bullet3/examples/SharedMemory/PhysicsServerCommandProcessor.cpp

6568 lines
249 KiB
C++
Raw Normal View History

#include "PhysicsServerCommandProcessor.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "../Extras/InverseDynamics/btMultiBodyTreeCreator.hpp"
#include "TinyRendererVisualShapeConverter.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
2016-09-29 19:07:54 +00:00
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "LinearMath/btHashMap.h"
#include "BulletInverseDynamics/MultiBodyTree.hpp"
#include "IKTrajectoryHelper.h"
#include "btBulletDynamicsCommon.h"
#include "../Utils/RobotLoggingUtil.h"
#include "LinearMath/btTransform.h"
#include "../Importers/ImportMJCFDemo/BulletMJCFImporter.h"
#include "../Extras/Serialize/BulletWorldImporter/btBulletWorldImporter.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "LinearMath/btSerializer.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryCommands.h"
#include "LinearMath/btRandom.h"
#ifdef B3_ENABLE_TINY_AUDIO
#include "../TinyAudio/b3SoundEngine.h"
#endif
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "BulletSoftBody/btSoftBodySolvers.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "BulletSoftBody/btSoftMultiBodyDynamicsWorld.h"
#include "../SoftDemo/BunnyMesh.h"
#else
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#endif
//@todo(erwincoumans) those globals are hacks for a VR demo, move this to Python/pybullet!
btVector3 gLastPickPos(0, 0, 0);
bool gCloseToKuka=false;
bool gEnableRealTimeSimVR=false;
bool gCreateDefaultRobotAssets = false;
int gInternalSimFlags = 0;
bool gResetSimulation = 0;
int gVRTrackingObjectUniqueId = -1;
btTransform gVRTrackingObjectTr = btTransform::getIdentity();
int gMaxNumCmdPer1ms = -1;//experiment: add some delay to avoid threads starving other threads
int gCreateObjectSimVR = -1;
int gEnableKukaControl = 0;
btVector3 gVRTeleportPos1(0,0,0);
btQuaternion gVRTeleportOrn(0, 0, 0,1);
btScalar simTimeScalingFactor = 1;
btScalar gRhsClamp = 1.f;
struct UrdfLinkNameMapUtil
{
btMultiBody* m_mb;
btDefaultSerializer* m_memSerializer;
UrdfLinkNameMapUtil():m_mb(0),m_memSerializer(0)
{
}
virtual ~UrdfLinkNameMapUtil()
{
delete m_memSerializer;
}
};
struct SharedMemoryDebugDrawer : public btIDebugDraw
{
int m_debugMode;
btAlignedObjectArray<SharedMemLines> m_lines2;
SharedMemoryDebugDrawer ()
:m_debugMode(0)
{
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)
{
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location,const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void drawLine(const btVector3& from,const btVector3& to,const btVector3& color)
{
SharedMemLines line;
line.m_from = from;
line.m_to = to;
line.m_color = color;
m_lines2.push_back(line);
}
};
struct InteralBodyData
{
btMultiBody* m_multiBody;
btRigidBody* m_rigidBody;
int m_testData;
2017-03-29 22:37:33 +00:00
std::string m_bodyName;
btTransform m_rootLocalInertialFrame;
btAlignedObjectArray<btTransform> m_linkLocalInertialFrames;
#ifdef B3_ENABLE_TINY_AUDIO
btHashMap<btHashInt, SDFAudioSource> m_audioSources;
#endif //B3_ENABLE_TINY_AUDIO
InteralBodyData()
:m_multiBody(0),
m_rigidBody(0),
m_testData(0)
{
m_rootLocalInertialFrame.setIdentity();
}
};
struct InteralUserConstraintData
{
btTypedConstraint* m_rbConstraint;
btMultiBodyConstraint* m_mbConstraint;
b3UserConstraint m_userConstraintData;
InteralUserConstraintData()
:m_rbConstraint(0),
m_mbConstraint(0)
{
}
};
///todo: templatize this
struct InternalBodyHandle : public InteralBodyData
{
BT_DECLARE_ALIGNED_ALLOCATOR();
int m_nextFreeHandle;
void SetNextFree(int next)
{
m_nextFreeHandle = next;
}
int GetNextFree() const
{
return m_nextFreeHandle;
}
};
class btCommandChunk
{
public:
int m_chunkCode;
int m_length;
void *m_oldPtr;
int m_dna_nr;
int m_number;
};
class bCommandChunkPtr4
{
public:
bCommandChunkPtr4(){}
int code;
int len;
union
{
int m_uniqueInt;
};
int dna_nr;
int nr;
};
// ----------------------------------------------------- //
class bCommandChunkPtr8
{
public:
bCommandChunkPtr8(){}
int code, len;
union
{
int m_uniqueInts[2];
};
int dna_nr, nr;
};
struct CommandLogger
{
FILE* m_file;
void writeHeader(unsigned char* buffer) const
{
#ifdef BT_USE_DOUBLE_PRECISION
memcpy(buffer, "BT3CMDd", 7);
#else
memcpy(buffer, "BT3CMDf", 7);
#endif //BT_USE_DOUBLE_PRECISION
int littleEndian= 1;
littleEndian= ((char*)&littleEndian)[0];
if (sizeof(void*)==8)
{
buffer[7] = '-';
} else
{
buffer[7] = '_';
}
if (littleEndian)
{
buffer[8]='v';
} else
{
buffer[8]='V';
}
buffer[9] = 0;
buffer[10] = 0;
buffer[11] = 0;
int ver = btGetVersion();
if (ver>=0 && ver<999)
{
sprintf((char*)&buffer[9],"%d",ver);
}
}
void logCommand(const SharedMemoryCommand& command)
{
btCommandChunk chunk;
chunk.m_chunkCode = command.m_type;
chunk.m_oldPtr = 0;
chunk.m_dna_nr = 0;
chunk.m_length = sizeof(SharedMemoryCommand);
chunk.m_number = 1;
fwrite((const char*)&chunk,sizeof(btCommandChunk), 1,m_file);
fwrite((const char*)&command,sizeof(SharedMemoryCommand),1,m_file);
}
CommandLogger(const char* fileName)
{
m_file = fopen(fileName,"wb");
unsigned char buf[15];
buf[12] = 12;
buf[13] = 13;
buf[14] = 14;
writeHeader(buf);
fwrite(buf,12,1,m_file);
}
virtual ~CommandLogger()
{
fclose(m_file);
}
};
struct CommandLogPlayback
{
unsigned char m_header[12];
FILE* m_file;
bool m_bitsVary;
bool m_fileIs64bit;
CommandLogPlayback(const char* fileName)
{
m_file = fopen(fileName,"rb");
if (m_file)
{
2017-01-24 16:36:46 +00:00
size_t bytesRead;
bytesRead = fread(m_header,12,1,m_file);
}
unsigned char c = m_header[7];
m_fileIs64bit = (c=='-');
const bool VOID_IS_8 = ((sizeof(void*)==8));
m_bitsVary = (VOID_IS_8 != m_fileIs64bit);
}
virtual ~CommandLogPlayback()
{
if (m_file)
{
fclose(m_file);
m_file=0;
}
}
bool processNextCommand(SharedMemoryCommand* cmd)
{
if (m_file)
{
size_t s = 0;
if (m_fileIs64bit)
{
bCommandChunkPtr8 chunk8;
s = fread((void*)&chunk8,sizeof(bCommandChunkPtr8),1,m_file);
} else
{
bCommandChunkPtr4 chunk4;
s = fread((void*)&chunk4,sizeof(bCommandChunkPtr4),1,m_file);
}
if (s==1)
{
s = fread(cmd,sizeof(SharedMemoryCommand),1,m_file);
return (s==1);
}
}
return false;
}
};
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
struct MyBroadphaseCallback : public btBroadphaseAabbCallback
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
b3AlignedObjectArray<int> m_links;
MyBroadphaseCallback()
{
}
virtual ~MyBroadphaseCallback()
{
}
void clear()
{
m_bodyUniqueIds.clear();
m_links.clear();
}
virtual bool process(const btBroadphaseProxy* proxy)
{
btCollisionObject* colObj = (btCollisionObject*)proxy->m_clientObject;
btMultiBodyLinkCollider* mbl = btMultiBodyLinkCollider::upcast(colObj);
if (mbl)
{
int bodyUniqueId = mbl->m_multiBody->getUserIndex2();
m_bodyUniqueIds.push_back(bodyUniqueId);
m_links.push_back(mbl->m_link);
return true;
}
int bodyUniqueId = colObj->getUserIndex2();
if (bodyUniqueId >= 0)
{
m_bodyUniqueIds.push_back(bodyUniqueId);
//it is not a multibody, so use -1 otherwise
m_links.push_back(-1);
}
return true;
}
};
enum MyFilterModes
{
FILTER_GROUPAMASKB_AND_GROUPBMASKA=0,
FILTER_GROUPAMASKB_OR_GROUPBMASKA
};
struct MyOverlapFilterCallback : public btOverlapFilterCallback
{
int m_filterMode;
MyOverlapFilterCallback()
:m_filterMode(FILTER_GROUPAMASKB_AND_GROUPBMASKA)
{
}
virtual ~MyOverlapFilterCallback()
{}
// return true when pairs need collision
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
{
if (m_filterMode==FILTER_GROUPAMASKB_AND_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
if (m_filterMode==FILTER_GROUPAMASKB_OR_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides || (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
return false;
}
};
struct InternalStateLogger
{
int m_loggingUniqueId;
int m_loggingType;
InternalStateLogger()
:m_loggingUniqueId(0),
m_loggingType(0)
{
}
virtual ~InternalStateLogger() {}
virtual void stop() = 0;
virtual void logState(btScalar timeStep)=0;
};
struct VideoMP4Loggger : public InternalStateLogger
{
struct GUIHelperInterface* m_guiHelper;
std::string m_fileName;
VideoMP4Loggger(int loggerUid,const char* fileName,GUIHelperInterface* guiHelper)
:m_guiHelper(guiHelper)
{
m_fileName = fileName;
m_loggingUniqueId = loggerUid;
m_loggingType = STATE_LOGGING_VIDEO_MP4;
m_guiHelper->dumpFramesToVideo(fileName);
}
virtual void stop()
{
m_guiHelper->dumpFramesToVideo(0);
}
virtual void logState(btScalar timeStep)
{
//dumping video frames happens in another thread
//we could add some overlay of timestamp here, if needed/wanted
}
};
struct MinitaurStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
std::string m_fileName;
int m_minitaurBodyUniqueId;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBody* m_minitaurMultiBody;
btAlignedObjectArray<int> m_motorIdList;
2017-02-21 18:23:18 +00:00
MinitaurStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBody* minitaurMultiBody, btAlignedObjectArray<int>& motorIdList)
:m_loggingTimeStamp(0),
m_logFileHandle(0),
m_minitaurMultiBody(minitaurMultiBody)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_MINITAUR;
m_motorIdList.resize(motorIdList.size());
for (int m=0;m<motorIdList.size();m++)
{
m_motorIdList[m] = motorIdList[m];
}
btAlignedObjectArray<std::string> structNames;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
structNames.push_back("t");
structNames.push_back("r");
structNames.push_back("p");
structNames.push_back("y");
structNames.push_back("q0");
structNames.push_back("q1");
structNames.push_back("q2");
structNames.push_back("q3");
structNames.push_back("q4");
structNames.push_back("q5");
structNames.push_back("q6");
structNames.push_back("q7");
structNames.push_back("u0");
structNames.push_back("u1");
structNames.push_back("u2");
structNames.push_back("u3");
structNames.push_back("u4");
structNames.push_back("u5");
structNames.push_back("u6");
structNames.push_back("u7");
structNames.push_back("dx");
structNames.push_back("mo");
m_structTypes = "IffffffffffffffffffffB";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
//btVector3 pos = m_minitaurMultiBody->getBasePos();
MinitaurLogRecord logData;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
btScalar motorDir[8] = {1, 1, 1, 1, 1, 1, 1, 1};
btQuaternion orn = m_minitaurMultiBody->getBaseWorldTransform().getRotation();
btMatrix3x3 mat(orn);
btScalar roll=0;
btScalar pitch=0;
btScalar yaw = 0;
mat.getEulerZYX(yaw,pitch,roll);
logData.m_values.push_back(m_loggingTimeStamp);
logData.m_values.push_back((float)roll);
logData.m_values.push_back((float)pitch);
logData.m_values.push_back((float)yaw);
for (int i=0;i<8;i++)
{
float jointAngle = (float)motorDir[i]*m_minitaurMultiBody->getJointPos(m_motorIdList[i]);
logData.m_values.push_back(jointAngle);
}
for (int i=0;i<8;i++)
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)m_minitaurMultiBody->getLink(m_motorIdList[i]).m_userPtr;
if (motor && timeStep>btScalar(0))
{
btScalar force = motor->getAppliedImpulse(0)/timeStep;
logData.m_values.push_back((float)force);
}
}
//x is forward component, estimated speed forward
float xd_speed = m_minitaurMultiBody->getBaseVel()[0];
logData.m_values.push_back(xd_speed);
char mode = 6;
logData.m_values.push_back(mode);
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct b3VRControllerEvents
{
b3VRControllerEvent m_vrEvents[MAX_VR_CONTROLLERS];
b3VRControllerEvents()
{
init();
}
virtual ~b3VRControllerEvents()
{
}
void init()
{
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
m_vrEvents[i].m_deviceType = 0;
m_vrEvents[i].m_numButtonEvents = 0;
m_vrEvents[i].m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
m_vrEvents[i].m_buttons[b] = 0;
}
}
}
void addNewVREvents(const struct b3VRControllerEvent* vrEvents, int numVREvents)
{
//update m_vrEvents
for (int i=0;i<numVREvents;i++)
{
int controlledId = vrEvents[i].m_controllerId;
if (vrEvents[i].m_numMoveEvents)
{
m_vrEvents[controlledId].m_analogAxis = vrEvents[i].m_analogAxis;
}
if (vrEvents[i].m_numMoveEvents+vrEvents[i].m_numButtonEvents)
{
m_vrEvents[controlledId].m_controllerId = vrEvents[i].m_controllerId;
m_vrEvents[controlledId].m_deviceType = vrEvents[i].m_deviceType;
m_vrEvents[controlledId].m_pos[0] = vrEvents[i].m_pos[0];
m_vrEvents[controlledId].m_pos[1] = vrEvents[i].m_pos[1];
m_vrEvents[controlledId].m_pos[2] = vrEvents[i].m_pos[2];
m_vrEvents[controlledId].m_orn[0] = vrEvents[i].m_orn[0];
m_vrEvents[controlledId].m_orn[1] = vrEvents[i].m_orn[1];
m_vrEvents[controlledId].m_orn[2] = vrEvents[i].m_orn[2];
m_vrEvents[controlledId].m_orn[3] = vrEvents[i].m_orn[3];
}
m_vrEvents[controlledId].m_numButtonEvents += vrEvents[i].m_numButtonEvents;
m_vrEvents[controlledId].m_numMoveEvents += vrEvents[i].m_numMoveEvents;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
m_vrEvents[controlledId].m_buttons[b] |= vrEvents[i].m_buttons[b];
if (vrEvents[i].m_buttons[b] & eButtonIsDown)
{
m_vrEvents[controlledId].m_buttons[b] |= eButtonIsDown;
} else
{
m_vrEvents[controlledId].m_buttons[b] &= ~eButtonIsDown;
}
}
}
};
};
struct VRControllerStateLogger : public InternalStateLogger
{
b3VRControllerEvents m_vrEvents;
int m_loggingTimeStamp;
int m_deviceTypeFilter;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
VRControllerStateLogger(int loggingUniqueId, int deviceTypeFilter, const std::string& fileName)
:m_loggingTimeStamp(0),
m_deviceTypeFilter(deviceTypeFilter),
m_fileName(fileName),
m_logFileHandle(0)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_VR_CONTROLLERS;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("controllerId");
structNames.push_back("numMoveEvents");
structNames.push_back("m_numButtonEvents");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("analogAxis");
structNames.push_back("buttons0");
structNames.push_back("buttons1");
structNames.push_back("buttons2");
structNames.push_back("buttons3");
structNames.push_back("buttons4");
structNames.push_back("buttons5");
structNames.push_back("buttons6");
structNames.push_back("deviceType");
m_structTypes = "IfIIIffffffffIIIIIIII";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*timeStep;
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
b3VRControllerEvent& event = m_vrEvents.m_vrEvents[i];
if (m_deviceTypeFilter & event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
MinitaurLogRecord logData;
//serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
//log the event
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
logData.m_values.push_back(event.m_controllerId);
logData.m_values.push_back(event.m_numMoveEvents);
logData.m_values.push_back(event.m_numButtonEvents);
logData.m_values.push_back(event.m_pos[0]);
logData.m_values.push_back(event.m_pos[1]);
logData.m_values.push_back(event.m_pos[2]);
logData.m_values.push_back(event.m_orn[0]);
logData.m_values.push_back(event.m_orn[1]);
logData.m_values.push_back(event.m_orn[2]);
logData.m_values.push_back(event.m_orn[3]);
logData.m_values.push_back(event.m_analogAxis);
int packedButtons[7]={0,0,0,0,0,0,0};
