Folded osd/patchBasisCommon.h and osd/patchBasisCommonEval.h into the
single header file osd/patchBasis.h and renamed osd/PatchBasisCommonTypes.h
to osd/patchBasisTypes.h
Moved these into the OpenSubdiv::Osd namespace when compiled for C++ and
added a brief comment describing the intended use cases for this code.
This updates the patch basis evaluation functions in Osd
to match recent changes to far/patchBasis.
This also exposes a common facility for dealing with PatchCoord,
PatchArray, and PatchParam. These are exposed as global functions
operating on struct data, since C++ style class methods are not
supported by all of the Osd shader and kernel execution envirionments.
Changes:
- Merged far/patchBasis.cpp to osd/patchBasisCommon{,Types,Eval}.h
- Exposed PatchCoord, PatchArray, and PatchParam to Osd kernels
- exposed OsdEvaluatePatchBasis and OsdEvaluatePatchBasisNormalized
- Updated CPU, TBB, Omp, CUDA, OpenCL, GLSL, HLSL, and Metal evaluators
- Updated glFVarViewer
- individual basis functions now purely normalized with no PatchParam
- two new higher level functions deal with patch type and PatchParam
- updated Far::PatchTable and Osd evaluators that used old methods
Now that Far::LimitStencilTable and Far::PatchTable
support evaluation of 1st and 2nd derivatives the
Osd Evaluator API for evaluating stencils and patches
has been updated to match.
Implemented EvalPatchesVarying and EvalPatchesFaceVarying
methods for Osd::*Evaluator classes, i.e. cpu, omp, tbb,
GLXFB, GLSLCompute, OpenCL, and CUDA.
Also, the GPU Kernel implementations have been updated to use
the common patchBasis implementation instead of re-implementing
methods to compute patch basis weights locally.
This reverts most of the recent changes to the
organization of Far::PatchParam. In particular,
the core parameterization is no longer exposed
as a speparate PatchParamBase class.
We'll revisit this again in a later release, but
for now we will stick with a more straight
forward implementation.
These methods now compute the patch basis in terms
of Far::PatchParamBase instead of Far::PatchParam
This allows these methods to be more easily reused
for evaluating patches for face-varying data.
This change restores the use of 4-bits in Far::PatchParam to
encode the refinement level of a patch. This restores one bit
that was stolen to allow for more general encoding of boundary
edge and transition edge masks. In order to accommodate all
of the bits that are required, the transition edge mask bits
are now stored along with the faceId bits.
Also, accessors are now exposed directly as members of Far::PatchParam
and the internal bitfield class is no longer directly exposed.
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
In OpenSubdiv 2.x, we encapsulated subdivision tables into
compute context in osd layer since those tables are order-dependent
and have to be applied in a certain manner. In 3.0, we adopted stencil
table based refinement. It's more simple and such an encapsulation is
no longer needed. Also 2.0 API has several ownership issues of GPU
kernel caching, and forces unnecessary instantiation of controllers
even though the cpu kernels typically don't need instances unlike GPU ones.
This change completely revisit osd client facing APIs. All contexts and
controllers were replaced with device-specific tables and evaluators.
While we can still use consistent API across various device backends,
unnecessary complexities have been removed. For example, cpu evaluator
is just a set of static functions and also there's no need to replicate
FarStencilTables to ComputeContext.
Also the new API delegates the ownership of compiled GPU kernels
to clients, for the better management of resources especially in multiple
GPU environment.
In addition to integrating ComputeController and EvalStencilController into
a single function Evaluator::EvalStencils(), EvalLimit API is also added
into Evaluator. This is working but still in progress, and we'll make a followup
change for the complete implementation.
-some naming convention changes:
GLSLTransformFeedback to GLXFBEvaluator
GLSLCompute to GLComputeEvaluator
-move LimitLocation struct into examples/glEvalLimit.
We're still discussing patch evaluation interface. Basically we'd like
to tease all ptex-specific parametrization out of far/osd layer.
TODO:
-implments EvalPatches() in the right way
-derivative evaluation API is still interim.
-VertexBufferDescriptor needs a better API to advance its location
-synchronization mechanism is not ideal (too global).
-OsdMesh class is hacky. need to fix it.
Changing all device kernels to take two buffer identifiers for
source and destination separately.
This change is an intermediate step toward upcoming context/controller
refactoring.
Previously we have a limitation that the source and destination
vertex buffer has to be a single buffer, since the subdivision
kernels are iteratively applied by level.
With stencil tables, we don't have such a limitation any more,
so we may want to apply stencils from seprate source buffer to
another.
To specifiy the output location within the destination buffer,
we can use VertexBufferDescriptor.offset. This allows us not only
configuring arbitrary batching scheme, but also relaxing the
limitation that source and destination buffers are in same
interleaved layout. For examples, we could include derivatives only
in the destination buffer, which doesn't need to be allocated in
the source buffer.
Sync'ing the 'dev' branch with the 'feature_3.0dev' branch at commit 68c6d11fc36761ae1a5e6cdc3457be16f2e9704a
The branch 'feature_3.0dev' is now locked and preserved for historical purposes.
All kernels take offset/length/stride to apply subdivision partially in each vertex elements.
Also the offset can be used for client-based VBO aggregation, without modifying index buffers.
This is useful for topology sharing, in conjunction with glDrawElementsBaseVertex etc.
However, gregory patch shader fetches vertex buffer via texture buffer, which index should also
be offsetted too. Although gl_BaseVertexARB extension should be able to do that job, it's a
relatively new extension. So we use OsdBaseVertex() call to mitigate the compatibility
issue as clients can provide it in their way at least for the time being.
New text:
Copyright 2013 Pixar
Licensed under the Apache License, Version 2.0 (the "Apache License")
with the following modification; you may not use this file except in
compliance with the Apache License and the following modification to it:
Section 6. Trademarks. is deleted and replaced with:
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor
and its affiliates, except as required to comply with Section 4(c) of
the License and to reproduce the content of the NOTICE file.
You may obtain a copy of the Apache License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the Apache License with the above modification is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the Apache License for the specific
language governing permissions and limitations under the Apache License.