
map_value_iterator_map->set_instance_type(JS_MAP_VALUE_ITERATOR_TYPE);
native_context->set_map_value_iterator_map(*map_value_iterator_map);
}
{ // -- S c r i p t
Handle<String> name = factory->Script_string();
Handle<JSFunction> script_fun = InstallFunction(
container, name, JS_VALUE_TYPE, JSValue::kSize, 0,
factory->the_hole_value(), Builtins::kUnsupportedThrower, DONT_ENUM);
native_context->set_script_function(*script_fun);
Handle<Map> script_map = Handle<Map>(script_fun->initial_map());
Map::EnsureDescriptorSlack(script_map, 15);
PropertyAttributes attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
{ // column_offset
Handle<AccessorInfo> info = factory->script_column_offset_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // id
Handle<AccessorInfo> info = factory->script_id_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // name
Handle<AccessorInfo> info = factory->script_name_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // line_offset
Handle<AccessorInfo> info = factory->script_line_offset_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // source
Handle<AccessorInfo> info = factory->script_source_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // type
Handle<AccessorInfo> info = factory->script_type_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // compilation_type
Handle<AccessorInfo> info = factory->script_compilation_type_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // context_data
Handle<AccessorInfo> info = factory->script_context_data_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // eval_from_script
Handle<AccessorInfo> info = factory->script_eval_from_script_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // eval_from_script_position
Handle<AccessorInfo> info =
factory->script_eval_from_script_position_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // eval_from_function_name
Handle<AccessorInfo> info =
factory->script_eval_from_function_name_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // source_url
Handle<AccessorInfo> info = factory->script_source_url_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
{ // source_mapping_url
Handle<AccessorInfo> info = factory->script_source_mapping_url_accessor();
Descriptor d = Descriptor::AccessorConstant(handle(info->name(), isolate),
info, attribs);
script_map->AppendDescriptor(&d);
}
}
{ // -- A s y n c F u n c t i o n
// Builtin functions for AsyncFunction.
PrototypeIterator iter(native_context->async_function_map());
Handle<JSObject> async_function_prototype(iter.GetCurrent<JSObject>());
Handle<JSFunction> async_function_constructor = InstallFunction(
container, "AsyncFunction", JS_FUNCTION_TYPE,
JSFunction::kSizeWithPrototype, 0, async_function_prototype,
Builtins::kAsyncFunctionConstructor);
async_function_constructor->set_prototype_or_initial_map(
native_context->async_function_map());
async_function_constructor->shared()->DontAdaptArguments();
async_function_constructor->shared()->SetConstructStub(
*BUILTIN_CODE(isolate, AsyncFunctionConstructor));
async_function_constructor->shared()->set_length(1);
native_context->set_async_function_constructor(*async_function_constructor);
JSObject::ForceSetPrototype(async_function_constructor,
isolate->function_function());
JSObject::AddProperty(
async_function_prototype, factory->constructor_string(),
async_function_constructor,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
JSFunction::SetPrototype(async_function_constructor,
async_function_prototype);
{
Handle<JSFunction> function =
SimpleCreateFunction(isolate, factory->empty_string(),
Builtins::kAsyncFunctionPromiseCreate, 0, false);
native_context->set_async_function_promise_create(*function);
}
{
Handle<JSFunction> function = SimpleCreateFunction(
isolate, factory->empty_string(),
Builtins::kAsyncFunctionPromiseRelease, 1, false);
native_context->set_async_function_promise_release(*function);
}
}
{ // -- C a l l S i t e
// Builtin functions for CallSite.
// CallSites are a special case; the constructor is for our private use
// only, therefore we set it up as a builtin that throws. Internally, we use
// CallSiteUtils::Construct to create CallSite objects.
Handle<JSFunction> callsite_fun = InstallFunction(
container, "CallSite", JS_OBJECT_TYPE, JSObject::kHeaderSize, 0,
factory->the_hole_value(), Builtins::kUnsupportedThrower);
callsite_fun->shared()->DontAdaptArguments();
isolate->native_context()->set_callsite_function(*callsite_fun);
{
// Setup CallSite.prototype.
Handle<JSObject> prototype(
JSObject::cast(callsite_fun->instance_prototype()));
struct FunctionInfo {
const char* name;
Builtins::Name id;
};
FunctionInfo infos[] = {
{"getColumnNumber", Builtins::kCallSitePrototypeGetColumnNumber},
{"getEvalOrigin", Builtins::kCallSitePrototypeGetEvalOrigin},
{"getFileName", Builtins::kCallSitePrototypeGetFileName},
{"getFunction", Builtins::kCallSitePrototypeGetFunction},
{"getFunctionName", Builtins::kCallSitePrototypeGetFunctionName},
{"getLineNumber", Builtins::kCallSitePrototypeGetLineNumber},
{"getMethodName", Builtins::kCallSitePrototypeGetMethodName},
{"getPosition", Builtins::kCallSitePrototypeGetPosition},
{"getScriptNameOrSourceURL",
Builtins::kCallSitePrototypeGetScriptNameOrSourceURL},
{"getThis", Builtins::kCallSitePrototypeGetThis},
{"getTypeName", Builtins::kCallSitePrototypeGetTypeName},
{"isConstructor", Builtins::kCallSitePrototypeIsConstructor},
{"isEval", Builtins::kCallSitePrototypeIsEval},
{"isNative", Builtins::kCallSitePrototypeIsNative},
{"isToplevel", Builtins::kCallSitePrototypeIsToplevel},
{"toString", Builtins::kCallSitePrototypeToString}};
PropertyAttributes attrs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
Handle<JSFunction> fun;
for (const FunctionInfo& info : infos) {
SimpleInstallFunction(prototype, info.name, info.id, 0, true, attrs);
}
}
}
#ifdef V8_INTL_SUPPORT
{ // I n t l P l u r a l R u l e s
Handle<JSObject> plural_rules_prototype =
factory->NewJSObject(isolate->object_function(), TENURED);
// Install the @@toStringTag property on the {prototype}.