int packedButtonIndex = 0;
int packedButtonShift = 0;
//encode the 64 buttons into 7 int (3 bits each), each int stores 10 buttons
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
int buttonMask = event.m_buttons[b];
buttonMask = buttonMask << (packedButtonShift*3);
packedButtons[packedButtonIndex] |= buttonMask;
packedButtonShift++;
if (packedButtonShift>=10)
{
packedButtonShift=0;
packedButtonIndex++;
if (packedButtonIndex>=7)
{
btAssert(0);
break;
}
}
}
for (int b=0;b<7;b++)
{
logData.m_values.push_back(packedButtons[b]);
}
logData.m_values.push_back(event.m_deviceType);
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
event.m_buttons[b] = 0;
}
}
}
}
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct GenericRobotStateLogger : public InternalStateLogger
{
float m_loggingTimeStamp;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
btAlignedObjectArray<int> m_bodyIdList;
bool m_filterObjectUniqueId;
int m_maxLogDof;
GenericRobotStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBodyDynamicsWorld* dynamicsWorld, int maxLogDof)
:m_loggingTimeStamp(0),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterObjectUniqueId(false),
m_maxLogDof(maxLogDof)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_GENERIC_ROBOT;
btAlignedObjectArray<std::string> structNames;
2017-03-04 21:19:43 +00:00
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("objectId");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("velX");
structNames.push_back("velY");
structNames.push_back("velZ");
structNames.push_back("omegaX");
structNames.push_back("omegaY");
structNames.push_back("omegaZ");
structNames.push_back("qNum");
m_structTypes = "IfifffffffffffffI";
for (int i=0;i<m_maxLogDof;i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName,"q%d",i);
structNames.push_back(jointName);
}
for (int i=0;i<m_maxLogDof;i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName,"u%d",i);
structNames.push_back(jointName);
}
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
for (int i=0;i<m_dynamicsWorld->getNumMultibodies();i++)
{
btMultiBody* mb = m_dynamicsWorld->getMultiBody(i);
int objectUniqueId = mb->getUserIndex2();
if (m_filterObjectUniqueId && m_bodyIdList.findLinearSearch2(objectUniqueId) < 0)
{
continue;
}
MinitaurLogRecord logData;
2017-03-04 21:19:43 +00:00
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*m_dynamicsWorld->getSolverInfo().m_timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
btVector3 pos = mb->getBasePos();
btQuaternion ori = mb->getWorldToBaseRot().inverse();
btVector3 vel = mb->getBaseVel();
btVector3 omega = mb->getBaseOmega();
float posX = pos[0];
float posY = pos[1];
float posZ = pos[2];
float oriX = ori.x();
float oriY = ori.y();
float oriZ = ori.z();
float oriW = ori.w();
float velX = vel[0];
float velY = vel[1];
float velZ = vel[2];
float omegaX = omega[0];
float omegaY = omega[1];
float omegaZ = omega[2];
logData.m_values.push_back(objectUniqueId);
logData.m_values.push_back(posX);
logData.m_values.push_back(posY);
logData.m_values.push_back(posZ);
logData.m_values.push_back(oriX);
logData.m_values.push_back(oriY);
logData.m_values.push_back(oriZ);
logData.m_values.push_back(oriW);
logData.m_values.push_back(velX);
logData.m_values.push_back(velY);
logData.m_values.push_back(velZ);
logData.m_values.push_back(omegaX);
logData.m_values.push_back(omegaY);
logData.m_values.push_back(omegaZ);
int numDofs = mb->getNumDofs();
logData.m_values.push_back(numDofs);
int numJoints = mb->getNumLinks();
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float q = mb->getJointPos(j);
logData.m_values.push_back(q);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float q = 0.0;
logData.m_values.push_back(q);
}
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float u = mb->getJointVel(j);
logData.m_values.push_back(u);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float u = 0.0;
logData.m_values.push_back(u);
}
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
m_loggingTimeStamp++;
}
}
};
2017-04-02 22:09:40 +00:00
struct ContactPointsStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
bool m_filterLinkA;
bool m_filterLinkB;
int m_linkIndexA;
int m_linkIndexB;
2017-04-04 17:38:25 +00:00
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
2017-04-02 22:09:40 +00:00
ContactPointsStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBodyDynamicsWorld* dynamicsWorld)
:m_loggingTimeStamp(0),
m_fileName(fileName),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterLinkA(false),
m_filterLinkB(false),
m_linkIndexA(-2),
m_linkIndexB(-2),
2017-04-04 17:38:25 +00:00
m_bodyUniqueIdA(-1),
m_bodyUniqueIdB(-1)
2017-04-02 22:09:40 +00:00
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_CONTACT_POINTS;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("contactFlag");
structNames.push_back("bodyUniqueIdA");
structNames.push_back("bodyUniqueIdB");
structNames.push_back("linkIndexA");
structNames.push_back("linkIndexB");
structNames.push_back("positionOnAX");
structNames.push_back("positionOnAY");
structNames.push_back("positionOnAZ");
structNames.push_back("positionOnBX");
structNames.push_back("positionOnBY");
structNames.push_back("positionOnBZ");
structNames.push_back("contactNormalOnBX");
structNames.push_back("contactNormalOnBY");
structNames.push_back("contactNormalOnBZ");
structNames.push_back("contactDistance");
structNames.push_back("normalForce");
m_structTypes = "IfIiiiifffffffffff";
2017-04-02 22:09:40 +00:00
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int numContactManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
int objectIndexB = -1;
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
if (m_filterLinkB && (m_linkIndexB != linkIndexB))
{
continue;
}
}
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
if (m_filterLinkA && (m_linkIndexA != linkIndexA))
{
continue;
}
}
btAssert(bodyA || mblA);
//apply the filter, if the user provides it
2017-04-04 17:38:25 +00:00
if (m_bodyUniqueIdA >= 0)
2017-04-02 22:09:40 +00:00
{
2017-04-04 17:38:25 +00:00
if ((m_bodyUniqueIdA != objectIndexA) &&
(m_bodyUniqueIdA != objectIndexB))
2017-04-02 22:09:40 +00:00
continue;
}
//apply the second object filter, if the user provides it
2017-04-04 17:38:25 +00:00
if (m_bodyUniqueIdB >= 0)
2017-04-02 22:09:40 +00:00
{
2017-04-04 17:38:25 +00:00
if ((m_bodyUniqueIdB != objectIndexA) &&
(m_bodyUniqueIdB != objectIndexB))
2017-04-02 22:09:40 +00:00
continue;
}
for (int p = 0; p < manifold->getNumContacts(); p++)
{
MinitaurLogRecord logData;
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
logData.m_values.push_back(0); // reserved contact flag
logData.m_values.push_back(objectIndexA);
logData.m_values.push_back(objectIndexB);
logData.m_values.push_back(linkIndexA);
logData.m_values.push_back(linkIndexB);
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[2]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[2]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[0]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[1]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[2]));
logData.m_values.push_back((float)(srcPt.getDistance()));
logData.m_values.push_back((float)(srcPt.getAppliedImpulse() / timeStep));
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
}
m_loggingTimeStamp++;
}
}
};
struct PhysicsServerCommandProcessorInternalData
{
///handle management
btAlignedObjectArray<InternalBodyHandle> m_bodyHandles;
int m_numUsedHandles; // number of active handles
int m_firstFreeHandle; // free handles list
int getNumHandles() const
{
return m_bodyHandles.size();
}
InternalBodyHandle* getHandle(int handle)
{
btAssert(handle>=0);
btAssert(handle<m_bodyHandles.size());
if ((handle<0) || (handle>=m_bodyHandles.size()))
{
return 0;
}
return &m_bodyHandles[handle];
}
const InternalBodyHandle* getHandle(int handle) const
{
return &m_bodyHandles[handle];
}
void increaseHandleCapacity(int extraCapacity)
{
int curCapacity = m_bodyHandles.size();
btAssert(curCapacity == m_numUsedHandles);
int newCapacity = curCapacity + extraCapacity;
m_bodyHandles.resize(newCapacity);
{
for (int i = curCapacity; i < newCapacity; i++)
m_bodyHandles[i].SetNextFree(i + 1);
m_bodyHandles[newCapacity - 1].SetNextFree(-1);
}
m_firstFreeHandle = curCapacity;
}
void initHandles()
{
m_numUsedHandles = 0;
m_firstFreeHandle = -1;
increaseHandleCapacity(1);
}
void exitHandles()
{
m_bodyHandles.resize(0);
m_firstFreeHandle = -1;
m_numUsedHandles = 0;
}
int allocHandle()
{
btAssert(m_firstFreeHandle>=0);
int handle = m_firstFreeHandle;
m_firstFreeHandle = getHandle(handle)->GetNextFree();
m_numUsedHandles++;
if (m_firstFreeHandle<0)
{
//int curCapacity = m_bodyHandles.size();
int additionalCapacity= m_bodyHandles.size();
increaseHandleCapacity(additionalCapacity);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
}
return handle;
}
void freeHandle(int handle)
{
btAssert(handle >= 0);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_numUsedHandles--;
}
///end handle management
bool m_allowRealTimeSimulation;
bool m_hasGround;
b3VRControllerEvents m_vrControllerEvents;
btAlignedObjectArray<b3KeyboardEvent> m_keyboardEvents;
btMultiBodyFixedConstraint* m_gripperRigidbodyFixed;
btMultiBody* m_gripperMultiBody;
2016-09-25 23:05:53 +00:00
btMultiBodyFixedConstraint* m_kukaGripperFixed;
btMultiBody* m_kukaGripperMultiBody;
2016-09-29 19:07:54 +00:00
btMultiBodyPoint2Point* m_kukaGripperRevolute1;
btMultiBodyPoint2Point* m_kukaGripperRevolute2;
int m_huskyId;
int m_KukaId;
int m_sphereId;
2016-09-25 23:05:53 +00:00
int m_gripperId;
CommandLogger* m_commandLogger;
CommandLogPlayback* m_logPlayback;
btScalar m_physicsDeltaTime;
2016-08-24 21:25:06 +00:00
btScalar m_numSimulationSubSteps;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_multiBodyJointFeedbacks;
btHashMap<btHashPtr, btInverseDynamics::MultiBodyTree*> m_inverseDynamicsBodies;
btHashMap<btHashPtr, IKTrajectoryHelper*> m_inverseKinematicsHelpers;
int m_userConstraintUIDGenerator;
btHashMap<btHashInt, InteralUserConstraintData> m_userConstraints;
b3AlignedObjectArray<SaveWorldObjectData> m_saveWorldBodyData;
btAlignedObjectArray<btBulletWorldImporter*> m_worldImporters;
btAlignedObjectArray<UrdfLinkNameMapUtil*> m_urdfLinkNameMapper;
btAlignedObjectArray<std::string*> m_strings;
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
MyOverlapFilterCallback* m_broadphaseCollisionFilterCallback;
btHashedOverlappingPairCache* m_pairCache;
btBroadphaseInterface* m_broadphase;
btCollisionDispatcher* m_dispatcher;
btMultiBodyConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftMultiBodyDynamicsWorld* m_dynamicsWorld;
btSoftBodySolver* m_softbodySolver;
btSoftBodyWorldInfo m_softBodyWorldInfo;
#else
btMultiBodyDynamicsWorld* m_dynamicsWorld;
#endif
SharedMemoryDebugDrawer* m_remoteDebugDrawer;
btAlignedObjectArray<b3ContactPointData> m_cachedContactPoints;
MyBroadphaseCallback m_cachedOverlappingObjects;
btAlignedObjectArray<int> m_sdfRecentLoadedBodies;
btAlignedObjectArray<InternalStateLogger*> m_stateLoggers;
int m_stateLoggersUniqueId;
struct GUIHelperInterface* m_guiHelper;
int m_sharedMemoryKey;
bool m_verboseOutput;
//data for picking objects
class btRigidBody* m_pickedBody;
int m_savedActivationState;
class btTypedConstraint* m_pickedConstraint;
class btMultiBodyPoint2Point* m_pickingMultiBodyPoint2Point;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
bool m_prevCanSleep;
TinyRendererVisualShapeConverter m_visualConverter;
#ifdef B3_ENABLE_TINY_AUDIO
b3SoundEngine m_soundEngine;
#endif
PhysicsServerCommandProcessorInternalData()
:
m_allowRealTimeSimulation(false),
m_hasGround(false),
m_gripperRigidbodyFixed(0),
m_gripperMultiBody(0),
m_kukaGripperFixed(0),
m_kukaGripperMultiBody(0),
m_kukaGripperRevolute1(0),
m_kukaGripperRevolute2(0),
m_huskyId(-1),
m_KukaId(-1),
m_sphereId(-1),
2016-09-25 23:05:53 +00:00
m_gripperId(-1),
m_commandLogger(0),
m_logPlayback(0),
m_physicsDeltaTime(1./240.),
2016-08-24 21:25:06 +00:00
m_numSimulationSubSteps(0),
m_userConstraintUIDGenerator(1),
m_broadphaseCollisionFilterCallback(0),
m_pairCache(0),
m_broadphase(0),
m_dispatcher(0),
m_solver(0),
m_collisionConfiguration(0),
m_dynamicsWorld(0),
m_remoteDebugDrawer(0),
m_stateLoggersUniqueId(0),
m_guiHelper(0),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_verboseOutput(false),
m_pickedBody(0),
m_pickedConstraint(0),
m_pickingMultiBodyPoint2Point(0)
{
m_vrControllerEvents.init();
initHandles();
#if 0
btAlignedObjectArray<int> bla;
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
bla.resize(0);
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
bla.resize(0);
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
#endif
}
btInverseDynamics::MultiBodyTree* findOrCreateTree(btMultiBody* multiBody)
{
btInverseDynamics::MultiBodyTree* tree = 0;
btInverseDynamics::MultiBodyTree** treePtrPtr =
m_inverseDynamicsBodies.find(multiBody);
if (treePtrPtr)
{
tree = *treePtrPtr;
}
else
{
btInverseDynamics::btMultiBodyTreeCreator id_creator;
if (-1 == id_creator.createFromBtMultiBody(multiBody, false))
{
}
else
{
tree = btInverseDynamics::CreateMultiBodyTree(id_creator);
m_inverseDynamicsBodies.insert(multiBody, tree);
}
}
return tree;
}
};
void PhysicsServerCommandProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper)
{
if (guiHelper)
{
guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
} else
{
if (m_data->m_guiHelper && m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->setDebugDrawer(0);
}
}
m_data->m_guiHelper = guiHelper;
}
PhysicsServerCommandProcessor::PhysicsServerCommandProcessor()
{
m_data = new PhysicsServerCommandProcessorInternalData();
createEmptyDynamicsWorld();
}
PhysicsServerCommandProcessor::~PhysicsServerCommandProcessor()
{
deleteDynamicsWorld();
if (m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
delete m_data;
}
void logCallback(btDynamicsWorld *world, btScalar timeStep)
{
//handle the logging and playing sounds
PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*) world->getWorldUserInfo();
proc->processCollisionForces(timeStep);
proc->logObjectStates(timeStep);
}
bool MyContactAddedCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,int partId0,int index0,const btCollisionObjectWrapper* colObj1Wrap,int partId1,int index1)
{
return true;
}
bool MyContactDestroyedCallback(void* userPersistentData)
{
//printf("destroyed\n");
return false;
}
bool MyContactProcessedCallback(btManifoldPoint& cp,void* body0,void* body1)
{
//printf("processed\n");
return false;
}
void MyContactStartedCallback(btPersistentManifold* const &manifold)
{
//printf("started\n");
}
void MyContactEndedCallback(btPersistentManifold* const &manifold)
{
// printf("ended\n");
}
void PhysicsServerCommandProcessor::processCollisionForces(btScalar timeStep)
{
#ifdef B3_ENABLE_TINY_AUDIO
//this is experimental at the moment: impulse thresholds, sound parameters will be exposed in C-API/pybullet.
