We can trivially deal with cases where the loop tests are simply
inverted. We can also deal with cases where the condition block branches
to the merge block via other noop blocks.
This makes SPIR-V codegen easier when targeting SPIRV-Cross.
This adds a new C API for SPIRV-Cross which is intended to be stable,
both API and ABI wise.
The C++ API has been refactored a bit to make the C wrapper easier and
cleaner to write. Especially the vertex attribute / resource interfaces
for MSL has been rewritten to avoid taking mutable pointers into the
interface. This would be very annoying to wrap and it didn't fit well
with the rest of the C++ API to begin with. While doing this, I went
ahead and removed all the old deprecated interfaces.
The CMake build system has also seen an overhaul.
It is now possible to build static/shared/CLI separately with -D
options.
The shared library only exposes the C API, as it is the only ABI-stable
API. pkg-configs as well as CMake modules are exported and installed for
the shared library configuration.
We were using std::locale::global() to force a C locale which is not
safe when SPIRV-Cross is used in a multi-threaded environment.
To fix this, we could tap into various per-platform specific locale
handling to get safe thread-local locales, but since locales only affect
the decimal point in floats, we simply query the locale instead and do
the necessary radix replacement ourselves, without touching the locale.
This should be much safer and cleaner than the alternative.
In the bizarre case where the ID of a loaded opaque type aliased with a
literal which was used as part of another texturing instruction, we
could end up with a case where domination analysis assumed the loaded
opaque type needed to be moved to a different scope.
Fix the issue by never doing dominance analysis for opaque temporaries,
and be more robust when analyzing texturing instructions.
Also make sure reflection output is deterministic.
This patch slightly alterered output for some unknown reason, but it came from an
unordered_map, so it's fine.
These are mapped to Metal's post-tessellation vertex functions. The
semantic difference is much less here, so this change should be simpler
than the previous one. There are still some hairy parts, though.
In MSL, the array of control point data is represented by a special
type, `patch_control_point<T>`, where `T` is a valid stage-input type.
This object must be embedded inside the patch-level stage input. For
this reason, I've added a new type to the type system to represent this.
On Mac, the number of input control points to the function must be
specified in the `patch()` attribute. This is optional on iOS.
SPIRV-Cross takes this from the `OutputVertices` execution mode; the
intent is that if it's not set in the shader itself, MoltenVK will set
it from the tessellation control shader. If you're translating these
offline, you'll have to update the control point count manually, since
this number must match the number that is passed to the
`drawPatches:...` family of methods.
Fixes#120.
These are transpiled to kernel functions that write the output of the
shader to three buffers: one for per-vertex varyings, one for per-patch
varyings, and one for the tessellation levels. This structure is
mandated by the way Metal works, where the tessellation factors are
supplied to the draw method in their own buffer, while the per-patch and
per-vertex varyings are supplied as though they were vertex attributes;
since they have different step rates, they must be in separate buffers.
The kernel is expected to be run in a workgroup whose size is the
greater of the number of input or output control points. It uses Metal's
support for vertex-style stage input to a compute shader to get the
input values; therefore, at least one instance must run per input point.
Meanwhile, Vulkan mandates that it run at least once per output point.
Overrunning the output array is a concern, but any values written should
either be discarded or overwritten by subsequent patches. I'm probably
going to put some slop space in the buffer when I integrate this into
MoltenVK to be on the safe side.
A flat array was consuming way too much memory and was far too slow to
initialize properly with a very large ID bound (8 million IDs, showed up as #1 hotspot in perf).
Meta struct does not have to be in-order as we never iterate over it in
a meaningful way, so using a hashmap here is reasonable. Very few IDs
should need decorations or meta-data, so this should also be a quite
decent memory save.
For the pathological case, a 6x uplift was observed.
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.
This allows shaders to declare and use pointer-type variables. Pointers
may be loaded and stored, be the result of an `OpSelect`, be passed to
and returned from functions, and even be passed as inputs to the `OpPhi`
instruction. All types of pointers may be used as variable pointers.