JSObject::AddProperty(
plural_rules_prototype, factory->to_string_tag_symbol(),
factory->Object_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
Handle<JSFunction> plural_rules_constructor = InstallFunction(
container, "PluralRules", JS_OBJECT_TYPE, PluralRules::kSize, 0,
plural_rules_prototype, Builtins::kIllegal);
JSObject::AddProperty(plural_rules_prototype, factory->constructor_string(),
plural_rules_constructor, DONT_ENUM);
native_context->set_intl_plural_rules_function(*plural_rules_constructor);
}
#endif // V8_INTL_SUPPORT
}
#define EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(id) \
void Genesis::InitializeGlobal_##id() {}
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_do_expressions)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_regexp_named_captures)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_regexp_property)
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_function_tostring)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_public_fields)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_private_fields)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_static_fields)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_class_fields)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_dynamic_import)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_import_meta)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_restrict_constructor_return)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_optional_catch_binding)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_subsume_json)
EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE(harmony_numeric_separator)
[es2015] Refactor the JSArrayIterator. This changes the JSArrayIterator to always have only a single instance type, instead of the zoo of instance types that we had before, and which became less useful with the specification update to when "next" is loaded from the iterator now. This greatly simplifies the baseline implementation of the array iterator, which now only looks at the iterated object during %ArrayIteratorPrototype%.next invocations. In TurboFan we introduce a new JSCreateArrayIterator operator, that holds the IterationKind and get's the iterated object as input. When optimizing %ArrayIteratorPrototype%.next in the JSCallReducer, we check whether the receiver is a JSCreateArrayIterator, and if so, we try to infer maps for the iterated object from there. If we find any, we speculatively assume that these won't have changed during iteration (as we did before with the previous approach), and generate fast code for both JSArray and JSTypedArray iteration. Drive-by-fix: Drop the fast_array_iteration protector, it's not necessary anymore since we have the deoptimization guard bit in the JSCallReducer now. This addresses the performance cliff noticed in webpack 4. The minimal repro on the tracking bug goes from console.timeEnd: mono, 124.773000 console.timeEnd: poly, 670.353000 to console.timeEnd: mono, 118.709000 console.timeEnd: poly, 141.393000 so that's a 4.7x improvement. Also make presubmit happy by adding the missing #undef's. Bug: v8:7510, v7:7514 Change-Id: I79a46bfa2cd0f0710e09365ef72519b1bbb667b5 Reviewed-on: https://chromium-review.googlesource.com/946098 Reviewed-by: Sigurd Schneider <sigurds@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51725}
2018-03-02 19:31:01 +00:00
#undef EMPTY_INITIALIZE_GLOBAL_FOR_FEATURE
void InstallPublicSymbol(Factory* factory, Handle<Context> native_context,
const char* name, Handle<Symbol> value) {
Handle<JSGlobalObject> global(
JSGlobalObject::cast(native_context->global_object()));
Handle<String> symbol_string = factory->InternalizeUtf8String("Symbol");
Handle<JSObject> symbol = Handle<JSObject>::cast(
JSObject::GetProperty(global, symbol_string).ToHandleChecked());
Handle<String> name_string = factory->InternalizeUtf8String(name);
PropertyAttributes attributes =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
JSObject::AddProperty(symbol, name_string, value, attributes);
}
void Genesis::InitializeGlobal_harmony_sharedarraybuffer() {
if (!FLAG_harmony_sharedarraybuffer) return;
Handle<JSGlobalObject> global(native_context()->global_object());
Isolate* isolate = global->GetIsolate();
Factory* factory = isolate->factory();
{
Handle<String> name = factory->InternalizeUtf8String("SharedArrayBuffer");
JSObject::AddProperty(global, name, isolate->shared_array_buffer_fun(),
DONT_ENUM);
}
{
Handle<String> name = factory->InternalizeUtf8String("Atomics");
JSObject::AddProperty(global, name, isolate->atomics_object(), DONT_ENUM);
JSObject::AddProperty(
isolate->atomics_object(), factory->to_string_tag_symbol(), name,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
}
}
void Genesis::InitializeGlobal_harmony_string_trimming() {
if (!FLAG_harmony_string_trimming) return;
Handle<JSGlobalObject> global(native_context()->global_object());
Isolate* isolate = global->GetIsolate();
Factory* factory = isolate->factory();
Handle<JSObject> string_prototype(
native_context()->initial_string_prototype());
{
Handle<String> trim_left_name = factory->InternalizeUtf8String("trimLeft");
Handle<String> trim_start_name =
factory->InternalizeUtf8String("trimStart");
Handle<JSFunction> trim_left_fun = Handle<JSFunction>::cast(
JSObject::GetProperty(string_prototype, trim_left_name)
.ToHandleChecked());
JSObject::AddProperty(string_prototype, trim_start_name, trim_left_fun,
DONT_ENUM);
trim_left_fun->shared()->SetName(*trim_start_name);
}
{
Handle<String> trim_right_name =
factory->InternalizeUtf8String("trimRight");
Handle<String> trim_end_name = factory->InternalizeUtf8String("trimEnd");
Handle<JSFunction> trim_right_fun = Handle<JSFunction>::cast(
JSObject::GetProperty(string_prototype, trim_right_name)
.ToHandleChecked());
JSObject::AddProperty(string_prototype, trim_end_name, trim_right_fun,
DONT_ENUM);
trim_right_fun->shared()->SetName(*trim_end_name);
}
}
void Genesis::InitializeGlobal_harmony_array_prototype_values() {
if (!FLAG_harmony_array_prototype_values) return;
Handle<JSFunction> array_constructor(native_context()->array_function());
Handle<JSObject> array_prototype(
JSObject::cast(array_constructor->instance_prototype()));
Handle<Object> values_iterator =
JSObject::GetProperty(array_prototype, factory()->iterator_symbol())
.ToHandleChecked();
DCHECK(values_iterator->IsJSFunction());
JSObject::AddProperty(array_prototype, factory()->values_string(),
values_iterator, DONT_ENUM);
Handle<Object> unscopables =
JSObject::GetProperty(array_prototype, factory()->unscopables_symbol())
.ToHandleChecked();
DCHECK(unscopables->IsJSObject());
JSObject::AddProperty(Handle<JSObject>::cast(unscopables),
factory()->values_string(), factory()->true_value(),
NONE);
}
void Genesis::InitializeGlobal_harmony_array_flatten() {
if (!FLAG_harmony_array_flatten) return;
Handle<JSFunction> array_constructor(native_context()->array_function());
Handle<JSObject> array_prototype(
JSObject::cast(array_constructor->instance_prototype()));
SimpleInstallFunction(array_prototype, "flatten",
Builtins::kArrayPrototypeFlatten, 0, false, DONT_ENUM);
SimpleInstallFunction(array_prototype, "flatMap",
Builtins::kArrayPrototypeFlatMap, 1, false, DONT_ENUM);
}
void Genesis::InitializeGlobal_harmony_promise_finally() {
if (!FLAG_harmony_promise_finally) return;
Handle<JSFunction> constructor(native_context()->promise_function());
Handle<JSObject> prototype(JSObject::cast(constructor->instance_prototype()));
SimpleInstallFunction(prototype, "finally",
Builtins::kPromisePrototypeFinally, 1, true, DONT_ENUM);
// The promise prototype map has changed because we added a property
// to prototype, so we update the saved map.
Handle<Map> prototype_map(prototype->map());
Map::SetShouldBeFastPrototypeMap(prototype_map, true, isolate());
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate(), Builtins::kPromiseThenFinally, factory()->empty_string(), 1);
info->set_native(true);
native_context()->set_promise_then_finally_shared_fun(*info);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate(), Builtins::kPromiseCatchFinally, factory()->empty_string(),
1);
info->set_native(true);
native_context()->set_promise_catch_finally_shared_fun(*info);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate(), Builtins::kPromiseValueThunkFinally,
factory()->empty_string(), 0);
native_context()->set_promise_value_thunk_finally_shared_fun(*info);
}
{
Handle<SharedFunctionInfo> info = SimpleCreateSharedFunctionInfo(
isolate(), Builtins::kPromiseThrowerFinally, factory()->empty_string(),
0);
native_context()->set_promise_thrower_finally_shared_fun(*info);
}
}
void Genesis::InitializeGlobal_harmony_bigint() {
Factory* factory = isolate()->factory();
Handle<JSGlobalObject> global(native_context()->global_object());
if (!FLAG_harmony_bigint) {
// Typed arrays are installed by default; remove them if the flag is off.
CHECK(JSObject::DeleteProperty(
global, factory->InternalizeUtf8String("BigInt64Array"))
.ToChecked());
CHECK(JSObject::DeleteProperty(
global, factory->InternalizeUtf8String("BigUint64Array"))
.ToChecked());
return;
}
Handle<JSFunction> bigint_fun =
InstallFunction(global, "BigInt", JS_VALUE_TYPE, JSValue::kSize, 0,
factory->the_hole_value(), Builtins::kBigIntConstructor);
bigint_fun->shared()->set_builtin_function_id(kBigIntConstructor);
bigint_fun->shared()->DontAdaptArguments();
bigint_fun->shared()->SetConstructStub(
*BUILTIN_CODE(isolate(), JSBuiltinsConstructStub));
bigint_fun->shared()->set_length(1);
InstallWithIntrinsicDefaultProto(isolate(), bigint_fun,
Context::BIGINT_FUNCTION_INDEX);
heap()->bigint_map()->SetConstructorFunctionIndex(
Context::BIGINT_FUNCTION_INDEX);
// Install the properties of the BigInt constructor.