//audio will go into a wav file, as well as real-time output to speakers/headphones using RtAudio/DAC.
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
bool objHasSound[2];
objHasSound[0] = (0!=(manifold->getBody0()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
objHasSound[1] = (0!=(manifold->getBody1()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
const btCollisionObject* colObjs[2] = {manifold->getBody0(),manifold->getBody1()};
for (int ob = 0;ob<2;ob++)
{
if (objHasSound[ob])
{
int uid0 = -1;
int linkIndex = -2;
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjs[ob]);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
uid0 = mblB->m_multiBody->getUserIndex2();
}
const btRigidBody* bodyB = btRigidBody::upcast(colObjs[ob]);
if (bodyB)
{
uid0 = bodyB->getUserIndex2();
linkIndex = -1;
}
if ((uid0<0)||(linkIndex<-1))
continue;
InternalBodyHandle* bodyHandle0 = m_data->getHandle(uid0);
SDFAudioSource* audioSrc = bodyHandle0->m_audioSources[linkIndex];
if (audioSrc==0)
continue;
for (int p=0;p<manifold->getNumContacts();p++)
{
double imp = manifold->getContactPoint(p).getAppliedImpulse();
//printf ("manifold %d, contact %d, lifeTime:%d, appliedImpulse:%f\n",i,p, manifold->getContactPoint(p).getLifeTime(),imp);
if (imp>audioSrc->m_collisionForceThreshold && manifold->getContactPoint(p).getLifeTime()==1)
{
int soundSourceIndex = m_data->m_soundEngine.getAvailableSoundSource();
if (soundSourceIndex>=0)
{
b3SoundMessage msg;
msg.m_attackRate = audioSrc->m_attackRate;
msg.m_decayRate = audioSrc->m_decayRate;
msg.m_sustainLevel = audioSrc->m_sustainLevel;
msg.m_releaseRate = audioSrc->m_releaseRate;
msg.m_amplitude = audioSrc->m_gain;
msg.m_frequency = audioSrc->m_pitch;
msg.m_type = B3_SOUND_SOURCE_WAV_FILE;
msg.m_wavId = audioSrc->m_userIndex;
msg.m_autoKeyOff = true;
m_data->m_soundEngine.startSound(soundSourceIndex,msg);
}
}
}
}
}
}
#endif//B3_ENABLE_TINY_AUDIO
}
void PhysicsServerCommandProcessor::logObjectStates(btScalar timeStep)
{
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
m_data->m_stateLoggers[i]->logState(timeStep);
}
}
void PhysicsServerCommandProcessor::createEmptyDynamicsWorld()
{
///collision configuration contains default setup for memory, collision setup
//m_collisionConfiguration->setConvexConvexMultipointIterations();
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration();
#else
m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration();
#endif
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration);
m_data->m_broadphaseCollisionFilterCallback = new MyOverlapFilterCallback();
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = FILTER_GROUPAMASKB_OR_GROUPBMASKA;
m_data->m_pairCache = new btHashedOverlappingPairCache();
m_data->m_pairCache->setOverlapFilterCallback(m_data->m_broadphaseCollisionFilterCallback);
2017-01-17 05:04:02 +00:00
m_data->m_broadphase = new btDbvtBroadphase(m_data->m_pairCache);
m_data->m_solver = new btMultiBodyConstraintSolver;
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_dynamicsWorld = new btSoftMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#else
m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#endif
//Workaround: in a VR application, where we avoid synchronizaing between GFX/Physics threads, we don't want to resize this array, so pre-allocate it
m_data->m_dynamicsWorld->getCollisionObjectArray().reserve(32768);
m_data->m_remoteDebugDrawer = new SharedMemoryDebugDrawer();
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, 0));
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = 0.08;
m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = 0.2;//need to check if there are artifacts with frictionERP
m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = 0.00001;
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = 50;
m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = 1e-7;
// m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 2;
//todo: islands/constraints are buggy in btMultiBodyDynamicsWorld! (performance + see slipping grasp)
if (m_data->m_guiHelper)
{
m_data->m_guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
}
m_data->m_dynamicsWorld->setInternalTickCallback(logCallback,this);
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.init(16,true);
//we don't use those callbacks (yet), experimental
// gContactAddedCallback = MyContactAddedCallback;
// gContactDestroyedCallback = MyContactDestroyedCallback;
// gContactProcessedCallback = MyContactProcessedCallback;
// gContactStartedCallback = MyContactStartedCallback;
// gContactEndedCallback = MyContactEndedCallback;
#endif
}
void PhysicsServerCommandProcessor::deleteStateLoggers()
{
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
}
m_data->m_stateLoggers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseKinematicsBodies()
{
for (int i = 0; i < m_data->m_inverseKinematicsHelpers.size(); i++)
{
IKTrajectoryHelper** ikHelperPtr = m_data->m_inverseKinematicsHelpers.getAtIndex(i);
if (ikHelperPtr)
{
IKTrajectoryHelper* ikHelper = *ikHelperPtr;
delete ikHelper;
}
}
m_data->m_inverseKinematicsHelpers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseDynamicsBodies()
{
for (int i = 0; i < m_data->m_inverseDynamicsBodies.size(); i++)
{
btInverseDynamics::MultiBodyTree** treePtrPtr = m_data->m_inverseDynamicsBodies.getAtIndex(i);
if (treePtrPtr)
{
btInverseDynamics::MultiBodyTree* tree = *treePtrPtr;
delete tree;
}
}
m_data->m_inverseDynamicsBodies.clear();
}
void PhysicsServerCommandProcessor::deleteDynamicsWorld()
{
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.exit();
//gContactDestroyedCallback = 0;
//gContactProcessedCallback = 0;
//gContactStartedCallback = 0;
//gContactEndedCallback = 0;
#endif
deleteCachedInverseDynamicsBodies();
deleteCachedInverseKinematicsBodies();
deleteStateLoggers();
m_data->m_userConstraints.clear();
m_data->m_saveWorldBodyData.clear();
for (int i=0;i<m_data->m_multiBodyJointFeedbacks.size();i++)
{
delete m_data->m_multiBodyJointFeedbacks[i];
}
m_data->m_multiBodyJointFeedbacks.clear();
for (int i=0;i<m_data->m_worldImporters.size();i++)
{
m_data->m_worldImporters[i]->deleteAllData();
delete m_data->m_worldImporters[i];
}
m_data->m_worldImporters.clear();
for (int i=0;i<m_data->m_urdfLinkNameMapper.size();i++)
{
delete m_data->m_urdfLinkNameMapper[i];
}
m_data->m_urdfLinkNameMapper.clear();
for (int i=0;i<m_data->m_strings.size();i++)
{
delete m_data->m_strings[i];
}
m_data->m_strings.clear();
btAlignedObjectArray<btTypedConstraint*> constraints;
btAlignedObjectArray<btMultiBodyConstraint*> mbconstraints;
if (m_data->m_dynamicsWorld)
{
int i;
for (i = m_data->m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--)
{
btTypedConstraint* constraint =m_data->m_dynamicsWorld->getConstraint(i);
constraints.push_back(constraint);
m_data->m_dynamicsWorld->removeConstraint(constraint);
}
for (i=m_data->m_dynamicsWorld->getNumMultiBodyConstraints()-1;i>=0;i--)
{
btMultiBodyConstraint* mbconstraint = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
mbconstraints.push_back(mbconstraint);
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbconstraint);
}
for (i = m_data->m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_data->m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for (i=m_data->m_dynamicsWorld->getNumMultibodies()-1;i>=0;i--)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
m_data->m_dynamicsWorld->removeMultiBody(mb);
delete mb;
}
}
for (int i=0;i<constraints.size();i++)
{
delete constraints[i];
}
constraints.clear();
for (int i=0;i<mbconstraints.size();i++)
{
delete mbconstraints[i];
}
mbconstraints.clear();
//delete collision shapes
for (int j = 0; j<m_data->m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_data->m_collisionShapes[j];
delete shape;
}
m_data->m_collisionShapes.clear();
delete m_data->m_dynamicsWorld;
m_data->m_dynamicsWorld=0;
delete m_data->m_remoteDebugDrawer;
m_data->m_remoteDebugDrawer =0;
delete m_data->m_solver;
m_data->m_solver=0;
delete m_data->m_broadphase;
m_data->m_broadphase=0;
delete m_data->m_pairCache;
m_data->m_pairCache= 0;
delete m_data->m_broadphaseCollisionFilterCallback;
m_data->m_broadphaseCollisionFilterCallback= 0;
delete m_data->m_dispatcher;
m_data->m_dispatcher=0;
delete m_data->m_collisionConfiguration;
m_data->m_collisionConfiguration=0;
}
bool PhysicsServerCommandProcessor::supportsJointMotor(btMultiBody* mb, int mbLinkIndex)
{
bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic);
return canHaveMotor;
}
//for testing, create joint motors for revolute and prismatic joints
void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb)
{
int numLinks = mb->getNumLinks();
for (int i=0;i<numLinks;i++)
{
int mbLinkIndex = i;
if (supportsJointMotor(mb,mbLinkIndex))
{
float maxMotorImpulse = 1.f;
int dof = 0;
btScalar desiredVelocity = 0.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,dof,desiredVelocity,maxMotorImpulse);
motor->setPositionTarget(0, 0);
motor->setVelocityTarget(0, 1);
2016-09-28 23:07:55 +00:00
//motor->setRhsClamp(gRhsClamp);
//motor->setMaxAppliedImpulse(0);
mb->getLink(mbLinkIndex).m_userPtr = motor;
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
motor->finalizeMultiDof();
}
}
}
bool PhysicsServerCommandProcessor::processImportedObjects(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, URDFImporterInterface& u2b)
{
bool loadOk = true;
btTransform rootTrans;
rootTrans.setIdentity();
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
SaveWorldObjectData sd;
sd.m_fileName = fileName;
for (int m =0; m<u2b.getNumModels();m++)
{
u2b.activateModel(m);
btMultiBody* mb = 0;
btRigidBody* rb = 0;
//get a body index
int bodyUniqueId = m_data->allocHandle();
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
sd.m_bodyUniqueIds.push_back(bodyUniqueId);
u2b.setBodyUniqueId(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_bodyName = u2b.getBodyName();
btVector3 localInertiaDiagonal(0,0,0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,bodyHandle->m_rootLocalInertialFrame);
}
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
//int rootLinkIndex = u2b.getRootLinkIndex();
//b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
u2b.getRootTransformInWorld(rootTrans);
ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags);
mb = creation.getBulletMultiBody();
rb = creation.getRigidBody();
if (rb)
rb->setUserIndex2(bodyUniqueId);
if (mb)
mb->setUserIndex2(bodyUniqueId);
if (mb)
{
bodyHandle->m_multiBody = mb;
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
createJointMotors(mb);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0,0,0);
btTransform localInertialFrame;
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,localInertialFrame);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
mb->getLink(i).m_jointName = jointName->c_str();
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
mb->setBaseName(baseName->c_str());
} else
{
b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
bodyHandle->m_rigidBody = rb;
}
}
for (int i=0;i<u2b.getNumAllocatedCollisionShapes();i++)
{
btCollisionShape* shape =u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
}
m_data->m_saveWorldBodyData.push_back(sd);
return loadOk;
}
struct MyMJCFLogger2 : public MJCFErrorLogger
{
virtual void reportError(const char* error)
{
b3Error(error);
}
virtual void reportWarning(const char* warning)
{
b3Warning(warning);
}
virtual void printMessage(const char* msg)
{
b3Printf(msg);
}
};
bool PhysicsServerCommandProcessor::loadMjcf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
BulletMJCFImporter u2b(m_data->m_guiHelper, &m_data->m_visualConverter);
bool useFixedBase = false;
MyMJCFLogger2 logger;
bool loadOk = u2b.loadMJCF(fileName, &logger, useFixedBase);
if (loadOk)
{
processImportedObjects(fileName,bufferServerToClient,bufferSizeInBytes,useMultiBody,flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadSdf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
BulletURDFImporter u2b(m_data->m_guiHelper, &m_data->m_visualConverter);
bool forceFixedBase = false;
bool loadOk =u2b.loadSDF(fileName,forceFixedBase);
if (loadOk)
{
processImportedObjects(fileName,bufferServerToClient,bufferSizeInBytes,useMultiBody,flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase, int* bodyUniqueIdPtr, char* bufferServerToClient, int bufferSizeInBytes, int flags)
{
BT_PROFILE("loadURDF");
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadUrdf: No valid m_dynamicsWorld");
return false;
}
BulletURDFImporter u2b(m_data->m_guiHelper, &m_data->m_visualConverter);
bool loadOk = u2b.loadURDF(fileName, useFixedBase);
if (loadOk)
{
//get a body index
int bodyUniqueId = m_data->allocHandle();
if (bodyUniqueIdPtr)
*bodyUniqueIdPtr= bodyUniqueId;
//quick prototype of 'save world' for crude world editing
{
SaveWorldObjectData sd;
sd.m_fileName = fileName;
sd.m_bodyUniqueIds.push_back(bodyUniqueId);
m_data->m_saveWorldBodyData.push_back(sd);
}
u2b.setBodyUniqueId(bodyUniqueId);
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
btVector3 localInertiaDiagonal(0,0,0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,bodyHandle->m_rootLocalInertialFrame);
}
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
btTransform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
//int rootLinkIndex = u2b.getRootLinkIndex();
// printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
ConvertURDF2Bullet(u2b,creation, tr,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags);
for (int i=0;i<u2b.getNumAllocatedCollisionShapes();i++)
{