Variable pointers to storage buffers and workgroup memory may even be
loaded from and stored to, as though they were ordinary variables. In
addition, this enables using an interior pointer to an array as though
it were an array pointer itself using the `OpPtrAccessChain`
instruction.
This is a rather large and involved change, mostly because this is
somewhat complicated with a lot of moving parts. It's a wonder
SPIRV-Cross's output is largely unchanged. Indeed, many of these changes
are to accomplish exactly that! Perhaps the largest source of changes
was the violation of the assumption that, when emitting types, the
pointer type didn't matter.
One of the test cases added by the change doesn't optimize very well;
the output of `spirv-opt` here is invalid SPIR-V. I need to file a bug
with SPIRV-Tools about this.
I wanted to test that variable pointers to images worked too, but I
couldn't figure out how to propagate the access qualifier properly--in
MSL, it's part of the type, so getting this right is important. I've
punted on that for now.
A block name cannot alias with any name in its own scope,
and it cannot alias with any other "global" name.
To solve this, we need to complicate the name cache updates a little bit
where we have a "primary" namespace and "secondary" namespace.
This is required to avoid relying on complex sub-expression elimination
in compilers, and generates cleaner code.
The problem case is if a complex expression is used in an access chain,
like:
Composite comp = buffer[texture(...)];
vec4 a = comp.a + comp.b + comp.c;
Before, we did not have common subexpression tracking for
OpLoad/OpAccessChain, so we easily ended up with code like:
vec4 a = buffer[texture(...)].a + buffer[texture(...)].b + buffer[texture(...)].c;
A good compiler will optimize this, but we should not rely on it, and
forcing texture(...) to a temporary also looks better.
The solution is to add a vector "implied_expression_reads", which works
similarly to expression_dependencies. We also need an extra mechanism in
to_expression which lets us skip expression read checking and do it
later. E.g. for expr -> access chain -> load, we should only trigger
a read of expr when using the loaded expression.
This is a large refactor which splits out the SPIR-V parser from
Compiler and moves it into its more appropriately named Parser module.
The Parser is responsible for building a ParsedIR structure which is
then consumed by one or more compilers.
Compiler can take a ParsedIR by value or move reference. This should
allow for optimal case for both multiple compilations and single
compilation scenarios.
Implement this by flattening outputs and unflattening inputs explicitly.
This allows us to pass down a single struct instead of dealing with the
insanity that would be passing down each flattened member separately.
Remove stage_uniforms_var_id.
Seems to be dead code. Naked uniforms do not exist in SPIR-V for Vulkan,
which this seems to have been intended for. It was also unused elsewhere.
Two varyings (vertex outputs/fragment inputs) might have the same
location but be in different components--e.g. the compiler may have
packed what were two different varyings into a single varying vector.
Giving both varyings the same `[[user]]` attribute won't work--it may
yield unexpected results, or flat out fail to link. We could eventually
pack such varyings into a single vector, but that would require us to
handle the case where the varyings are different types--e.g. a `float`
and a `uint` packed into the same vector. For now, it seems most
prudent to give them unique `[[user]]` locations and let Apple's
compiler work out the best way to pack them.
- Do not emit set = in GLSL, even when non-zero.
- Fix warning on tautological comparison.
- Expose get_buffer_block_flags as mentioned in reflection guide.
Deal with various query functions which require dummy sampler.
In SPIR-V, separate images are used, but GLSL (even Vulkan GLSL)
requires combined sampler images ...
SPIR-V allows names to alias if they implement different stages.
Deprecate the old interface and replace it with a new one which takes
execution modes into account.
Normally, temporary declaration must dominate any use of it,
so we generally did not need to analyze the CFG for these variables,
but there is an edge case where you have an inliner doing:
do {
create_temporary;
break;
} while(0);
use_temporary;
The inside of the loop dominates the outer scope, but we cannot emit
code like this in GLSL, so make sure we hoist these temporaries outside
the "loop".
HLSL UAVs are a bit annoying because they can share block types,
so reflection becomes rather awkward. Sometimes we will need to make
some nasty fallbacks, so add a reflection interface which lets you query
post-shader compile which names was actually declared in the shader.