// asUintN(bits, bigint)
SimpleInstallFunction(bigint_fun, "asUintN", Builtins::kBigIntAsUintN, 2,
false);
// asIntN(bits, bigint)
SimpleInstallFunction(bigint_fun, "asIntN", Builtins::kBigIntAsIntN, 2,
false);
// Set up the %BigIntPrototype%.
Handle<JSObject> prototype(JSObject::cast(bigint_fun->instance_prototype()));
JSFunction::SetPrototype(bigint_fun, prototype);
// Install the properties of the BigInt.prototype.
// "constructor" is created implicitly by InstallFunction() above.
// toLocaleString([reserved1 [, reserved2]])
SimpleInstallFunction(prototype, "toLocaleString",
Builtins::kBigIntPrototypeToLocaleString, 0, false);
// toString([radix])
SimpleInstallFunction(prototype, "toString",
Builtins::kBigIntPrototypeToString, 0, false);
// valueOf()
SimpleInstallFunction(prototype, "valueOf", Builtins::kBigIntPrototypeValueOf,
0, false);
// @@toStringTag
JSObject::AddProperty(prototype, factory->to_string_tag_symbol(),
factory->BigInt_string(),
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Install 64-bit DataView accessors.
// TODO(jkummerow): Move these to the "DataView" section when dropping the
// FLAG_harmony_bigint.
Handle<JSObject> dataview_prototype(
JSObject::cast(native_context()->data_view_fun()->instance_prototype()));
SimpleInstallFunction(dataview_prototype, "getBigInt64",
Builtins::kDataViewPrototypeGetBigInt64, 1, false);
SimpleInstallFunction(dataview_prototype, "setBigInt64",
Builtins::kDataViewPrototypeSetBigInt64, 2, false);
SimpleInstallFunction(dataview_prototype, "getBigUint64",
Builtins::kDataViewPrototypeGetBigUint64, 1, false);
SimpleInstallFunction(dataview_prototype, "setBigUint64",
Builtins::kDataViewPrototypeSetBigUint64, 2, false);
}
#ifdef V8_INTL_SUPPORT
void Genesis::InitializeGlobal_harmony_number_format_to_parts() {
if (!FLAG_harmony_number_format_to_parts) return;
Handle<JSObject> number_format_prototype(JSObject::cast(
native_context()->intl_number_format_function()->prototype()));
Handle<String> name = factory()->InternalizeUtf8String("formatToParts");
InstallFunction(number_format_prototype,
SimpleCreateFunction(
isolate(), name,
Builtins::kNumberFormatPrototypeFormatToParts, 1, false),
name);
}
void Genesis::InitializeGlobal_harmony_plural_rules() {
if (!FLAG_harmony_plural_rules) return;
Handle<JSFunction> plural_rules(
native_context()->intl_plural_rules_function());
Handle<JSObject> intl = Handle<JSObject>::cast(
JSReceiver::GetProperty(
Handle<JSReceiver>(native_context()->global_object()),
factory()->InternalizeUtf8String("Intl"))
.ToHandleChecked());
JSObject::AddProperty(intl, factory()->InternalizeUtf8String("PluralRules"),
plural_rules, DONT_ENUM);
}
#endif // V8_INTL_SUPPORT
Handle<JSFunction> Genesis::CreateArrayBuffer(
Handle<String> name, ArrayBufferKind array_buffer_kind) {
// Create the %ArrayBufferPrototype%
// Setup the {prototype} with the given {name} for @@toStringTag.
Handle<JSObject> prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
JSObject::AddProperty(prototype, factory()->to_string_tag_symbol(), name,
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY));
// Allocate the constructor with the given {prototype}.
Handle<JSFunction> array_buffer_fun =
CreateFunction(isolate(), name, JS_ARRAY_BUFFER_TYPE,
JSArrayBuffer::kSizeWithEmbedderFields, 0, prototype,
Builtins::kArrayBufferConstructor);
Handle<Code> code = BUILTIN_CODE(isolate(), JSBuiltinsConstructStub);
array_buffer_fun->shared()->SetConstructStub(*code);
array_buffer_fun->shared()->DontAdaptArguments();
array_buffer_fun->shared()->set_length(1);
// Install the "constructor" property on the {prototype}.
JSObject::AddProperty(prototype, factory()->constructor_string(),
array_buffer_fun, DONT_ENUM);
switch (array_buffer_kind) {
case ARRAY_BUFFER:
SimpleInstallFunction(array_buffer_fun, factory()->isView_string(),
Builtins::kArrayBufferIsView, 1, true, DONT_ENUM,
kArrayBufferIsView);
// Install the "byteLength" getter on the {prototype}.
SimpleInstallGetter(prototype, factory()->byte_length_string(),
Builtins::kArrayBufferPrototypeGetByteLength, false,
BuiltinFunctionId::kArrayBufferByteLength);
SimpleInstallFunction(prototype, "slice",
Builtins::kArrayBufferPrototypeSlice, 2, true);
break;
case SHARED_ARRAY_BUFFER:
// Install the "byteLength" getter on the {prototype}.
SimpleInstallGetter(prototype, factory()->byte_length_string(),
Builtins::kSharedArrayBufferPrototypeGetByteLength,
false,
BuiltinFunctionId::kSharedArrayBufferByteLength);
SimpleInstallFunction(prototype, "slice",
Builtins::kSharedArrayBufferPrototypeSlice, 2,
true);
break;
}
return array_buffer_fun;
}
Handle<JSFunction> Genesis::InstallInternalArray(Handle<JSObject> target,
const char* name,
ElementsKind elements_kind) {
// --- I n t e r n a l A r r a y ---
// An array constructor on the builtins object that works like
// the public Array constructor, except that its prototype
// doesn't inherit from Object.prototype.
// To be used only for internal work by builtins. Instances
// must not be leaked to user code.
Handle<JSObject> prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
Handle<JSFunction> array_function =
InstallFunction(target, name, JS_ARRAY_TYPE, JSArray::kSize, 0, prototype,
Builtins::kInternalArrayConstructor);
InternalArrayConstructorStub internal_array_constructor_stub(isolate());
Handle<Code> code = internal_array_constructor_stub.GetCode();
array_function->shared()->SetConstructStub(*code);
array_function->shared()->DontAdaptArguments();
Handle<Map> original_map(array_function->initial_map());
Handle<Map> initial_map = Map::Copy(original_map, "InternalArray");
initial_map->set_elements_kind(elements_kind);
JSFunction::SetInitialMap(array_function, initial_map, prototype);
// Make "length" magic on instances.
Map::EnsureDescriptorSlack(initial_map, 1);
PropertyAttributes attribs = static_cast<PropertyAttributes>(
DONT_ENUM | DONT_DELETE);
{ // Add length.
Descriptor d = Descriptor::AccessorConstant(
factory()->length_string(), factory()->array_length_accessor(),
attribs);
initial_map->AppendDescriptor(&d);
}
return array_function;
}
bool Genesis::InstallNatives(GlobalContextType context_type) {
HandleScope scope(isolate());
// Set up the utils object as shared container between native scripts.
Handle<JSObject> utils = factory()->NewJSObject(isolate()->object_function());
JSObject::NormalizeProperties(utils, CLEAR_INOBJECT_PROPERTIES, 16,
"utils container for native scripts");
native_context()->set_natives_utils_object(*utils);
// Set up the extras utils object as a shared container between native
// scripts and extras. (Extras consume things added there by native scripts.)