btCollisionShape* shape =u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
}
btMultiBody* mb = creation.getBulletMultiBody();
btRigidBody* rb = creation.getRigidBody();
2017-03-29 22:37:33 +00:00
bodyHandle->m_bodyName = u2b.getBodyName();
if (useMultiBody)
{
if (mb)
{
mb->setUserIndex2(bodyUniqueId);
bodyHandle->m_multiBody = mb;
if (flags & URDF_USE_SELF_COLLISION)
{
mb->setHasSelfCollision(true);
}
createJointMotors(mb);
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfRootLink = u2b.getRootLinkIndex();//LinkIndex = creation.m_mb2urdfLink[-1];
if (u2b.getLinkAudioSource(urdfRootLink,audioSource))
{
int flags = mb->getBaseCollider()->getCollisionFlags();
mb->getBaseCollider()->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex>=0)
{
bodyHandle->m_audioSources.insert(-1, audioSource);
}
}
}
#endif
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
for (int i = 0; i < bufferSizeInBytes; i++)
{
bufferServerToClient[i] = 0;//0xcc;
}
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
util->m_memSerializer->startSerialization();
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
int link=i;
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0,0,0);
btTransform localInertialFrame;
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,localInertialFrame);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
util->m_memSerializer->registerNameForPointer(linkName->c_str(),linkName->c_str());
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
util->m_memSerializer->registerNameForPointer(jointName->c_str(),jointName->c_str());
mb->getLink(i).m_jointName = jointName->c_str();
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfLinkIndex = creation.m_mb2urdfLink[link];
if (u2b.getLinkAudioSource(urdfLinkIndex,audioSource))
{
int flags = mb->getLink(link).m_collider->getCollisionFlags();
mb->getLink(i).m_collider->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex>=0)
{
bodyHandle->m_audioSources.insert(link, audioSource);
}
}
}
#endif
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
mb->setBaseName(baseName->c_str());
util->m_memSerializer->registerNameForPointer(baseName->c_str(),baseName->c_str());
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
return true;
} else
{
b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
return false;
}
} else
{
if (rb)
{
bodyHandle->m_rigidBody = rb;
rb->setUserIndex2(bodyUniqueId);
return true;
}
}
}
return false;
}
void PhysicsServerCommandProcessor::replayLogCommand(char* bufferServerToClient, int bufferSizeInBytes)
{
if (m_data->m_logPlayback)
{
SharedMemoryCommand clientCmd;
SharedMemoryStatus serverStatus;
bool hasCommand = m_data->m_logPlayback->processNextCommand(&clientCmd);
if (hasCommand)
{
processCommand(clientCmd,serverStatus,bufferServerToClient,bufferSizeInBytes);
}
}
}
int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes)
{
int streamSizeInBytes = 0;
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
btMultiBody* mb = bodyHandle->m_multiBody;
if (mb)
{
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
util->m_memSerializer->startSerialization();
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
if (mb->getBaseName())
{
util->m_memSerializer->registerNameForPointer(mb->getBaseName(),mb->getBaseName());
}
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_linkName,mb->getLink(i).m_linkName);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_jointName,mb->getLink(i).m_jointName);
}
util->m_memSerializer->registerNameForPointer(mb->getBaseName(),mb->getBaseName());
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
streamSizeInBytes = util->m_memSerializer->getCurrentBufferSize();
}
return streamSizeInBytes;
}
bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes )
{
BT_PROFILE("processCommand");
bool hasStatus = false;
{
///we ignore overflow of integer for now
{
//until we implement a proper ring buffer, we assume always maximum of 1 outstanding commands
//const SharedMemoryCommand& clientCmd =m_data->m_testBlock1->m_clientCommands[0];
#if 1
if (m_data->m_commandLogger)
{
m_data->m_commandLogger->logCommand(clientCmd);
}
#endif
//m_data->m_testBlock1->m_numProcessedClientCommands++;
//no timestamp yet
//int timeStamp = 0;
//catch uninitialized cases
serverStatusOut.m_type = CMD_INVALID_STATUS;
serverStatusOut.m_numDataStreamBytes = 0;
serverStatusOut.m_dataStream = 0;
//consume the command
switch (clientCmd.m_type)
{
#if 0
case CMD_SEND_BULLET_DATA_STREAM:
{
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_BULLET_DATA_STREAM length %d",clientCmd.m_dataStreamArguments.m_streamChunkLength);
}
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
bool completedOk = worldImporter->loadFileFromMemory(m_data->m_testBlock1->m_bulletStreamDataClientToServer,clientCmd.m_dataStreamArguments.m_streamChunkLength);
if (completedOk)
{
SharedMemoryStatus& status = m_data->createServerStatus(CMD_BULLET_DATA_STREAM_RECEIVED_COMPLETED,clientCmd.m_sequenceNumber,timeStamp);
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
m_data->submitServerStatus(status);
} else
{
SharedMemoryStatus& status = m_data->createServerStatus(CMD_BULLET_DATA_STREAM_RECEIVED_FAILED,clientCmd.m_sequenceNumber,timeStamp);
m_data->submitServerStatus(status);
}
break;
}
#endif
case CMD_STATE_LOGGING:
{
BT_PROFILE("CMD_STATE_LOGGING");
serverStatusOut.m_type = CMD_STATE_LOGGING_FAILED;
hasStatus = true;
if (clientCmd.m_updateFlags & STATE_LOGGING_START_LOG)
{
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VIDEO_MP4)
{
2017-03-16 20:26:44 +00:00
//if (clientCmd.m_stateLoggingArguments.m_fileName)
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
VideoMP4Loggger* logger = new VideoMP4Loggger(loggerUid,clientCmd.m_stateLoggingArguments.m_fileName,this->m_data->m_guiHelper);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_MINITAUR)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
//either provide the minitaur by object unique Id, or search for first multibody with 8 motors...
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID)&& (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds>0))
{
int bodyUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[0];
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btAlignedObjectArray<std::string> motorNames;
motorNames.push_back("motor_front_leftR_joint");
motorNames.push_back("motor_front_leftL_joint");
motorNames.push_back("motor_back_leftR_joint");
motorNames.push_back("motor_back_leftL_joint");
motorNames.push_back("motor_front_rightL_joint");
motorNames.push_back("motor_front_rightR_joint");
motorNames.push_back("motor_back_rightL_joint");
motorNames.push_back("motor_back_rightR_joint");
btAlignedObjectArray<int> motorIdList;
for (int m=0;m<motorNames.size();m++)
{
for (int i=0;i<body->m_multiBody->getNumLinks();i++)
{
std::string jointName;
if (body->m_multiBody->getLink(i).m_jointName)
{
jointName = body->m_multiBody->getLink(i).m_jointName;
}
if (motorNames[m]==jointName)
{
motorIdList.push_back(i);
}
}
}
if (motorIdList.size()==8)
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
MinitaurStateLogger* logger = new MinitaurStateLogger(loggerUid,fileName,body->m_multiBody, motorIdList);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
}
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_GENERIC_ROBOT)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int maxLogDof = 12;
if ((clientCmd.m_updateFlags & STATE_LOGGING_MAX_LOG_DOF))
{
maxLogDof = clientCmd.m_stateLoggingArguments.m_maxLogDof;
}
GenericRobotStateLogger* logger = new GenericRobotStateLogger(loggerUid,fileName,m_data->m_dynamicsWorld,maxLogDof);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds>0))
{
logger->m_filterObjectUniqueId = true;
for (int i = 0; i < clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds; ++i)
{
int objectUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[i];
logger->m_bodyIdList.push_back(objectUniqueId);
}
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
2017-04-02 22:45:48 +00:00
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_CONTACT_POINTS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
ContactPointsStateLogger* logger = new ContactPointsStateLogger(loggerUid,fileName,m_data->m_dynamicsWorld);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_A) && clientCmd.m_stateLoggingArguments.m_linkIndexA >= -1)
{
logger->m_filterLinkA = true;
logger->m_linkIndexA = clientCmd.m_stateLoggingArguments.m_linkIndexA;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_B) && clientCmd.m_stateLoggingArguments.m_linkIndexB >= -1)
{
logger->m_filterLinkB = true;
logger->m_linkIndexB = clientCmd.m_stateLoggingArguments.m_linkIndexB;
}
2017-04-04 17:38:25 +00:00
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA > -1)
2017-04-02 22:45:48 +00:00
{
2017-04-04 17:38:25 +00:00
logger->m_bodyUniqueIdA = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA;
2017-04-02 22:45:48 +00:00
}
2017-04-04 17:38:25 +00:00
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB > -1)
2017-04-02 22:45:48 +00:00
{
2017-04-04 17:38:25 +00:00
logger->m_bodyUniqueIdB = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB;
2017-04-02 22:45:48 +00:00
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
if (clientCmd.m_stateLoggingArguments.m_logType ==STATE_LOGGING_VR_CONTROLLERS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int deviceFilterType = VR_DEVICE_CONTROLLER;
if (clientCmd.m_updateFlags & STATE_LOGGING_FILTER_DEVICE_TYPE)
{
deviceFilterType = clientCmd.m_stateLoggingArguments.m_deviceFilterType;
}
VRControllerStateLogger* logger = new VRControllerStateLogger(loggerUid,deviceFilterType, fileName);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_STOP_LOG) && clientCmd.m_stateLoggingArguments.m_loggingUniqueId>=0)
{
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
if (m_data->m_stateLoggers[i]->m_loggingUniqueId==clientCmd.m_stateLoggingArguments.m_loggingUniqueId)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
m_data->m_stateLoggers.removeAtIndex(i);
}
}
}
break;
}
case CMD_SET_VR_CAMERA_STATE:
{
BT_PROFILE("CMD_SET_VR_CAMERA_STATE");
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_POSITION)
{
gVRTeleportPos1[0] = clientCmd.m_vrCameraStateArguments.m_rootPosition[0];
gVRTeleportPos1[1] = clientCmd.m_vrCameraStateArguments.m_rootPosition[1];
gVRTeleportPos1[2] = clientCmd.m_vrCameraStateArguments.m_rootPosition[2];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_ORIENTATION)
{
gVRTeleportOrn[0] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[0];
gVRTeleportOrn[1] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[1];
gVRTeleportOrn[2] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[2];
gVRTeleportOrn[3] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[3];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_TRACKING_OBJECT)
{
gVRTrackingObjectUniqueId = clientCmd.m_vrCameraStateArguments.m_trackingObjectUniqueId;
}
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_VR_EVENTS_DATA:
{
BT_PROFILE("CMD_REQUEST_VR_EVENTS_DATA");
serverStatusOut.m_sendVREvents.m_numVRControllerEvents = 0;
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
b3VRControllerEvent& event = m_data->m_vrControllerEvents.m_vrEvents[i];
if (clientCmd.m_updateFlags&event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
event.m_buttons[b] = 0;
}
}
}
}
serverStatusOut.m_type = CMD_REQUEST_VR_EVENTS_DATA_COMPLETED;
hasStatus = true;
break;
};
case CMD_REQUEST_KEYBOARD_EVENTS_DATA:
{
BT_PROFILE("CMD_REQUEST_KEYBOARD_EVENTS_DATA");
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = m_data->m_keyboardEvents.size();
if (serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents>MAX_KEYBOARD_EVENTS)
{
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = MAX_KEYBOARD_EVENTS;
}
for (int i=0;i<serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents;i++)
{
serverStatusOut.m_sendKeyboardEvents.m_keyboardEvents[i] = m_data->m_keyboardEvents[i];
}
btAlignedObjectArray<b3KeyboardEvent> events;
//remove out-of-date events
for (int i=0;i<m_data->m_keyboardEvents.size();i++)
{
b3KeyboardEvent event = m_data->m_keyboardEvents[i];
if (event.m_keyState & eButtonIsDown)
{
event.m_keyState = eButtonIsDown;
events.push_back(event);
}
}
m_data->m_keyboardEvents.resize(events.size());
for (int i=0;i<events.size();i++)
{
m_data->m_keyboardEvents[i] = events[i];
}
serverStatusOut.m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED;
hasStatus = true;
break;
};
case CMD_REQUEST_RAY_CAST_INTERSECTIONS:
{
BT_PROFILE("CMD_REQUEST_RAY_CAST_INTERSECTIONS");
serverStatusOut.m_raycastHits.m_numRaycastHits = 0;
for (int ray=0;ray<clientCmd.m_requestRaycastIntersections.m_numRays;ray++)
{
btVector3 rayFromWorld(clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][0],
clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][1],
clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][2]);
btVector3 rayToWorld(clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][0],
clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][1],
clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][2]);
btCollisionWorld::ClosestRayResultCallback rayResultCallback(rayFromWorld,rayToWorld);
m_data->m_dynamicsWorld->rayTest(rayFromWorld,rayToWorld,rayResultCallback);
int rayHits = serverStatusOut.m_raycastHits.m_numRaycastHits;
if (rayResultCallback.hasHit())
{
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitFraction
= rayResultCallback.m_closestHitFraction;
int objectUniqueId = -1;
int linkIndex = -1;
const btRigidBody* body = btRigidBody::upcast(rayResultCallback.m_collisionObject);
if (body)
{
objectUniqueId = rayResultCallback.m_collisionObject->getUserIndex2();
} else
{
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(rayResultCallback.m_collisionObject);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
objectUniqueId = mblB->m_multiBody->getUserIndex2();
}
}
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitObjectUniqueId
= objectUniqueId;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitObjectLinkIndex
= linkIndex;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[0]
= rayResultCallback.m_hitPointWorld[0];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[1]
= rayResultCallback.m_hitPointWorld[1];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[2]
= rayResultCallback.m_hitPointWorld[2];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[0]
= rayResultCallback.m_hitNormalWorld[0];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[1]
= rayResultCallback.m_hitNormalWorld[1];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[2]
= rayResultCallback.m_hitNormalWorld[2];
} else
{
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitFraction = 1;
serverStatusOut.m_raycastHits.m_rayHits[serverStatusOut.m_raycastHits.m_numRaycastHits].m_hitObjectUniqueId = -1;
serverStatusOut.m_raycastHits.m_rayHits[serverStatusOut.m_raycastHits.m_numRaycastHits].m_hitObjectLinkIndex = -1;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[0] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[1] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[2] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[0] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[1] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[2] = 0;
}
serverStatusOut.m_raycastHits.m_numRaycastHits++;
}
serverStatusOut.m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED;
hasStatus = true;
break;
};
case CMD_REQUEST_DEBUG_LINES:
{
BT_PROFILE("CMD_REQUEST_DEBUG_LINES");
int curFlags =m_data->m_remoteDebugDrawer->getDebugMode();
int debugMode = clientCmd.m_requestDebugLinesArguments.m_debugMode;//clientCmd.btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb;
int startingLineIndex = clientCmd.m_requestDebugLinesArguments.m_startingLineIndex;
if (startingLineIndex<0)
{
b3Warning("startingLineIndex should be non-negative");
startingLineIndex = 0;
}
if (clientCmd.m_requestDebugLinesArguments.m_startingLineIndex==0)
{
m_data->m_remoteDebugDrawer->m_lines2.resize(0);
//|btIDebugDraw::DBG_DrawAabb|
// btIDebugDraw::DBG_DrawConstraints |btIDebugDraw::DBG_DrawConstraintLimits ;
m_data->m_remoteDebugDrawer->setDebugMode(debugMode);
btIDebugDraw* oldDebugDrawer = m_data->m_dynamicsWorld->getDebugDrawer();
m_data->m_dynamicsWorld->setDebugDrawer(m_data->m_remoteDebugDrawer);
m_data->m_dynamicsWorld->debugDrawWorld();
m_data->m_dynamicsWorld->setDebugDrawer(oldDebugDrawer);
m_data->m_remoteDebugDrawer->setDebugMode(curFlags);
}
//9 floats per line: 3 floats for 'from', 3 floats for 'to' and 3 floats for 'color'
int bytesPerLine = (sizeof(float) * 9);
int maxNumLines = bufferSizeInBytes/bytesPerLine-1;
if (startingLineIndex >m_data->m_remoteDebugDrawer->m_lines2.size())
{
b3Warning("m_startingLineIndex exceeds total number of debug lines");
startingLineIndex =m_data->m_remoteDebugDrawer->m_lines2.size();
}
int numLines = btMin(maxNumLines,m_data->m_remoteDebugDrawer->m_lines2.size()-startingLineIndex);
if (numLines)
{
float* linesFrom = (float*)bufferServerToClient;
float* linesTo = (float*)(bufferServerToClient+numLines*3*sizeof(float));
float* linesColor = (float*)(bufferServerToClient+2*numLines*3*sizeof(float));
for (int i=0;i<numLines;i++)
{
linesFrom[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.x();
linesTo[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.x();
linesColor[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.x();
linesFrom[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.y();
linesTo[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.y();
linesColor[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.y();
linesFrom[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.z();
linesTo[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.z();
linesColor[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.z();
}
}
serverStatusOut.m_type = CMD_DEBUG_LINES_COMPLETED;
serverStatusOut.m_numDataStreamBytes = numLines * bytesPerLine;
serverStatusOut.m_sendDebugLinesArgs.m_numDebugLines = numLines;
serverStatusOut.m_sendDebugLinesArgs.m_startingLineIndex = startingLineIndex;
serverStatusOut.m_sendDebugLinesArgs.m_numRemainingDebugLines = m_data->m_remoteDebugDrawer->m_lines2.size()-(startingLineIndex+numLines);
hasStatus = true;
break;
}
case CMD_REQUEST_CAMERA_IMAGE_DATA:
{
BT_PROFILE("CMD_REQUEST_CAMERA_IMAGE_DATA");
int startPixelIndex = clientCmd.m_requestPixelDataArguments.m_startPixelIndex;
int width = clientCmd.m_requestPixelDataArguments.m_pixelWidth;
int height = clientCmd.m_requestPixelDataArguments.m_pixelHeight;
int numPixelsCopied = 0;
if ((clientCmd.m_updateFlags & ER_BULLET_HARDWARE_OPENGL)!=0)
{
//m_data->m_guiHelper->copyCameraImageData(clientCmd.m_requestPixelDataArguments.m_viewMatrix,clientCmd.m_requestPixelDataArguments.m_projectionMatrix,0,0,0,0,0,width,height,0);
}
else
2016-06-01 18:04:10 +00:00
{
if ((clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0) &&
(clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT)!=0)
{
m_data->m_visualConverter.setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth,
clientCmd.m_requestPixelDataArguments.m_pixelHeight);
}
m_data->m_visualConverter.getWidthAndHeight(width,height);
}
int numTotalPixels = width*height;
int numRemainingPixels = numTotalPixels - startPixelIndex;
if (numRemainingPixels>0)
{
int totalBytesPerPixel = 4+4+4;//4 for rgb, 4 for depth, 4 for segmentation mask
int maxNumPixels = bufferSizeInBytes/totalBytesPerPixel-1;
unsigned char* pixelRGBA = (unsigned char*)bufferServerToClient;
int numRequestedPixels = btMin(maxNumPixels,numRemainingPixels);
float* depthBuffer = (float*)(bufferServerToClient+numRequestedPixels*4);
int* segmentationMaskBuffer = (int*)(bufferServerToClient+numRequestedPixels*8);
serverStatusOut.m_numDataStreamBytes = numRequestedPixels * totalBytesPerPixel;
if ((clientCmd.m_updateFlags & ER_BULLET_HARDWARE_OPENGL)!=0)
2016-06-01 18:04:10 +00:00
{
m_data->m_guiHelper->copyCameraImageData(clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix,pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex,width,height,&numPixelsCopied);
2016-06-01 18:04:10 +00:00
} else
{
if (clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0)
{
// printf("-------------------------------\nRendering\n");
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION) != 0)
{
m_data->m_visualConverter.setLightDirection(clientCmd.m_requestPixelDataArguments.m_lightDirection[0], clientCmd.m_requestPixelDataArguments.m_lightDirection[1], clientCmd.m_requestPixelDataArguments.m_lightDirection[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR) != 0)
{
m_data->m_visualConverter.setLightColor(clientCmd.m_requestPixelDataArguments.m_lightColor[0], clientCmd.m_requestPixelDataArguments.m_lightColor[1], clientCmd.m_requestPixelDataArguments.m_lightColor[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE) != 0)
{
m_data->m_visualConverter.setLightDistance(clientCmd.m_requestPixelDataArguments.m_lightDistance);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SHADOW) != 0)
{
m_data->m_visualConverter.setShadow((clientCmd.m_requestPixelDataArguments.m_hasShadow!=0));
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF) != 0)
{
m_data->m_visualConverter.setLightAmbientCoeff(clientCmd.m_requestPixelDataArguments.m_lightAmbientCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF) != 0)
{
m_data->m_visualConverter.setLightDiffuseCoeff(clientCmd.m_requestPixelDataArguments.m_lightDiffuseCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF) != 0)
{
m_data->m_visualConverter.setLightSpecularCoeff(clientCmd.m_requestPixelDataArguments.m_lightSpecularCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES)!=0)
{
m_data->m_visualConverter.render(
clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix);
} else
{
m_data->m_visualConverter.render();
}
}
m_data->m_visualConverter.copyCameraImageData(pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex,&width,&height,&numPixelsCopied);
2016-06-01 18:04:10 +00:00
}
//each pixel takes 4 RGBA values and 1 float = 8 bytes
} else
{
}
serverStatusOut.m_type = CMD_CAMERA_IMAGE_COMPLETED;
serverStatusOut.m_sendPixelDataArguments.m_numPixelsCopied = numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_numRemainingPixels = numRemainingPixels - numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_startingPixelIndex = startPixelIndex;
serverStatusOut.m_sendPixelDataArguments.m_imageWidth = width;
serverStatusOut.m_sendPixelDataArguments.m_imageHeight= height;
hasStatus = true;
break;
}
case CMD_SYNC_BODY_INFO:
{
BT_PROFILE("CMD_SYNC_BODY_INFO");
int numHandles = m_data->getNumHandles();
int actualNumBodies = 0;
for (int i=0;i<numHandles;i++)
{
InteralBodyData* body = m_data->getHandle(i);
if (body && (body->m_multiBody || body->m_rigidBody))
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[actualNumBodies++] = i;
}
}
serverStatusOut.m_sdfLoadedArgs.m_numBodies = actualNumBodies;
int usz = m_data->m_userConstraints.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = usz;
for (int i=0;i<usz;i++)
{
int key = m_data->m_userConstraints.getKeyAtIndex(i).getUid1();
2017-01-23 05:06:51 +00:00
// int uid = m_data->m_userConstraints.getAtIndex(i)->m_userConstraintData.m_userConstraintUniqueId;
serverStatusOut.m_sdfLoadedArgs.m_userConstraintUniqueIds[i] = key;
}
serverStatusOut.m_type = CMD_SYNC_BODY_INFO_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_BODY_INFO:
{
BT_PROFILE("CMD_REQUEST_BODY_INFO");
const SdfRequestInfoArgs& sdfInfoArgs = clientCmd.m_sdfRequestInfoArgs;
//stream info into memory
int streamSizeInBytes = createBodyInfoStream(sdfInfoArgs.m_bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_type = CMD_BODY_INFO_COMPLETED;
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = sdfInfoArgs.m_bodyUniqueId;
serverStatusOut.m_dataStreamArguments.m_bodyName[0] = 0;
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateJacobianArguments.m_bodyUniqueId);
if (bodyHandle)
{
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName,bodyHandle->m_bodyName.c_str());
}
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
hasStatus = true;
break;
}
case CMD_SAVE_WORLD:
{
BT_PROFILE("CMD_SAVE_WORLD");
///this is a very rudimentary way to save the state of the world, for scene authoring
///many todo's, for example save the state of motor controllers etc.
{
//saveWorld(clientCmd.m_sdfArguments.m_sdfFileName);
int constraintCount = 0;
FILE* f = fopen(clientCmd.m_sdfArguments.m_sdfFileName,"w");
if (f)
{
char line[1024];
{
sprintf(line,"import pybullet as p\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"cin = p.connect(p.SHARED_MEMORY)\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"if (cin < 0):\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line," cin = p.connect(p.GUI)\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
//for each objects ...
for (int i=0;i<m_data->m_saveWorldBodyData.size();i++)
{
SaveWorldObjectData& sd = m_data->m_saveWorldBodyData[i];
for (int i=0;i<sd.m_bodyUniqueIds.size();i++)
{
{
int bodyUniqueId = sd.m_bodyUniqueIds[i];
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btTransform comTr = mb->getBaseWorldTransform();
btTransform tr = comTr * body->m_rootLocalInertialFrame.inverse();
if (strstr(sd.m_fileName.c_str(),".urdf"))
{
sprintf(line,"objects = [p.loadURDF(\"%s\", %f,%f,%f,%f,%f,%f,%f)]\n",sd.m_fileName.c_str(),
tr.getOrigin()[0],tr.getOrigin()[1],tr.getOrigin()[2],
tr.getRotation()[0],tr.getRotation()[1],tr.getRotation()[2],tr.getRotation()[3]);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf") && i==0)
{
sprintf(line,"objects = p.loadSDF(\"%s\")\n",sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".xml") && i==0)
{
sprintf(line,"objects = p.loadMJCF(\"%s\")\n",sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf") || strstr(sd.m_fileName.c_str(),".xml") || ((strstr(sd.m_fileName.c_str(),".urdf")) && mb->getNumLinks()) )
{
sprintf(line,"ob = objects[%d]\n",i);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf")||strstr(sd.m_fileName.c_str(),".xml"))
{
sprintf(line,"p.resetBasePositionAndOrientation(ob,[%f,%f,%f],[%f,%f,%f,%f])\n",
comTr.getOrigin()[0],comTr.getOrigin()[1],comTr.getOrigin()[2],
comTr.getRotation()[0],comTr.getRotation()[1],comTr.getRotation()[2],comTr.getRotation()[3]);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (mb->getNumLinks())
{
{
sprintf(line,"jointPositions=[");
int len = strlen(line);
fwrite(line,len,1,f);
}
for (int i=0;i<mb->getNumLinks();i++)
{
btScalar jointPos = mb->getJointPosMultiDof(i)[0];
if (i<mb->getNumLinks()-1)
{
sprintf(line," %f,",jointPos);
int len = strlen(line);
fwrite(line,len,1,f);
} else
{
sprintf(line," %f ",jointPos);
int len = strlen(line);
fwrite(line,len,1,f);
}
}
{
sprintf(line,"]\nfor jointIndex in range (p.getNumJoints(ob)):\n\tp.resetJointState(ob,jointIndex,jointPositions[jointIndex])\n\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
}
} else
{
//todo: btRigidBody/btSoftBody etc case
}
}
}
}
//for URDF, load at origin, then reposition...