Handle<JSObject> extras_utils =
factory()->NewJSObject(isolate()->object_function());
native_context()->set_extras_utils_object(*extras_utils);
InstallInternalArray(extras_utils, "InternalPackedArray", PACKED_ELEMENTS);
// v8.createPromise(parent)
Handle<JSFunction> promise_internal_constructor =
SimpleCreateFunction(isolate(), factory()->empty_string(),
Builtins::kPromiseInternalConstructor, 1, true);
promise_internal_constructor->shared()->set_native(false);
InstallFunction(extras_utils, promise_internal_constructor,
factory()->NewStringFromAsciiChecked("createPromise"));
// v8.rejectPromise(promise, reason)
Handle<JSFunction> promise_internal_reject =
SimpleCreateFunction(isolate(), factory()->empty_string(),
Builtins::kPromiseInternalReject, 2, true);
promise_internal_reject->shared()->set_native(false);
InstallFunction(extras_utils, promise_internal_reject,
factory()->NewStringFromAsciiChecked("rejectPromise"));
// v8.resolvePromise(promise, resolution)
Handle<JSFunction> promise_internal_resolve =
SimpleCreateFunction(isolate(), factory()->empty_string(),
Builtins::kPromiseInternalResolve, 2, true);
promise_internal_resolve->shared()->set_native(false);
InstallFunction(extras_utils, promise_internal_resolve,
factory()->NewStringFromAsciiChecked("resolvePromise"));
InstallFunction(extras_utils, isolate()->is_promise(),
factory()->NewStringFromAsciiChecked("isPromise"));
int builtin_index = Natives::GetDebuggerCount();
// Only run prologue.js at this point.
DCHECK_EQ(builtin_index, Natives::GetIndex("prologue"));
if (!Bootstrapper::CompileBuiltin(isolate(), builtin_index++)) return false;
{
// Builtin function for OpaqueReference -- a JSValue-based object,
// that keeps its field isolated from JavaScript code. It may store
// objects, that JavaScript code may not access.
Handle<JSObject> prototype =
factory()->NewJSObject(isolate()->object_function(), TENURED);
Handle<JSFunction> opaque_reference_fun =
CreateFunction(isolate(), factory()->empty_string(), JS_VALUE_TYPE,
JSValue::kSize, 0, prototype, Builtins::kIllegal);
native_context()->set_opaque_reference_function(*opaque_reference_fun);
}
// InternalArrays should not use Smi-Only array optimizations. There are too
// many places in the C++ runtime code (e.g. RegEx) that assume that
// elements in InternalArrays can be set to non-Smi values without going
// through a common bottleneck that would make the SMI_ONLY -> FAST_ELEMENT
// transition easy to trap. Moreover, they rarely are smi-only.
{
HandleScope scope(isolate());
Handle<JSObject> utils =
Handle<JSObject>::cast(isolate()->natives_utils_object());
Handle<JSFunction> array_function =
InstallInternalArray(utils, "InternalArray", HOLEY_ELEMENTS);
native_context()->set_internal_array_function(*array_function);
}
// Run the rest of the native scripts.
while (builtin_index < Natives::GetBuiltinsCount()) {
if (!Bootstrapper::CompileBuiltin(isolate(), builtin_index++)) return false;
}
if (!CallUtilsFunction(isolate(), "PostNatives")) return false;
auto fast_template_instantiations_cache = isolate()->factory()->NewFixedArray(
TemplateInfo::kFastTemplateInstantiationsCacheSize);
native_context()->set_fast_template_instantiations_cache(
*fast_template_instantiations_cache);
auto slow_template_instantiations_cache = SimpleNumberDictionary::New(
isolate(), ApiNatives::kInitialFunctionCacheSize);
native_context()->set_slow_template_instantiations_cache(
*slow_template_instantiations_cache);
// Store the map for the %ObjectPrototype% after the natives has been compiled
// and the Object function has been set up.
{
Handle<JSFunction> object_function(native_context()->object_function());
DCHECK(JSObject::cast(object_function->initial_map()->prototype())
->HasFastProperties());
native_context()->set_object_function_prototype_map(
HeapObject::cast(object_function->initial_map()->prototype())->map());
}
// Store the map for the %StringPrototype% after the natives has been compiled
// and the String function has been set up.
Handle<JSFunction> string_function(native_context()->string_function());
JSObject* string_function_prototype =
JSObject::cast(string_function->initial_map()->prototype());
DCHECK(string_function_prototype->HasFastProperties());
native_context()->set_string_function_prototype_map(
string_function_prototype->map());
Handle<JSGlobalObject> global_object =
handle(native_context()->global_object());
// Install Global.decodeURI.
SimpleInstallFunction(global_object, "decodeURI", Builtins::kGlobalDecodeURI,
1, false, kGlobalDecodeURI);
// Install Global.decodeURIComponent.
SimpleInstallFunction(global_object, "decodeURIComponent",
Builtins::kGlobalDecodeURIComponent, 1, false,
kGlobalDecodeURIComponent);
// Install Global.encodeURI.
SimpleInstallFunction(global_object, "encodeURI", Builtins::kGlobalEncodeURI,
1, false, kGlobalEncodeURI);
// Install Global.encodeURIComponent.
SimpleInstallFunction(global_object, "encodeURIComponent",
Builtins::kGlobalEncodeURIComponent, 1, false,
kGlobalEncodeURIComponent);
// Install Global.escape.
SimpleInstallFunction(global_object, "escape", Builtins::kGlobalEscape, 1,
false, kGlobalEscape);
// Install Global.unescape.
SimpleInstallFunction(global_object, "unescape", Builtins::kGlobalUnescape, 1,
false, kGlobalUnescape);
// Install Global.eval.
{
Handle<JSFunction> eval =
SimpleInstallFunction(global_object, factory()->eval_string(),
Builtins::kGlobalEval, 1, false);
native_context()->set_global_eval_fun(*eval);
}
// Install Global.isFinite
SimpleInstallFunction(global_object, "isFinite", Builtins::kGlobalIsFinite, 1,
true, kGlobalIsFinite);
// Install Global.isNaN
SimpleInstallFunction(global_object, "isNaN", Builtins::kGlobalIsNaN, 1, true,
kGlobalIsNaN);
// Install Array builtin functions.
{
Handle<JSFunction> array_constructor(native_context()->array_function());
Handle<JSArray> proto(JSArray::cast(array_constructor->prototype()));
// Verification of important array prototype properties.
Object* length = proto->length();
CHECK(length->IsSmi());
CHECK_EQ(Smi::ToInt(length), 0);
CHECK(proto->HasSmiOrObjectElements());
// This is necessary to enable fast checks for absence of elements
// on Array.prototype and below.
proto->set_elements(heap()->empty_fixed_array());
}
// Install InternalArray.prototype.concat
{
Handle<JSFunction> array_constructor(
native_context()->internal_array_function());
Handle<JSObject> proto(JSObject::cast(array_constructor->prototype()));
SimpleInstallFunction(proto, "concat", Builtins::kArrayConcat, 1, false);
}
InstallBuiltinFunctionIds();
// Create a map for accessor property descriptors (a variant of JSObject
// that predefines four properties get, set, configurable and enumerable).
{
// AccessorPropertyDescriptor initial map.
Handle<Map> map =
factory()->NewMap(JS_OBJECT_TYPE, JSAccessorPropertyDescriptor::kSize,
TERMINAL_FAST_ELEMENTS_KIND, 4);
// Create the descriptor array for the property descriptor object.