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
}
//user constraints
{
for (int i=0;i<m_data->m_userConstraints.size();i++)
{
InteralUserConstraintData* ucptr = m_data->m_userConstraints.getAtIndex(i);
b3UserConstraint& uc = ucptr->m_userConstraintData;
int parentBodyIndex=uc.m_parentBodyIndex;
int parentJointIndex=uc.m_parentJointIndex;
int childBodyIndex=uc.m_childBodyIndex;
int childJointIndex=uc.m_childJointIndex;
btVector3 jointAxis(uc.m_jointAxis[0],uc.m_jointAxis[1],uc.m_jointAxis[2]);
btVector3 pivotParent(uc.m_parentFrame[0],uc.m_parentFrame[1],uc.m_parentFrame[2]);
btVector3 pivotChild(uc.m_childFrame[0],uc.m_childFrame[1],uc.m_childFrame[2]);
btQuaternion ornFrameParent(uc.m_parentFrame[3],uc.m_parentFrame[4],uc.m_parentFrame[5],uc.m_parentFrame[6]);
btQuaternion ornFrameChild(uc.m_childFrame[3],uc.m_childFrame[4],uc.m_childFrame[5],uc.m_childFrame[6]);
{
char jointTypeStr[1024]="FIXED";
bool hasKnownJointType = true;
switch (uc.m_jointType)
{
case eRevoluteType:
{
sprintf(jointTypeStr,"p.JOINT_REVOLUTE");
break;
}
case ePrismaticType:
{
sprintf(jointTypeStr,"p.JOINT_PRISMATIC");
break;
}
case eSphericalType:
{
sprintf(jointTypeStr,"p.JOINT_SPHERICAL");
break;
}
case ePlanarType:
{
sprintf(jointTypeStr,"p.JOINT_PLANAR");
break;
}
case eFixedType :
{
sprintf(jointTypeStr,"p.JOINT_FIXED");
break;
}
case ePoint2PointType:
{
sprintf(jointTypeStr,"p.JOINT_POINT2POINT");
break; }
default:
{
hasKnownJointType = false;
b3Warning("unknown constraint type in SAVE_WORLD");
}
};
if (hasKnownJointType)
{
{
sprintf(line,"cid%d = p.createConstraint(%d,%d,%d,%d,%s,[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],[%f,%f,%f,%f],[%f,%f,%f,%f])\n",
constraintCount,
parentBodyIndex,
parentJointIndex,
childBodyIndex,
childJointIndex,
jointTypeStr,
jointAxis[0],jointAxis[1],jointAxis[2],
pivotParent[0],pivotParent[1],pivotParent[2],
pivotChild[0],pivotChild[1],pivotChild[2],
ornFrameParent[0],ornFrameParent[1],ornFrameParent[2],ornFrameParent[3],
ornFrameChild[0],ornFrameChild[1],ornFrameChild[2],ornFrameChild[3]
);
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"p.changeConstraint(cid%d,maxForce=%f)\n",constraintCount,uc.m_maxAppliedForce);
int len = strlen(line);
fwrite(line,len,1,f);
constraintCount++;
}
}
}
}
}
{
btVector3 grav=this->m_data->m_dynamicsWorld->getGravity();
sprintf(line,"p.setGravity(%f,%f,%f)\n",grav[0],grav[1],grav[2]);
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"p.stepSimulation()\np.disconnect()\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
fclose(f);
}
serverStatusOut.m_type = CMD_SAVE_WORLD_COMPLETED;
hasStatus = true;
break;
}
serverStatusOut.m_type = CMD_SAVE_WORLD_FAILED;
hasStatus = true;
break;
}
case CMD_LOAD_SDF:
{
BT_PROFILE("CMD_LOAD_SDF");
const SdfArgs& sdfArgs = clientCmd.m_sdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SDF:%s", sdfArgs.m_sdfFileName);
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (sdfArgs.m_useMultiBody!=0) : true;
int flags = CUF_USE_SDF; //CUF_USE_URDF_INERTIA
bool completedOk = loadSdf(sdfArgs.m_sdfFileName,bufferServerToClient, bufferSizeInBytes, useMultiBody, flags);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
//serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i=0;i<maxBodies;i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_SDF_LOADING_COMPLETED;
} else
{
serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
}
hasStatus = true;
break;
}
case CMD_LOAD_URDF:
{
BT_PROFILE("CMD_LOAD_URDF");
const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName);
}
btAssert((clientCmd.m_updateFlags&URDF_ARGS_FILE_NAME) !=0);
btAssert(urdfArgs.m_urdfFileName);
btVector3 initialPos(0,0,0);
btQuaternion initialOrn(0,0,0,1);
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_POSITION)
{
initialPos[0] = urdfArgs.m_initialPosition[0];
initialPos[1] = urdfArgs.m_initialPosition[1];
initialPos[2] = urdfArgs.m_initialPosition[2];
}
int urdfFlags = 0;
if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS)
{
urdfFlags = urdfArgs.m_urdfFlags;
}
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_ORIENTATION)
{
initialOrn[0] = urdfArgs.m_initialOrientation[0];
initialOrn[1] = urdfArgs.m_initialOrientation[1];
initialOrn[2] = urdfArgs.m_initialOrientation[2];
initialOrn[3] = urdfArgs.m_initialOrientation[3];
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (urdfArgs.m_useMultiBody!=0) : true;
bool useFixedBase = (clientCmd.m_updateFlags & URDF_ARGS_USE_FIXED_BASE) ? (urdfArgs.m_useFixedBase!=0): false;
int bodyUniqueId;
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(urdfArgs.m_urdfFileName,
initialPos,initialOrn,
useMultiBody, useFixedBase,&bodyUniqueId, bufferServerToClient, bufferSizeInBytes, urdfFlags);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_type = CMD_URDF_LOADING_COMPLETED;
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size()-1)->m_memSerializer->getCurrentBufferSize();
}
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
2017-03-29 22:37:33 +00:00
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
hasStatus = true;
} else
{
serverStatusOut.m_type = CMD_URDF_LOADING_FAILED;
hasStatus = true;
}
break;
}
case CMD_LOAD_BUNNY:
{
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
double scale = 0.1;
double mass = 0.1;
double collisionMargin = 0.02;
if (clientCmd.m_updateFlags & LOAD_BUNNY_UPDATE_SCALE)
{
scale = clientCmd.m_loadBunnyArguments.m_scale;
}
if (clientCmd.m_updateFlags & LOAD_BUNNY_UPDATE_MASS)
{
mass = clientCmd.m_loadBunnyArguments.m_mass;
}
if (clientCmd.m_updateFlags & LOAD_BUNNY_UPDATE_COLLISION_MARGIN)
{
collisionMargin = clientCmd.m_loadBunnyArguments.m_collisionMargin;
}
m_data->m_softBodyWorldInfo.air_density = (btScalar)1.2;
m_data->m_softBodyWorldInfo.water_density = 0;
m_data->m_softBodyWorldInfo.water_offset = 0;
m_data->m_softBodyWorldInfo.water_normal = btVector3(0,0,0);
m_data->m_softBodyWorldInfo.m_gravity.setValue(0,0,-10);
m_data->m_softBodyWorldInfo.m_broadphase = m_data->m_broadphase;
m_data->m_softBodyWorldInfo.m_sparsesdf.Initialize();
btSoftBody* psb=btSoftBodyHelpers::CreateFromTriMesh(m_data->m_softBodyWorldInfo,gVerticesBunny, &gIndicesBunny[0][0], BUNNY_NUM_TRIANGLES);
btSoftBody::Material* pm=psb->appendMaterial();
pm->m_kLST = 1.0;
pm->m_flags -= btSoftBody::fMaterial::DebugDraw;
psb->generateBendingConstraints(2,pm);
psb->m_cfg.piterations = 50;
psb->m_cfg.kDF = 0.5;
psb->randomizeConstraints();
psb->rotate(btQuaternion(0.70711,0,0,0.70711));
2016-11-01 22:46:09 +00:00
psb->translate(btVector3(0,0,1.0));
psb->scale(btVector3(scale,scale,scale));
psb->setTotalMass(mass,true);
psb->getCollisionShape()->setMargin(collisionMargin);
m_data->m_dynamicsWorld->addSoftBody(psb);
#endif
break;
}
case CMD_CREATE_SENSOR:
{
BT_PROFILE("CMD_CREATE_SENSOR");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_CREATE_SENSOR");
}
int bodyUniqueId = clientCmd.m_createSensorArguments.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
for (int i=0;i<clientCmd.m_createSensorArguments.m_numJointSensorChanges;i++)
{
int jointIndex = clientCmd.m_createSensorArguments.m_jointIndex[i];
if (clientCmd.m_createSensorArguments.m_enableJointForceSensor[i])
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
b3Warning("CMD_CREATE_SENSOR: sensor for joint [%d] already enabled", jointIndex);
} else
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
fb->m_reactionForces.setZero();
mb->getLink(jointIndex).m_jointFeedback = fb;
m_data->m_multiBodyJointFeedbacks.push_back(fb);
};
} else
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
m_data->m_multiBodyJointFeedbacks.remove(mb->getLink(jointIndex).m_jointFeedback);
delete mb->getLink(jointIndex).m_jointFeedback;
mb->getLink(jointIndex).m_jointFeedback=0;
} else
{
b3Warning("CMD_CREATE_SENSOR: cannot perform sensor removal request, no sensor on joint [%d]", jointIndex);
};
}
}
} else
{
b3Warning("No btMultiBody in the world. btRigidBody/btTypedConstraint sensor not hooked up yet");
}
#if 0
//todo(erwincoumans) here is some sample code to hook up a force/torque sensor for btTypedConstraint/btRigidBody
/*
for (int i=0;i<m_data->m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_data->m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
*/
#endif
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_SEND_DESIRED_STATE:
{
BT_PROFILE("CMD_SEND_DESIRED_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_DESIRED_STATE");
}
int bodyUniqueId = clientCmd.m_sendDesiredStateCommandArgument.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
int torqueIndex = 6;
if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link=0;link<mb->getNumLinks();link++)
{
for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
double torque = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
mb->addJointTorqueMultiDof(link,dof,torque);
}
torqueIndex++;
}
}
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_VELOCITY");
}
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int dofIndex = 6;//skip the 3 linear + 3 angular degree of freedom entries of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
btScalar desiredVelocity = 0.f;
bool hasDesiredVelocity = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex];
btScalar kd = 0.1f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[dofIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
btScalar kp = 0.f;
motor->setPositionTarget(0,kp);
hasDesiredVelocity = true;
}
if (hasDesiredVelocity)
{
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex]*m_data->m_physicsDeltaTime;
}
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
dofIndex += mb->getLink(link).m_dofCount;
}
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_POSITION_VELOCITY_PD");
}
//compute the force base on PD control
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int velIndex = 6;//skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7;//skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
bool hasDesiredPosOrVel = false;
btScalar kp = 0.f;
btScalar kd = 0.f;
btScalar desiredVelocity = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
hasDesiredPosOrVel = true;
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
kd = 0.1;
}
btScalar desiredPosition = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q)!=0)
{
hasDesiredPosOrVel = true;
desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
kp = 0.1;
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP)!=0)
{
kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
motor->setPositionTarget(desiredPosition,kp);
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex]*m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
break;
}
default:
{
b3Warning("m_controlMode not implemented yet");
break;
}
}
}
serverStatusOut.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
BT_PROFILE("CMD_REQUEST_ACTUAL_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Sending the actual state (Q,U)");
}
int bodyUniqueId = clientCmd.m_requestActualStateInformationCommandArgument.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
if (mb->getNumLinks()>= MAX_DEGREE_OF_FREEDOM)
{
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
break;
}
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = mb->getBaseVel()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = mb->getBaseVel()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = mb->getBaseOmega()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = mb->getBaseOmega()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
}
btAlignedObjectArray<btVector3> omega;
btAlignedObjectArray<btVector3> linVel;
bool computeLinkVelocities = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_LINKVELOCITY)!=0);
if (computeLinkVelocities)
{
omega.resize(mb->getNumLinks()+1);
linVel.resize(mb->getNumLinks()+1);
{
B3_PROFILE("compTreeLinkVelocities");
mb->compTreeLinkVelocities(&omega[0], &linVel[0]);
}
}
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_posVarCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
if (0 == mb->getLink(l).m_jointFeedback)
{
for (int d=0;d<6;d++)
{
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+d]=0;
}
} else
{
btVector3 sensedForce = mb->getLink(l).m_jointFeedback->m_reactionForces.getLinear();
btVector3 sensedTorque = mb->getLink(l).m_jointFeedback->m_reactionForces.getAngular();
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+0] = sensedForce[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+1] = sensedForce[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+2] = sensedForce[2];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+3] = sensedTorque[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+4] = sensedTorque[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+5] = sensedTorque[2];
}
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] = 0;
if (supportsJointMotor(mb,l))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr;
if (motor && m_data->m_physicsDeltaTime>btScalar(0))
{
btScalar force =motor->getAppliedImpulse(0)/m_data->m_physicsDeltaTime;
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] =
force;
//if (force>0)
//{
// b3Printf("force = %f\n", force);
//}
}
}
btVector3 linkLocalInertialOrigin = body->m_linkLocalInertialFrames[l].getOrigin();
btQuaternion linkLocalInertialRotation = body->m_linkLocalInertialFrames[l].getRotation();
btVector3 linkCOMOrigin = mb->getLink(l).m_cachedWorldTransform.getOrigin();
btQuaternion linkCOMRotation = mb->getLink(l).m_cachedWorldTransform.getRotation();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+0] = linkCOMOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+1] = linkCOMOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+2] = linkCOMOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+3] = linkCOMRotation.x();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+4] = linkCOMRotation.y();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+5] = linkCOMRotation.z();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+6] = linkCOMRotation.w();
btVector3 worldLinVel(0,0,0);
btVector3 worldAngVel(0,0,0);
if (computeLinkVelocities)
{
const btMatrix3x3& linkRotMat = mb->getLink(l).m_cachedWorldTransform.getBasis();
worldLinVel = linkRotMat * linVel[l+1];
worldAngVel = linkRotMat * omega[l+1];
}
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+0] = worldLinVel[0];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+1] = worldLinVel[1];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+2] = worldLinVel[2];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+3] = worldAngVel[0];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+4] = worldAngVel[1];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+5] = worldAngVel[2];
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+0] = linkLocalInertialOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+1] = linkLocalInertialOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+2] = linkLocalInertialOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+3] = linkLocalInertialRotation.x();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+4] = linkLocalInertialRotation.y();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+5] = linkLocalInertialRotation.z();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+6] = linkLocalInertialRotation.w();
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
btTransform tr = rb->getWorldTransform();
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = rb->getLinearVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = rb->getLinearVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = rb->getLinearVelocity()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = rb->getAngularVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = rb->getAngularVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = rb->getAngularVelocity()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
b3Warning("Request state but no multibody or rigid body available");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
}
}
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
BT_PROFILE("CMD_STEP_FORWARD_SIMULATION");
if (m_data->m_verboseOutput)
{
b3Printf("Step simulation request");
b3Printf("CMD_STEP_FORWARD_SIMULATION clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
///todo(erwincoumans) move this damping inside Bullet
for (int i=0;i<m_data->m_bodyHandles.size();i++)
{
applyJointDamping(i);
}
btScalar deltaTimeScaled = m_data->m_physicsDeltaTime*simTimeScalingFactor;
if (m_data->m_numSimulationSubSteps > 0)
{
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps);
}
else
{
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, 0);
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_INTERNAL_DATA:
{
BT_PROFILE("CMD_REQUEST_INTERNAL_DATA");
//todo: also check version etc?