Map::EnsureDescriptorSlack(map, 4);
{ // get
Descriptor d = Descriptor::DataField(
factory()->get_string(), JSAccessorPropertyDescriptor::kGetIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // set
Descriptor d = Descriptor::DataField(
factory()->set_string(), JSAccessorPropertyDescriptor::kSetIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // enumerable
Descriptor d =
Descriptor::DataField(factory()->enumerable_string(),
JSAccessorPropertyDescriptor::kEnumerableIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // configurable
Descriptor d = Descriptor::DataField(
factory()->configurable_string(),
JSAccessorPropertyDescriptor::kConfigurableIndex, NONE,
Representation::Tagged());
map->AppendDescriptor(&d);
}
Map::SetPrototype(map, isolate()->initial_object_prototype());
map->SetConstructor(native_context()->object_function());
native_context()->set_accessor_property_descriptor_map(*map);
}
// Create a map for data property descriptors (a variant of JSObject
// that predefines four properties value, writable, configurable and
// enumerable).
{
// DataPropertyDescriptor initial map.
Handle<Map> map =
factory()->NewMap(JS_OBJECT_TYPE, JSDataPropertyDescriptor::kSize,
TERMINAL_FAST_ELEMENTS_KIND, 4);
// Create the descriptor array for the property descriptor object.
Map::EnsureDescriptorSlack(map, 4);
{ // value
Descriptor d = Descriptor::DataField(
factory()->value_string(), JSDataPropertyDescriptor::kValueIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // writable
Descriptor d =
Descriptor::DataField(factory()->writable_string(),
JSDataPropertyDescriptor::kWritableIndex, NONE,
Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // enumerable
Descriptor d =
Descriptor::DataField(factory()->enumerable_string(),
JSDataPropertyDescriptor::kEnumerableIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
{ // configurable
Descriptor d =
Descriptor::DataField(factory()->configurable_string(),
JSDataPropertyDescriptor::kConfigurableIndex,
NONE, Representation::Tagged());
map->AppendDescriptor(&d);
}
Map::SetPrototype(map, isolate()->initial_object_prototype());
map->SetConstructor(native_context()->object_function());
native_context()->set_data_property_descriptor_map(*map);
}
// Create a constructor for RegExp results (a variant of Array that
// predefines the properties index, input, and groups).
{
// JSRegExpResult initial map.
// Find global.Array.prototype to inherit from.
Handle<JSFunction> array_constructor(native_context()->array_function());
Handle<JSObject> array_prototype(
JSObject::cast(array_constructor->instance_prototype()));
// Add initial map.
Handle<Map> initial_map = factory()->NewMap(
JS_ARRAY_TYPE, JSRegExpResult::kSize, TERMINAL_FAST_ELEMENTS_KIND,
JSRegExpResult::kInObjectPropertyCount);
initial_map->SetConstructor(*array_constructor);
// Set prototype on map.
initial_map->set_has_non_instance_prototype(false);
Map::SetPrototype(initial_map, array_prototype);
// Update map with length accessor from Array and add "index", "input" and
// "groups".
Map::EnsureDescriptorSlack(initial_map,
JSRegExpResult::kInObjectPropertyCount + 1);
// length descriptor.
{
JSFunction* array_function = native_context()->array_function();
Handle<DescriptorArray> array_descriptors(
array_function->initial_map()->instance_descriptors());
Handle<String> length = factory()->length_string();
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
int old = array_descriptors->SearchWithCache(
isolate(), *length, array_function->initial_map());
DCHECK_NE(old, DescriptorArray::kNotFound);
Descriptor d = Descriptor::AccessorConstant(
length, handle(array_descriptors->GetValue(old), isolate()),
array_descriptors->GetDetails(old).attributes());
initial_map->AppendDescriptor(&d);
}
// index descriptor.
{
Descriptor d = Descriptor::DataField(factory()->index_string(),
JSRegExpResult::kIndexIndex, NONE,
Representation::Tagged());
initial_map->AppendDescriptor(&d);
}
// input descriptor.
{
Descriptor d = Descriptor::DataField(factory()->input_string(),
JSRegExpResult::kInputIndex, NONE,
Representation::Tagged());
initial_map->AppendDescriptor(&d);
}
// groups descriptor.
{
Descriptor d = Descriptor::DataField(factory()->groups_string(),
JSRegExpResult::kGroupsIndex, NONE,
Representation::Tagged());
initial_map->AppendDescriptor(&d);
}
native_context()->set_regexp_result_map(*initial_map);
}
// Add @@iterator method to the arguments object maps.
{
PropertyAttributes attribs = DONT_ENUM;
Handle<AccessorInfo> arguments_iterator =
factory()->arguments_iterator_accessor();
{
Descriptor d = Descriptor::AccessorConstant(factory()->iterator_symbol(),
arguments_iterator, attribs);
Handle<Map> map(native_context()->sloppy_arguments_map());
Map::EnsureDescriptorSlack(map, 1);
map->AppendDescriptor(&d);
}
{
Descriptor d = Descriptor::AccessorConstant(factory()->iterator_symbol(),
arguments_iterator, attribs);
Handle<Map> map(native_context()->fast_aliased_arguments_map());
Map::EnsureDescriptorSlack(map, 1);
map->AppendDescriptor(&d);
}
{
Descriptor d = Descriptor::AccessorConstant(factory()->iterator_symbol(),
arguments_iterator, attribs);
Handle<Map> map(native_context()->slow_aliased_arguments_map());
Map::EnsureDescriptorSlack(map, 1);
map->AppendDescriptor(&d);
}
{
Descriptor d = Descriptor::AccessorConstant(factory()->iterator_symbol(),
arguments_iterator, attribs);
Handle<Map> map(native_context()->strict_arguments_map());
Map::EnsureDescriptorSlack(map, 1);
map->AppendDescriptor(&d);
}
}
return true;
}
bool Genesis::InstallExtraNatives() {
HandleScope scope(isolate());
Handle<JSObject> extras_binding =
factory()->NewJSObject(isolate()->object_function());
native_context()->set_extras_binding_object(*extras_binding);
for (int i = ExtraNatives::GetDebuggerCount();
i < ExtraNatives::GetBuiltinsCount(); i++) {
if (!Bootstrapper::CompileExtraBuiltin(isolate(), i)) return false;
}
return true;
}
bool Genesis::InstallExperimentalExtraNatives() {
for (int i = ExperimentalExtraNatives::GetDebuggerCount();
i < ExperimentalExtraNatives::GetBuiltinsCount(); i++) {
if (!Bootstrapper::CompileExperimentalExtraBuiltin(isolate(), i))
return false;
}
return true;
}
bool Genesis::InstallDebuggerNatives() {
for (int i = 0; i < Natives::GetDebuggerCount(); ++i) {
if (!Bootstrapper::CompileBuiltin(isolate(), i)) return false;
}
return true;
}
static void InstallBuiltinFunctionId(Handle<JSObject> holder,
const char* function_name,
BuiltinFunctionId id) {
Isolate* isolate = holder->GetIsolate();
Handle<Object> function_object =
JSReceiver::GetProperty(isolate, holder, function_name).ToHandleChecked();
Handle<JSFunction> function = Handle<JSFunction>::cast(function_object);
function->shared()->set_builtin_function_id(id);
}
#define INSTALL_BUILTIN_ID(holder_expr, fun_name, name) \
{ #holder_expr, #fun_name, k##name } \
,
void Genesis::InstallBuiltinFunctionIds() {
HandleScope scope(isolate());
struct BuiltinFunctionIds {
const char* holder_expr;
const char* fun_name;
BuiltinFunctionId id;
};
const BuiltinFunctionIds builtins[] = {
FUNCTIONS_WITH_ID_LIST(INSTALL_BUILTIN_ID)};
for (const BuiltinFunctionIds& builtin : builtins) {
Handle<JSObject> holder =
ResolveBuiltinIdHolder(native_context(), builtin.holder_expr);
InstallBuiltinFunctionId(holder, builtin.fun_name, builtin.id);
}
}
#undef INSTALL_BUILTIN_ID
void Genesis::InitializeNormalizedMapCaches() {
Handle<NormalizedMapCache> cache = NormalizedMapCache::New(isolate());
native_context()->set_normalized_map_cache(*cache);
}
bool Bootstrapper::InstallExtensions(Handle<Context> native_context,
v8::ExtensionConfiguration* extensions) {
BootstrapperActive active(this);
SaveContext saved_context(isolate_);
isolate_->set_context(*native_context);
return Genesis::InstallExtensions(native_context, extensions) &&
Genesis::InstallSpecialObjects(native_context);
}
bool Genesis::InstallSpecialObjects(Handle<Context> native_context) {
Isolate* isolate = native_context->GetIsolate();
// Don't install extensions into the snapshot.
if (isolate->serializer_enabled()) return true;
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<JSObject> Error = isolate->error_function();
Handle<String> name =
factory->InternalizeOneByteString(STATIC_CHAR_VECTOR("stackTraceLimit"));
Handle<Smi> stack_trace_limit(Smi::FromInt(FLAG_stack_trace_limit), isolate);
JSObject::AddProperty(Error, name, stack_trace_limit, NONE);
if (FLAG_expose_wasm) {
// Install the internal data structures into the isolate and expose on
// the global object.
WasmJs::Install(isolate, true);
} else if (FLAG_validate_asm) {
// Install the internal data structures only; these are needed for asm.js
// translated to WASM to work correctly.
WasmJs::Install(isolate, false);
}
return true;
}
static uint32_t Hash(RegisteredExtension* extension) {
return v8::internal::ComputePointerHash(extension);
}
Genesis::ExtensionStates::ExtensionStates() : map_(8) {}
Genesis::ExtensionTraversalState Genesis::ExtensionStates::get_state(
RegisteredExtension* extension) {
base::HashMap::Entry* entry = map_.Lookup(extension, Hash(extension));
if (entry == nullptr) {
return UNVISITED;
}
return static_cast<ExtensionTraversalState>(
reinterpret_cast<intptr_t>(entry->value));
}
void Genesis::ExtensionStates::set_state(RegisteredExtension* extension,
ExtensionTraversalState state) {
map_.LookupOrInsert(extension, Hash(extension))->value =
reinterpret_cast<void*>(static_cast<intptr_t>(state));
}
bool Genesis::InstallExtensions(Handle<Context> native_context,
v8::ExtensionConfiguration* extensions) {
Isolate* isolate = native_context->GetIsolate();
ExtensionStates extension_states; // All extensions have state UNVISITED.
return InstallAutoExtensions(isolate, &extension_states) &&
(!FLAG_expose_free_buffer ||
InstallExtension(isolate, "v8/free-buffer", &extension_states)) &&
(!FLAG_expose_gc ||
InstallExtension(isolate, "v8/gc", &extension_states)) &&
(!FLAG_expose_externalize_string ||
InstallExtension(isolate, "v8/externalize", &extension_states)) &&
(!FLAG_gc_stats ||
InstallExtension(isolate, "v8/statistics", &extension_states)) &&
(!FLAG_expose_trigger_failure ||
InstallExtension(isolate, "v8/trigger-failure", &extension_states)) &&
(!FLAG_trace_ignition_dispatches ||
InstallExtension(isolate, "v8/ignition-statistics",
&extension_states)) &&
InstallRequestedExtensions(isolate, extensions, &extension_states);
}
bool Genesis::InstallAutoExtensions(Isolate* isolate,
ExtensionStates* extension_states) {
for (v8::RegisteredExtension* it = v8::RegisteredExtension::first_extension();
it != nullptr; it = it->next()) {
if (it->extension()->auto_enable() &&
!InstallExtension(isolate, it, extension_states)) {
return false;
}
}
return true;
}
bool Genesis::InstallRequestedExtensions(Isolate* isolate,
v8::ExtensionConfiguration* extensions,
ExtensionStates* extension_states) {
for (const char** it = extensions->begin(); it != extensions->end(); ++it) {
if (!InstallExtension(isolate, *it, extension_states)) return false;
}
return true;
}
// Installs a named extension. This methods is unoptimized and does
// not scale well if we want to support a large number of extensions.
bool Genesis::InstallExtension(Isolate* isolate,
const char* name,
ExtensionStates* extension_states) {
for (v8::RegisteredExtension* it = v8::RegisteredExtension::first_extension();
it != nullptr; it = it->next()) {
if (strcmp(name, it->extension()->name()) == 0) {
return InstallExtension(isolate, it, extension_states);
}
}
return Utils::ApiCheck(false,
"v8::Context::New()",
"Cannot find required extension");
}
bool Genesis::InstallExtension(Isolate* isolate,
v8::RegisteredExtension* current,
ExtensionStates* extension_states) {
HandleScope scope(isolate);
if (extension_states->get_state(current) == INSTALLED) return true;
// The current node has already been visited so there must be a
// cycle in the dependency graph; fail.
if (!Utils::ApiCheck(extension_states->get_state(current) != VISITED,
"v8::Context::New()",
"Circular extension dependency")) {
return false;
}
DCHECK(extension_states->get_state(current) == UNVISITED);
extension_states->set_state(current, VISITED);
v8::Extension* extension = current->extension();
// Install the extension's dependencies
for (int i = 0; i < extension->dependency_count(); i++) {
if (!InstallExtension(isolate,
extension->dependencies()[i],
extension_states)) {
return false;
}
}
// We do not expect this to throw an exception. Change this if it does.
bool result = CompileExtension(isolate, extension);
DCHECK(isolate->has_pending_exception() != result);
if (!result) {
// We print out the name of the extension that fail to install.
// When an error is thrown during bootstrapping we automatically print
// the line number at which this happened to the console in the isolate
// error throwing functionality.
base::OS::PrintError("Error installing extension '%s'.\n",
current->extension()->name());
isolate->clear_pending_exception();
}
extension_states->set_state(current, INSTALLED);
return result;
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
bool Genesis::ConfigureGlobalObjects(
v8::Local<v8::ObjectTemplate> global_proxy_template) {
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
Handle<JSObject> global_proxy(
JSObject::cast(native_context()->global_proxy()));
Handle<JSObject> global_object(
JSObject::cast(native_context()->global_object()));
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (!global_proxy_template.IsEmpty()) {
// Configure the global proxy object.
Handle<ObjectTemplateInfo> global_proxy_data =
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
v8::Utils::OpenHandle(*global_proxy_template);
if (!ConfigureApiObject(global_proxy, global_proxy_data)) return false;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Configure the global object.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
Handle<FunctionTemplateInfo> proxy_constructor(
FunctionTemplateInfo::cast(global_proxy_data->constructor()));
if (!proxy_constructor->prototype_template()->IsUndefined(isolate())) {
Handle<ObjectTemplateInfo> global_object_data(
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ObjectTemplateInfo::cast(proxy_constructor->prototype_template()));
if (!ConfigureApiObject(global_object, global_object_data)) return false;
}
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
JSObject::ForceSetPrototype(global_proxy, global_object);
native_context()->set_array_buffer_map(
native_context()->array_buffer_fun()->initial_map());
Handle<JSFunction> js_map_fun(native_context()->js_map_fun());
Handle<JSFunction> js_set_fun(native_context()->js_set_fun());
// Force the Map/Set constructor to fast properties, so that we can use the
// fast paths for various things like
//
// x instanceof Map
// x instanceof Set
//
// etc. We should probably come up with a more principled approach once
// the JavaScript builtins are gone.