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_FAILED;
hasStatus = true;
int sz = btDefaultSerializer::getMemoryDnaSizeInBytes();
const char* memDna = btDefaultSerializer::getMemoryDna();
if (sz < bufferSizeInBytes)
{
for (int i = 0; i < sz; i++)
{
bufferServerToClient[i] = memDna[i];
}
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_COMPLETED;
2016-11-05 00:44:16 +00:00
serverCmd.m_numDataStreamBytes = sz;
}
break;
};
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS");
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DELTA_TIME)
{
m_data->m_physicsDeltaTime = clientCmd.m_physSimParamArgs.m_deltaTime;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_REAL_TIME_SIMULATION)
{
m_data->m_allowRealTimeSimulation = clientCmd.m_physSimParamArgs.m_allowRealTimeSimulation;
}
//see
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS)
{
//these flags are for internal/temporary/easter-egg/experimental demo purposes, use at own risk
gCreateDefaultRobotAssets = (clientCmd.m_physSimParamArgs.m_internalSimFlags & SIM_PARAM_INTERNAL_CREATE_ROBOT_ASSETS);
gInternalSimFlags = clientCmd.m_physSimParamArgs.m_internalSimFlags;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_GRAVITY)
{
btVector3 grav(clientCmd.m_physSimParamArgs.m_gravityAcceleration[0],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[1],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[2]);
this->m_data->m_dynamicsWorld->setGravity(grav);
if (m_data->m_verboseOutput)
{
b3Printf("Updated Gravity: %f,%f,%f",grav[0],grav[1],grav[2]);
}
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS)
{
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = clientCmd.m_physSimParamArgs.m_numSolverIterations;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD)
{
gContactBreakingThreshold = clientCmd.m_physSimParamArgs.m_contactBreakingThreshold;
}
if (clientCmd.m_updateFlags&SIM_PARAM_MAX_CMD_PER_1MS)
{
gMaxNumCmdPer1ms = clientCmd.m_physSimParamArgs.m_maxNumCmdPer1ms;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_COLLISION_FILTER_MODE)
{
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = clientCmd.m_physSimParamArgs.m_collisionFilterMode;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse = clientCmd.m_physSimParamArgs.m_useSplitImpulse;
}
if (clientCmd.m_updateFlags &SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold = clientCmd.m_physSimParamArgs.m_splitImpulsePenetrationThreshold;
}
2016-08-24 21:25:06 +00:00
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS)
{
m_data->m_numSimulationSubSteps = clientCmd.m_physSimParamArgs.m_numSimulationSubSteps;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = clientCmd.m_physSimParamArgs.m_defaultContactERP;
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
};
case CMD_INIT_POSE:
{
BT_PROFILE("CMD_INIT_POSE");
if (m_data->m_verboseOutput)
{
b3Printf("Server Init Pose not implemented yet");
}
int bodyUniqueId = clientCmd.m_initPoseArgs.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
btVector3 baseLinVel(0, 0, 0);
btVector3 baseAngVel(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
baseLinVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[0],
clientCmd.m_initPoseArgs.m_initialStateQdot[1],
clientCmd.m_initPoseArgs.m_initialStateQdot[2]);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
baseAngVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[3],
clientCmd.m_initPoseArgs.m_initialStateQdot[4],
clientCmd.m_initPoseArgs.m_initialStateQdot[5]);
}
btVector3 basePos(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
basePos = btVector3(
clientCmd.m_initPoseArgs.m_initialStateQ[0],
clientCmd.m_initPoseArgs.m_initialStateQ[1],
clientCmd.m_initPoseArgs.m_initialStateQ[2]);
}
btQuaternion baseOrn(0, 0, 0, 1);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
baseOrn.setValue(clientCmd.m_initPoseArgs.m_initialStateQ[3],
clientCmd.m_initPoseArgs.m_initialStateQ[4],
clientCmd.m_initPoseArgs.m_initialStateQ[5],
clientCmd.m_initPoseArgs.m_initialStateQ[6]);
}
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
mb->setBaseVel(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
mb->setBaseOmega(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
btVector3 zero(0,0,0);
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[0] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[1] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[2]);
mb->setBaseVel(baseLinVel);
mb->setBasePos(basePos);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[3] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[4] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[5] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[6]);
mb->setBaseOmega(baseAngVel);
btQuaternion invOrn(baseOrn);
mb->setWorldToBaseRot(invOrn.inverse());
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_JOINT_STATE)
{
int uDofIndex = 6;
int posVarCountIndex = 7;
for (int i=0;i<mb->getNumLinks();i++)
{
if ( (clientCmd.m_initPoseArgs.m_hasInitialStateQ[posVarCountIndex]) && (mb->getLink(i).m_dofCount==1))
{
mb->setJointPos(i,clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex]);
mb->setJointVel(i,0);//backwards compatibility
}
if ((clientCmd.m_initPoseArgs.m_hasInitialStateQdot[uDofIndex]) && (mb->getLink(i).m_dofCount==1))
{
btScalar vel = clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex];
mb->setJointVel(i,vel);
}
posVarCountIndex += mb->getLink(i).m_posVarCount;
uDofIndex += mb->getLink(i).m_dofCount;
}
}
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
mb->forwardKinematics(scratch_q,scratch_m);
int nLinks = mb->getNumLinks();
scratch_q.resize(nLinks+1);
scratch_m.resize(nLinks+1);
mb->updateCollisionObjectWorldTransforms(scratch_q,scratch_m);
}
if (body && body->m_rigidBody)
{
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
body->m_rigidBody->getWorldTransform().setOrigin(basePos);
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
body->m_rigidBody->getWorldTransform().setRotation(baseOrn);
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_RESET_SIMULATION:
{
BT_PROFILE("CMD_RESET_SIMULATION");
resetSimulation();
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RESET_SIMULATION_COMPLETED;
hasStatus = true;
break;
}
case CMD_CREATE_RIGID_BODY:
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
BT_PROFILE("CMD_CREATE_RIGID_BODY");
btVector3 halfExtents(1,1,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_HALF_EXTENTS)
{
halfExtents = btVector3(
clientCmd.m_createBoxShapeArguments.m_halfExtentsX,
clientCmd.m_createBoxShapeArguments.m_halfExtentsY,
clientCmd.m_createBoxShapeArguments.m_halfExtentsZ);
}
btTransform startTrans;
startTrans.setIdentity();
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_POSITION)
{
startTrans.setOrigin(btVector3(
clientCmd.m_createBoxShapeArguments.m_initialPosition[0],
clientCmd.m_createBoxShapeArguments.m_initialPosition[1],
clientCmd.m_createBoxShapeArguments.m_initialPosition[2]));
}
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_ORIENTATION)
{
startTrans.setRotation(btQuaternion(
clientCmd.m_createBoxShapeArguments.m_initialOrientation[0],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[1],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[2],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[3]));
}
btScalar mass = 0.f;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_MASS)
{
mass = clientCmd.m_createBoxShapeArguments.m_mass;
}
int shapeType = COLLISION_SHAPE_TYPE_BOX;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE)
{
shapeType = clientCmd.m_createBoxShapeArguments.m_collisionShapeType;
}
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
btCollisionShape* shape = 0;
switch (shapeType)
{
case COLLISION_SHAPE_TYPE_CYLINDER_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCylinderShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCylinderShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCylinderShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCapsuleShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCapsuleShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCapsuleShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_SPHERE:
{
btScalar radius = halfExtents[0];
shape = worldImporter->createSphereShape(radius);
break;
}
case COLLISION_SHAPE_TYPE_BOX:
default:
{
shape = worldImporter->createBoxShape(halfExtents);
}
}
bool isDynamic = (mass>0);
btRigidBody* rb = worldImporter->createRigidBody(isDynamic,mass,startTrans,shape,0);
//m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
btVector4 colorRGBA(1,0,0,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLOR)
{
colorRGBA[0] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[0];
colorRGBA[1] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[1];
colorRGBA[2] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[2];
colorRGBA[3] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[3];
}
m_data->m_guiHelper->createCollisionShapeGraphicsObject(rb->getCollisionShape());
m_data->m_guiHelper->createCollisionObjectGraphicsObject(rb,colorRGBA);
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RIGID_BODY_CREATION_COMPLETED;
int bodyUniqueId = m_data->allocHandle();
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
serverCmd.m_rigidBodyCreateArgs.m_bodyUniqueId = bodyUniqueId;
rb->setUserIndex2(bodyUniqueId);
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_rigidBody = rb;
hasStatus = true;
break;
}
case CMD_PICK_BODY:
{
BT_PROFILE("CMD_PICK_BODY");
pickBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_MOVE_PICKED_BODY:
{
BT_PROFILE("CMD_MOVE_PICKED_BODY");
movePickedBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_REMOVE_PICKING_CONSTRAINT_BODY:
{
BT_PROFILE("CMD_REMOVE_PICKING_CONSTRAINT_BODY");
removePickingConstraint();
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_AABB_OVERLAP:
{
BT_PROFILE("CMD_REQUEST_AABB_OVERLAP");
SharedMemoryStatus& serverCmd = serverStatusOut;
int curObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
if (0== curObjectIndex)
{
//clientCmd.m_requestContactPointArguments.m_aabbQueryMin
btVector3 aabbMin, aabbMax;
aabbMin.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[2]);
aabbMax.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[2]);
m_data->m_cachedOverlappingObjects.clear();
m_data->m_dynamicsWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, m_data->m_cachedOverlappingObjects);
}
int totalBytesPerObject = sizeof(b3OverlappingObject);
int overlapCapacity = bufferSizeInBytes / totalBytesPerObject - 1;
int numOverlap = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
int remainingObjects = numOverlap - curObjectIndex;
int curNumObjects = btMin(overlapCapacity, remainingObjects);
if (numOverlap < overlapCapacity)
{
b3OverlappingObject* overlapStorage = (b3OverlappingObject*)bufferServerToClient;
for (int i = 0; i < m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); i++)
{
overlapStorage[i].m_objectUniqueId = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds[i];
overlapStorage[i].m_linkIndex = m_data->m_cachedOverlappingObjects.m_links[i];
}
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_COMPLETED;
//int m_startingOverlappingObjectIndex;
//int m_numOverlappingObjectsCopied;
//int m_numRemainingOverlappingObjects;
serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects = remainingObjects - curNumObjects;
}
else
{
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_FAILED;
}
hasStatus = true;
break;
}
case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA:
{
BT_PROFILE("CMD_REQUEST_OPENGL_VISUALIZER_CAMERA");
SharedMemoryStatus& serverCmd = serverStatusOut;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&serverCmd.m_visualizerCameraResultArgs.m_width,
&serverCmd.m_visualizerCameraResultArgs.m_height,
serverCmd.m_visualizerCameraResultArgs.m_viewMatrix,
serverCmd.m_visualizerCameraResultArgs.m_projectionMatrix,
serverCmd.m_visualizerCameraResultArgs.m_camUp,
serverCmd.m_visualizerCameraResultArgs.m_camForward,
serverCmd.m_visualizerCameraResultArgs.m_horizontal,
serverCmd.m_visualizerCameraResultArgs.m_vertical);
serverCmd.m_type = result ? CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED: CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED;
hasStatus = true;
break;
}
case CMD_CONFIGURE_OPENGL_VISUALIZER:
{
BT_PROFILE("CMD_CONFIGURE_OPENGL_VISUALIZER");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type =CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
if (clientCmd.m_updateFlags&COV_SET_FLAGS)
{
m_data->m_guiHelper->setVisualizerFlag(clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag,
clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled);
}
if (clientCmd.m_updateFlags&COV_SET_CAMERA_VIEW_MATRIX)
{
m_data->m_guiHelper->resetCamera( clientCmd.m_configureOpenGLVisualizerArguments.m_cameraDistance,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraPitch,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraYaw,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2]);
}
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
BT_PROFILE("CMD_REQUEST_CONTACT_POINT_INFORMATION");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied = 0;
//make a snapshot of the contact manifolds into individual contact points
2016-11-10 05:01:04 +00:00
if (clientCmd.m_requestContactPointArguments.m_startingContactPointIndex == 0)
{
m_data->m_cachedContactPoints.resize(0);
2016-11-10 05:01:04 +00:00
int mode = CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS;
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE)
{
mode = clientCmd.m_requestContactPointArguments.m_mode;
}
switch (mode)
{
case CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS:
{
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
m_data->m_cachedContactPoints.reserve(numContactManifolds * 4);
for (int i = 0; i < numContactManifolds; i++)
{
2016-11-10 05:01:04 +00:00
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
int objectIndexB = -1;
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter != linkIndexB)
{
continue;
}
2016-11-10 05:01:04 +00:00
}
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter != linkIndexA)
{
continue;
}
2016-11-10 05:01:04 +00:00
}
btAssert(bodyA || mblA);
//apply the filter, if the user provides it
if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter >= 0)
{
if ((clientCmd.m_requestContactPointArguments.m_objectAIndexFilter != objectIndexA) &&
(clientCmd.m_requestContactPointArguments.m_objectAIndexFilter != objectIndexB))
continue;
}
//apply the second object filter, if the user provides it
if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter >= 0)
{
if ((clientCmd.m_requestContactPointArguments.m_objectBIndexFilter != objectIndexA) &&
(clientCmd.m_requestContactPointArguments.m_objectBIndexFilter != objectIndexB))
continue;
}
for (int p = 0; p < manifold->getNumContacts(); p++)
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = objectIndexA;
pt.m_bodyUniqueIdB = objectIndexB;
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = linkIndexA;
pt.m_linkIndexB = linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_data->m_physicsDeltaTime;
// pt.m_linearFrictionForce = srcPt.m_appliedImpulseLateral1;
m_data->m_cachedContactPoints.push_back(pt);
}
}
2016-11-10 05:01:04 +00:00
break;
}
2016-11-10 05:01:04 +00:00
case CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS:
{
//todo(erwincoumans) compute closest points between all, and vs all, pair
btScalar closestDistanceThreshold = 0.f;
2016-11-10 05:01:04 +00:00
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD)
{
2016-11-10 05:01:04 +00:00
closestDistanceThreshold = clientCmd.m_requestContactPointArguments.m_closestDistanceThreshold;
}
2016-11-10 05:01:04 +00:00
int bodyUniqueIdA = clientCmd.m_requestContactPointArguments.m_objectAIndexFilter;
int bodyUniqueIdB = clientCmd.m_requestContactPointArguments.m_objectBIndexFilter;
bool hasLinkIndexAFilter = (0!=(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER));
bool hasLinkIndexBFilter = (0!=(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER));
int linkIndexA = clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter;
int linkIndexB = clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter;
2016-11-10 05:01:04 +00:00
btAlignedObjectArray<btCollisionObject*> setA;
btAlignedObjectArray<btCollisionObject*> setB;
btAlignedObjectArray<int> setALinkIndex;
btAlignedObjectArray<int> setBLinkIndex;
if (bodyUniqueIdA >= 0)
{
InteralBodyData* bodyA = m_data->getHandle(bodyUniqueIdA);
if (bodyA)
{
if (bodyA->m_multiBody)
{
if (bodyA->m_multiBody->getBaseCollider())
{
if (!hasLinkIndexAFilter || (linkIndexA == -1))
{
setA.push_back(bodyA->m_multiBody->getBaseCollider());
setALinkIndex.push_back(-1);
}
2016-11-10 05:01:04 +00:00
}
for (int i = 0; i < bodyA->m_multiBody->getNumLinks(); i++)
{
if (bodyA->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexAFilter || (linkIndexA == i))
{
setA.push_back(bodyA->m_multiBody->getLink(i).m_collider);
setALinkIndex.push_back(i);
}
2016-11-10 05:01:04 +00:00
}
}
}
if (bodyA->m_rigidBody)
{
setA.push_back(bodyA->m_rigidBody);
setALinkIndex.push_back(-1);
}
}
}
if (bodyUniqueIdB>=0)
{
2016-11-10 05:01:04 +00:00
InteralBodyData* bodyB = m_data->getHandle(bodyUniqueIdB);
if (bodyB)
{
if (bodyB->m_multiBody)
{
if (bodyB->m_multiBody->getBaseCollider())
{
if (!hasLinkIndexBFilter || (linkIndexB == -1))
{
setB.push_back(bodyB->m_multiBody->getBaseCollider());
setBLinkIndex.push_back(-1);
}
2016-11-10 05:01:04 +00:00
}
for (int i = 0; i < bodyB->m_multiBody->getNumLinks(); i++)
{
if (bodyB->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexBFilter || (linkIndexB ==i))
{
setB.push_back(bodyB->m_multiBody->getLink(i).m_collider);
setBLinkIndex.push_back(i);
}
2016-11-10 05:01:04 +00:00
}
}
}
if (bodyB->m_rigidBody)
{
setB.push_back(bodyB->m_rigidBody);
setBLinkIndex.push_back(-1);
}
}
}
{
2016-11-10 05:01:04 +00:00
///ContactResultCallback is used to report contact points
struct MyContactResultCallback : public btCollisionWorld::ContactResultCallback
{
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
int m_linkIndexA;
int m_linkIndexB;
btScalar m_deltaTime;
btAlignedObjectArray<b3ContactPointData>& m_cachedContactPoints;
MyContactResultCallback(btAlignedObjectArray<b3ContactPointData>& pointCache)
:m_cachedContactPoints(pointCache)
{
}
virtual ~MyContactResultCallback()
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
//bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
//collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
//return collides;
return true;
}
virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