JSObject::MigrateSlowToFast(js_map_fun, 0, "Bootstrapping");
JSObject::MigrateSlowToFast(js_set_fun, 0, "Bootstrapping");
native_context()->set_js_map_map(js_map_fun->initial_map());
native_context()->set_js_set_map(js_set_fun->initial_map());
Handle<JSFunction> js_array_constructor(native_context()->array_function());
Handle<JSObject> js_array_prototype(
JSObject::cast(js_array_constructor->instance_prototype()));
native_context()->set_initial_array_prototype_map(js_array_prototype->map());
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
return true;
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
bool Genesis::ConfigureApiObject(Handle<JSObject> object,
Handle<ObjectTemplateInfo> object_template) {
DCHECK(!object_template.is_null());
DCHECK(FunctionTemplateInfo::cast(object_template->constructor())
->IsTemplateFor(object->map()));;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
MaybeHandle<JSObject> maybe_obj =
ApiNatives::InstantiateObject(object_template);
Handle<JSObject> obj;
if (!maybe_obj.ToHandle(&obj)) {
DCHECK(isolate()->has_pending_exception());
isolate()->clear_pending_exception();
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
return false;
}
TransferObject(obj, object);
return true;
}
void Genesis::TransferNamedProperties(Handle<JSObject> from,
Handle<JSObject> to) {
// If JSObject::AddProperty asserts due to already existing property,
// it is likely due to both global objects sharing property name(s).
// Merging those two global objects is impossible.
// The global template must not create properties that already exist
// in the snapshotted global object.
if (from->HasFastProperties()) {
Handle<DescriptorArray> descs =
Handle<DescriptorArray>(from->map()->instance_descriptors());
for (int i = 0; i < from->map()->NumberOfOwnDescriptors(); i++) {
PropertyDetails details = descs->GetDetails(i);
if (details.location() == kField) {
if (details.kind() == kData) {
HandleScope inner(isolate());
Handle<Name> key = Handle<Name>(descs->GetKey(i));
FieldIndex index = FieldIndex::ForDescriptor(from->map(), i);
Handle<Object> value =
JSObject::FastPropertyAt(from, details.representation(), index);
JSObject::AddProperty(to, key, value, details.attributes());
} else {
DCHECK_EQ(kAccessor, details.kind());
UNREACHABLE();
}
} else {
DCHECK_EQ(kDescriptor, details.location());
if (details.kind() == kData) {
DCHECK(!FLAG_track_constant_fields);
HandleScope inner(isolate());
Handle<Name> key = Handle<Name>(descs->GetKey(i));
Handle<Object> value(descs->GetValue(i), isolate());
JSObject::AddProperty(to, key, value, details.attributes());
} else {
DCHECK_EQ(kAccessor, details.kind());
Handle<Name> key(descs->GetKey(i));
LookupIterator it(to, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
// If the property is already there we skip it
if (it.IsFound()) continue;
HandleScope inner(isolate());
DCHECK(!to->HasFastProperties());
// Add to dictionary.
Handle<Object> value(descs->GetValue(i), isolate());
PropertyDetails d(kAccessor, details.attributes(),
PropertyCellType::kMutable);
JSObject::SetNormalizedProperty(to, key, value, d);
}
}
}
} else if (from->IsJSGlobalObject()) {
// Copy all keys and values in enumeration order.
Handle<GlobalDictionary> properties(
JSGlobalObject::cast(*from)->global_dictionary());
Handle<FixedArray> indices = GlobalDictionary::IterationIndices(properties);
for (int i = 0; i < indices->length(); i++) {
int index = Smi::ToInt(indices->get(i));
// If the property is already there we skip it.
Handle<PropertyCell> cell(properties->CellAt(index));
Handle<Name> key(cell->name(), isolate());
LookupIterator it(to, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
if (it.IsFound()) continue;
// Set the property.
Handle<Object> value(cell->value(), isolate());
if (value->IsTheHole(isolate())) continue;
PropertyDetails details = cell->property_details();
if (details.kind() != kData) continue;
JSObject::AddProperty(to, key, value, details.attributes());
}
} else {
// Copy all keys and values in enumeration order.
Handle<NameDictionary> properties =
Handle<NameDictionary>(from->property_dictionary());
Handle<FixedArray> key_indices =
NameDictionary::IterationIndices(properties);
for (int i = 0; i < key_indices->length(); i++) {
int key_index = Smi::ToInt(key_indices->get(i));
Object* raw_key = properties->KeyAt(key_index);
DCHECK(properties->IsKey(isolate(), raw_key));
DCHECK(raw_key->IsName());
// If the property is already there we skip it.
Handle<Name> key(Name::cast(raw_key), isolate());
LookupIterator it(to, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
if (it.IsFound()) continue;
// Set the property.
Handle<Object> value =
Handle<Object>(properties->ValueAt(key_index), isolate());
DCHECK(!value->IsCell());
DCHECK(!value->IsTheHole(isolate()));
PropertyDetails details = properties->DetailsAt(key_index);
DCHECK_EQ(kData, details.kind());
JSObject::AddProperty(to, key, value, details.attributes());
}
}
}
void Genesis::TransferIndexedProperties(Handle<JSObject> from,
Handle<JSObject> to) {
// Cloning the elements array is sufficient.
Handle<FixedArray> from_elements =
Handle<FixedArray>(FixedArray::cast(from->elements()));
Handle<FixedArray> to_elements = factory()->CopyFixedArray(from_elements);
to->set_elements(*to_elements);
}
void Genesis::TransferObject(Handle<JSObject> from, Handle<JSObject> to) {
HandleScope outer(isolate());
DCHECK(!from->IsJSArray());
DCHECK(!to->IsJSArray());
TransferNamedProperties(from, to);
TransferIndexedProperties(from, to);
// Transfer the prototype (new map is needed).
Handle<Object> proto(from->map()->prototype(), isolate());
JSObject::ForceSetPrototype(to, proto);
}
Genesis::Genesis(
Isolate* isolate, MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
size_t context_snapshot_index,
v8::DeserializeEmbedderFieldsCallback embedder_fields_deserializer,
GlobalContextType context_type)
: isolate_(isolate), active_(isolate->bootstrapper()) {
result_ = Handle<Context>::null();
global_proxy_ = Handle<JSGlobalProxy>::null();
// Before creating the roots we must save the context and restore it
// on all function exits.
SaveContext saved_context(isolate);
// The deserializer needs to hook up references to the global proxy.
// Create an uninitialized global proxy now if we don't have one
// and initialize it later in CreateNewGlobals.
Handle<JSGlobalProxy> global_proxy;
if (!maybe_global_proxy.ToHandle(&global_proxy)) {
int instance_size = 0;
if (context_snapshot_index > 0) {
// The global proxy function to reinitialize this global proxy is in the
// context that is yet to be deserialized. We need to prepare a global
// proxy of the correct size.
Object* size = isolate->heap()->serialized_global_proxy_sizes()->get(
static_cast<int>(context_snapshot_index) - 1);
instance_size = Smi::ToInt(size);
} else {
instance_size = JSGlobalProxy::SizeWithEmbedderFields(
global_proxy_template.IsEmpty()
? 0
: global_proxy_template->InternalFieldCount());
}
global_proxy =
isolate->factory()->NewUninitializedJSGlobalProxy(instance_size);
}
// We can only de-serialize a context if the isolate was initialized from
// a snapshot. Otherwise we have to build the context from scratch.
// Also create a context from scratch to expose natives, if required by flag.
if (!isolate->initialized_from_snapshot() ||
!Snapshot::NewContextFromSnapshot(isolate, global_proxy,
context_snapshot_index,
embedder_fields_deserializer)
.ToHandle(&native_context_)) {
native_context_ = Handle<Context>();
}
if (!native_context().is_null()) {
AddToWeakNativeContextList(*native_context());
isolate->set_context(*native_context());
isolate->counters()->contexts_created_by_snapshot()->Increment();
if (context_snapshot_index == 0) {
Handle<JSGlobalObject> global_object =
CreateNewGlobals(global_proxy_template, global_proxy);
HookUpGlobalObject(global_object);
if (!ConfigureGlobalObjects(global_proxy_template)) return;
} else {
// The global proxy needs to be integrated into the native context.
HookUpGlobalProxy(global_proxy);
}
DCHECK(!global_proxy->IsDetachedFrom(native_context()->global_object()));
} else {
base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start();
DCHECK_EQ(0u, context_snapshot_index);
// We get here if there was no context snapshot.
CreateRoots();
Handle<JSFunction> empty_function = CreateEmptyFunction(isolate);
CreateSloppyModeFunctionMaps(empty_function);
CreateStrictModeFunctionMaps(empty_function);
CreateObjectFunction(empty_function);
CreateIteratorMaps(empty_function);
[async-iteration] implement AsyncGenerator - Introduce new struct AsyncGeneratorRequest, which holds information pertinent to resuming execution of an AsyncGenerator, such as the Promise associated with the async generator request. It is intended to be used as a singly linked list, and holds a pointer to the next item in te queue. - Introduce JSAsyncGeneratorObject (subclass of JSGeneratorObject), which includes several new internal fields (`queue` which contains a singly linked list of AsyncGeneratorRequest objects, and `await_input` which contains the sent value from an Await expression (This is necessary to prevent function.sent (used by yield*) from having the sent value observably overwritten during execution). - Modify SuspendGenerator to accept a set of Flags, which indicate whether the suspend is for a Yield or Await, and whether it takes place on an async generator or ES6 generator. - Introduce interpreter intrinsics and TF intrinsic lowering for accessing the await input of an async generator - Modify the JSGeneratorStore operator to understand whether or not it's suspending for a normal yield, or an AsyncGenerator Await. This ensures appropriate registers are stored. - Add versions of ResumeGeneratorTrampoline which store the input value in a different field depending on wether it's an AsyncGenerator Await resume, or an ordinary resume. Also modifies whether debug code will assert that the generator object is a JSGeneratorObject or a JSAsyncGeneratorObject depending on the resume type. BUG=v8:5855 R=bmeurer@chromium.org, rmcilroy@chromium.org, jgruber@chromium.org, littledan@chromium.org, neis@chromium.org TBR=marja@chromium.org Change-Id: I9d58df1d344465fc937fe7eed322424204497187 Reviewed-on: https://chromium-review.googlesource.com/446961 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#44240}
2017-03-29 13:41:45 +00:00
CreateAsyncIteratorMaps(empty_function);
CreateAsyncFunctionMaps(empty_function);
Handle<JSGlobalObject> global_object =
CreateNewGlobals(global_proxy_template, global_proxy);
InitializeGlobal(global_object, empty_function, context_type);
InitializeNormalizedMapCaches();
if (!InstallNatives(context_type)) return;
if (!InstallExtraNatives()) return;
if (!ConfigureGlobalObjects(global_proxy_template)) return;
isolate->counters()->contexts_created_from_scratch()->Increment();
if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
i::PrintF("[Initializing context from scratch took %0.3f ms]\n", ms);
}
}
// Install experimental natives. Do not include them into the
// snapshot as we should be able to turn them off at runtime. Re-installing
// them after they have already been deserialized would also fail.
if (context_type == FULL_CONTEXT) {
if (!isolate->serializer_enabled()) {
InitializeExperimentalGlobal();
if (FLAG_experimental_extras) {
if (!InstallExperimentalExtraNatives()) return;
}
// Store String.prototype's map again in case it has been changed by
// experimental natives.
Handle<JSFunction> string_function(native_context()->string_function());
JSObject* string_function_prototype =
JSObject::cast(string_function->initial_map()->prototype());
DCHECK(string_function_prototype->HasFastProperties());
native_context()->set_string_function_prototype_map(
string_function_prototype->map());
}
} else if (context_type == DEBUG_CONTEXT) {
DCHECK(!isolate->serializer_enabled());
InitializeExperimentalGlobal();
if (!InstallDebuggerNatives()) return;
}
if (FLAG_disallow_code_generation_from_strings) {
native_context()->set_allow_code_gen_from_strings(
isolate->heap()->false_value());
}
ConfigureUtilsObject(context_type);
// We created new functions, which may require debug instrumentation.
if (isolate->debug()->is_active()) {
isolate->debug()->InstallDebugBreakTrampoline();
}
native_context()->ResetErrorsThrown();
result_ = native_context();
}
Genesis::Genesis(Isolate* isolate,
MaybeHandle<JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template)
: isolate_(isolate), active_(isolate->bootstrapper()) {
result_ = Handle<Context>::null();
global_proxy_ = Handle<JSGlobalProxy>::null();
// Before creating the roots we must save the context and restore it
// on all function exits.
SaveContext saved_context(isolate);
const int proxy_size = JSGlobalProxy::SizeWithEmbedderFields(
global_proxy_template->InternalFieldCount());
Handle<JSGlobalProxy> global_proxy;
if (!maybe_global_proxy.ToHandle(&global_proxy)) {
global_proxy = factory()->NewUninitializedJSGlobalProxy(proxy_size);
}
// Create a remote object as the global object.
Handle<ObjectTemplateInfo> global_proxy_data =
Utils::OpenHandle(*global_proxy_template);
Handle<FunctionTemplateInfo> global_constructor(
FunctionTemplateInfo::cast(global_proxy_data->constructor()));
Handle<ObjectTemplateInfo> global_object_template(
ObjectTemplateInfo::cast(global_constructor->prototype_template()));
Handle<JSObject> global_object =
ApiNatives::InstantiateRemoteObject(
global_object_template).ToHandleChecked();
// (Re)initialize the global proxy object.
DCHECK_EQ(global_proxy_data->embedder_field_count(),
global_proxy_template->InternalFieldCount());
Handle<Map> global_proxy_map = isolate->factory()->NewMap(
JS_GLOBAL_PROXY_TYPE, proxy_size, TERMINAL_FAST_ELEMENTS_KIND);
global_proxy_map->set_is_access_check_needed(true);
global_proxy_map->set_has_hidden_prototype(true);
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
global_proxy_map->set_may_have_interesting_symbols(true);
// A remote global proxy has no native context.
global_proxy->set_native_context(heap()->null_value());
// Configure the hidden prototype chain of the global proxy.
JSObject::ForceSetPrototype(global_proxy, global_object);
global_proxy->map()->SetConstructor(*global_constructor);
// TODO(dcheng): This is a hack. Why does this need to be manually called
// here? Line 4812 should have taken care of it?
global_proxy->map()->set_has_hidden_prototype(true);
global_proxy_ = global_proxy;
}
// Support for thread preemption.
// Reserve space for statics needing saving and restoring.
int Bootstrapper::ArchiveSpacePerThread() {
return sizeof(NestingCounterType);
}
// Archive statics that are thread-local.
char* Bootstrapper::ArchiveState(char* to) {
*reinterpret_cast<NestingCounterType*>(to) = nesting_;
nesting_ = 0;
return to + sizeof(NestingCounterType);
}
// Restore statics that are thread-local.
char* Bootstrapper::RestoreState(char* from) {
nesting_ = *reinterpret_cast<NestingCounterType*>(from);
return from + sizeof(NestingCounterType);
}
// Called when the top-level V8 mutex is destroyed.
void Bootstrapper::FreeThreadResources() {
DCHECK(!IsActive());
}
} // namespace internal
} // namespace v8