{
if (cp.m_distance1<=m_closestDistanceThreshold)
2016-11-10 05:01:04 +00:00
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = m_bodyUniqueIdA;
pt.m_bodyUniqueIdB = m_bodyUniqueIdB;
const btManifoldPoint& srcPt = cp;
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = m_linkIndexA;
pt.m_linkIndexB = m_linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_deltaTime;
// pt.m_linearFrictionForce = srcPt.m_appliedImpulseLateral1;
m_cachedContactPoints.push_back(pt);
2016-11-10 05:01:04 +00:00
}
return 1;
2016-11-10 05:01:04 +00:00
}
};
MyContactResultCallback cb(m_data->m_cachedContactPoints);
cb.m_bodyUniqueIdA = bodyUniqueIdA;
cb.m_bodyUniqueIdB = bodyUniqueIdB;
cb.m_deltaTime = m_data->m_physicsDeltaTime;
2016-11-10 05:01:04 +00:00
for (int i = 0; i < setA.size(); i++)
{
2016-11-10 05:01:04 +00:00
cb.m_linkIndexA = setALinkIndex[i];
for (int j = 0; j < setB.size(); j++)
{
cb.m_linkIndexB = setBLinkIndex[j];
cb.m_closestDistanceThreshold = closestDistanceThreshold;
this->m_data->m_dynamicsWorld->contactPairTest(setA[i], setB[j], cb);
}
}
}
2016-11-10 05:01:04 +00:00
break;
}
default:
{
b3Warning("Unknown contact query mode: %d", mode);
}
}
}
int numContactPoints = m_data->m_cachedContactPoints.size();
//b3ContactPoint
//struct b3ContactPointDynamics
int totalBytesPerContact = sizeof(b3ContactPointData);
int contactPointStorage = bufferSizeInBytes/totalBytesPerContact-1;
b3ContactPointData* contactData = (b3ContactPointData*)bufferServerToClient;
int startContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
int numContactPointBatch = btMin(numContactPoints,contactPointStorage);
int endContactPointIndex = startContactPointIndex+numContactPointBatch;
for (int i=startContactPointIndex;i<endContactPointIndex ;i++)
{
const b3ContactPointData& srcPt = m_data->m_cachedContactPoints[i];
b3ContactPointData& destPt = contactData[serverCmd.m_sendContactPointArgs.m_numContactPointsCopied];
destPt = srcPt;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied++;
}
serverCmd.m_sendContactPointArgs.m_startingContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints = numContactPoints - clientCmd.m_requestContactPointArguments.m_startingContactPointIndex - serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_numDataStreamBytes = totalBytesPerContact * serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_type = CMD_CONTACT_POINT_INFORMATION_COMPLETED; //CMD_CONTACT_POINT_INFORMATION_FAILED,
hasStatus = true;
break;
}
case CMD_CALCULATE_INVERSE_DYNAMICS:
{
BT_PROFILE("CMD_CALCULATE_INVERSE_DYNAMICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx nu(num_dofs+baseDofs), qdot(num_dofs + baseDofs), q(num_dofs + baseDofs), joint_force(num_dofs + baseDofs);
for (int i = 0; i < num_dofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i];
nu[i+baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs;
for (int i = 0; i < num_dofs; i++)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i+baseDofs];
}
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
hasStatus = true;
break;
}
case CMD_CALCULATE_JACOBIAN:
{
BT_PROFILE("CMD_CALCULATE_JACOBIAN");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateJacobianArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx nu(num_dofs+baseDofs), qdot(num_dofs + baseDofs), q(num_dofs + baseDofs), joint_force(num_dofs + baseDofs);
for (int i = 0; i < num_dofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointVelocitiesQdot[i];
nu[i+baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_jacobianResultArgs.m_dofCount = num_dofs;
// Set jacobian value
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, num_dofs);
tree->getBodyJacobianTrans(clientCmd.m_calculateJacobianArguments.m_linkIndex+1, &jac_t);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < num_dofs; ++j)
{
serverCmd.m_jacobianResultArgs.m_linearJacobian[i*num_dofs+j] = jac_t(i,j);
}
}
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
hasStatus = true;
break;
}
case CMD_APPLY_EXTERNAL_FORCE:
{
BT_PROFILE("CMD_APPLY_EXTERNAL_FORCE");
if (m_data->m_verboseOutput)
{
b3Printf("CMD_APPLY_EXTERNAL_FORCE clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
for (int i = 0; i < clientCmd.m_externalForceArguments.m_numForcesAndTorques; ++i)
{
InteralBodyData* body = m_data->getHandle(clientCmd.m_externalForceArguments.m_bodyUniqueIds[i]);
bool isLinkFrame = ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_LINK_FRAME) != 0);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE)!=0)
{
btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
btVector3 positionLocal(
clientCmd.m_externalForceArguments.m_positions[i*3+0],
clientCmd.m_externalForceArguments.m_positions[i*3+1],
clientCmd.m_externalForceArguments.m_positions[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 forceWorld = isLinkFrame ? forceLocal : mb->getBaseWorldTransform().getBasis()*forceLocal;
btVector3 relPosWorld = isLinkFrame ? positionLocal : mb->getBaseWorldTransform().getBasis()*positionLocal;
mb->addBaseForce(forceWorld);
mb->addBaseTorque(relPosWorld.cross(forceWorld));
//b3Printf("apply base force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2],positionLocal[0],positionLocal[1],positionLocal[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 forceWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*forceLocal;
btVector3 relPosWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*positionLocal;
mb->addLinkForce(link, forceWorld);
mb->addLinkTorque(link,relPosWorld.cross(forceWorld));
//b3Printf("apply link force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2], positionLocal[0],positionLocal[1],positionLocal[2]);
}
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE)!=0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 torqueWorld = isLinkFrame ? torqueLocal : mb->getBaseWorldTransform().getBasis()*torqueLocal;
mb->addBaseTorque(torqueWorld);
//b3Printf("apply base torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 torqueWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*torqueLocal;
mb->addLinkTorque(link, torqueWorld);
//b3Printf("apply link torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
}
}
}
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0)
{
btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 positionLocal(
clientCmd.m_externalForceArguments.m_positions[i * 3 + 0],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 1],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]);
btVector3 forceWorld = isLinkFrame ? forceLocal : rb->getWorldTransform().getBasis()*forceLocal;
btVector3 relPosWorld = isLinkFrame ? positionLocal : rb->getWorldTransform().getBasis()*positionLocal;
rb->applyForce(forceWorld, relPosWorld);
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 torqueWorld = isLinkFrame ? torqueLocal : rb->getWorldTransform().getBasis()*torqueLocal;
rb->applyTorque(torqueWorld);
}
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_USER_CONSTRAINT:
{
BT_PROFILE("CMD_USER_CONSTRAINT");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_USER_CONSTRAINT_FAILED;
hasStatus = true;
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_INFO)
{
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
serverCmd.m_userConstraintResultArgs = userConstraintPtr->m_userConstraintData;
serverCmd.m_type = CMD_USER_CONSTRAINT_INFO_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_CONSTRAINT)
{
btScalar defaultMaxForce = 500.0;
InteralBodyData* parentBody = m_data->getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex);
if (parentBody && parentBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_parentJointIndex>=-1) && clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_multiBody->getNumLinks())
{
InteralBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex>=0 ? m_data->getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex):0;
//also create a constraint with just a single multibody/rigid body without child
//if (childBody)
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btMatrix3x3 frameInParent(btQuaternion(clientCmd.m_userConstraintArguments.m_parentFrame[3], clientCmd.m_userConstraintArguments.m_parentFrame[4], clientCmd.m_userConstraintArguments.m_parentFrame[5], clientCmd.m_userConstraintArguments.m_parentFrame[6]));
btMatrix3x3 frameInChild(btQuaternion(clientCmd.m_userConstraintArguments.m_childFrame[3], clientCmd.m_userConstraintArguments.m_childFrame[4], clientCmd.m_userConstraintArguments.m_childFrame[5], clientCmd.m_userConstraintArguments.m_childFrame[6]));
btVector3 jointAxis(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]);
if (clientCmd.m_userConstraintArguments.m_jointType == eFixedType)
{
if (childBody && childBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex>=-1) && (clientCmd.m_userConstraintArguments.m_childJointIndex <childBody->m_multiBody->getNumLinks()))
{
btMultiBodyFixedConstraint* multibodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild,frameInParent,frameInChild);
multibodyFixed->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodyFixedConstraint* rigidbodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild,frameInParent,frameInChild);
rigidbodyFixed->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == ePrismaticType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodySliderConstraint* multibodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild,frameInParent,frameInChild,jointAxis);
multibodySlider->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodySliderConstraint* rigidbodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild,frameInParent,frameInChild,jointAxis);
rigidbodySlider->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; }
} else if (clientCmd.m_userConstraintArguments.m_jointType == ePoint2PointType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
} else
{
b3Warning("unknown constraint type");
}
}
}
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT)
{
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_FAILED;
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B)
{
btVector3 pivotInB(clientCmd.m_userConstraintArguments.m_childFrame[0],
clientCmd.m_userConstraintArguments.m_childFrame[1],
clientCmd.m_userConstraintArguments.m_childFrame[2]);
userConstraintPtr->m_userConstraintData.m_childFrame[0] = clientCmd.m_userConstraintArguments.m_childFrame[0];
userConstraintPtr->m_userConstraintData.m_childFrame[1] = clientCmd.m_userConstraintArguments.m_childFrame[1];
userConstraintPtr->m_userConstraintData.m_childFrame[2] = clientCmd.m_userConstraintArguments.m_childFrame[2];
userConstraintPtr->m_mbConstraint->setPivotInB(pivotInB);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B)
{
btQuaternion childFrameOrn(clientCmd.m_userConstraintArguments.m_childFrame[3],
clientCmd.m_userConstraintArguments.m_childFrame[4],
clientCmd.m_userConstraintArguments.m_childFrame[5],
clientCmd.m_userConstraintArguments.m_childFrame[6]);
userConstraintPtr->m_userConstraintData.m_childFrame[3] = clientCmd.m_userConstraintArguments.m_childFrame[3];
userConstraintPtr->m_userConstraintData.m_childFrame[4] = clientCmd.m_userConstraintArguments.m_childFrame[4];
userConstraintPtr->m_userConstraintData.m_childFrame[5] = clientCmd.m_userConstraintArguments.m_childFrame[5];
userConstraintPtr->m_userConstraintData.m_childFrame[6] = clientCmd.m_userConstraintArguments.m_childFrame[6];
btMatrix3x3 childFrameBasis(childFrameOrn);
userConstraintPtr->m_mbConstraint->setFrameInB(childFrameBasis);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce*m_data->m_physicsDeltaTime;
userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce;
userConstraintPtr->m_mbConstraint->setMaxAppliedImpulse(maxImp);
}
}
if (userConstraintPtr->m_rbConstraint)
{
//todo
}
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidChange;
serverCmd.m_updateFlags = clientCmd.m_updateFlags;
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REMOVE_CONSTRAINT)
{
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_FAILED;
int userConstraintUidRemove = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidRemove);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
m_data->m_dynamicsWorld->removeMultiBodyConstraint(userConstraintPtr->m_mbConstraint);
delete userConstraintPtr->m_mbConstraint;
m_data->m_userConstraints.remove(userConstraintUidRemove);
}
if (userConstraintPtr->m_rbConstraint)
{
}
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidRemove;
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_COMPLETED;
}
}
break;
}
case CMD_CALCULATE_INVERSE_KINEMATICS:
{
BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED;
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
IKTrajectoryHelper* ikHelperPtr = 0;
if (ikHelperPtrPtr)
{
ikHelperPtr = *ikHelperPtrPtr;
}
else
{
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
ikHelperPtr = tmpHelper;
}
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex;
if (ikHelperPtr && (endEffectorLinkIndex<bodyHandle->m_multiBody->getNumLinks()))
{
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
b3AlignedObjectArray<double> jacobian_linear;
jacobian_linear.resize(3*numDofs);
2016-09-20 00:04:05 +00:00
b3AlignedObjectArray<double> jacobian_angular;
jacobian_angular.resize(3*numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
btAlignedObjectArray<double> q_current;
q_current.resize(numDofs);
if (tree)
{
jacSize = jacobian_linear.size();
// Set jacobian value
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
btInverseDynamics::vecx nu(numDofs+baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
for (int i = 0; i < numDofs; i++)
{
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
q[i+baseDofs] = bodyHandle->m_multiBody->getJointPos(i);
qdot[i + baseDofs] = 0;
nu[i+baseDofs] = 0;
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs);
btInverseDynamics::mat3x jac_r(3,numDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex+1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex+1, &jac_r);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[i*numDofs+j] = jac_t(i,j);
jacobian_angular[i*numDofs+j] = jac_r(i,j);
}
}
}
}
btAlignedObjectArray<double> q_new;
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)&&(clientCmd.m_updateFlags&IK_HAS_NULL_SPACE_VELOCITY))
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
else if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
ikMethod = IK2_VEL_DLS;
}
if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
btVector3DoubleData endEffectorWorldPosition;
2016-09-20 00:04:05 +00:00
btVector3DoubleData endEffectorWorldOrientation;
btVector3 endEffectorPosWorld = endEffectorTransformWorld.getOrigin();
btQuaternion endEffectorOriWorld = endEffectorTransformWorld.getRotation();
2016-09-20 00:04:05 +00:00
btVector4 endEffectorOri(endEffectorOriWorld.x(),endEffectorOriWorld.y(),endEffectorOriWorld.z(),endEffectorOriWorld.w());
endEffectorPosWorld.serializeDouble(endEffectorWorldPosition);
2016-09-20 00:04:05 +00:00
endEffectorOri.serializeDouble(endEffectorWorldOrientation);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs,0.5);
if (clientCmd.m_updateFlags& IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
2016-09-20 00:04:05 +00:00
ikHelperPtr->computeIK(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition, clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, targetDampCoeff);
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId =clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i=0;i<numDofs;i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
}
}
hasStatus = true;
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
BT_PROFILE("CMD_REQUEST_VISUAL_SHAPE_INFO");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_FAILED;
//retrieve the visual shape information for a specific body
int totalNumVisualShapes = m_data->m_visualConverter.getNumVisualShapes(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId);
//int totalBytesPerVisualShape = sizeof (b3VisualShapeData);
//int visualShapeStorage = bufferSizeInBytes / totalBytesPerVisualShape - 1;
b3VisualShapeData* visualShapeStoragePtr = (b3VisualShapeData*)bufferServerToClient;
int remain = totalNumVisualShapes - clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int shapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int success = m_data->m_visualConverter.getVisualShapesData(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId,
shapeIndex,
visualShapeStoragePtr);
if (success) {
serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = remain-1;
serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 1;
serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId;
serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData)*serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED;
}
hasStatus = true;
break;
}
case CMD_UPDATE_VISUAL_SHAPE:
{
BT_PROFILE("CMD_UPDATE_VISUAL_SHAPE");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_FAILED;
m_data->m_visualConverter.activateShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId, clientCmd.m_updateVisualShapeDataArguments.m_jointIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId);
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_COMPLETED;
hasStatus = true;
break;
}
2016-10-21 06:40:30 +00:00
case CMD_LOAD_TEXTURE:
{
BT_PROFILE("CMD_LOAD_TEXTURE");
2016-10-21 06:40:30 +00:00
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
int uid = m_data->m_visualConverter.loadTextureFile(clientCmd.m_loadTextureArguments.m_textureFileName);
2016-10-21 06:40:30 +00:00
if (uid>=0)
{
serverCmd.m_type = CMD_LOAD_TEXTURE_COMPLETED;
} else
{
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
}
2016-10-21 06:40:30 +00:00
hasStatus = true;
break;
}
case CMD_LOAD_BULLET:
{
BT_PROFILE("CMD_LOAD_BULLET");
SharedMemoryStatus& serverCmd = serverStatusOut;
btBulletWorldImporter* importer = new btBulletWorldImporter(m_data->m_dynamicsWorld);
const char* prefix[] = { "", "./", "./data/", "../data/", "../../data/", "../../../data/", "../../../../data/" };
int numPrefixes = sizeof(prefix) / sizeof(const char*);
char relativeFileName[1024];
FILE* f = 0;
bool found = false;
for (int i = 0; !f && i<numPrefixes; i++)
{
sprintf(relativeFileName, "%s%s", prefix[i], clientCmd.m_fileArguments.m_fileName);
f = fopen(relativeFileName, "rb");
if (f)
{
found = true;
break;
}
}
if (f)
{
fclose(f);
}
if (found)
{
bool ok = importer->loadFile(relativeFileName);
if (ok)
{
int numRb = importer->getNumRigidBodies();
serverStatusOut.m_sdfLoadedArgs.m_numBodies = 0;
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
for( int i=0;i<numRb;i++)
{
btCollisionObject* colObj = importer->getRigidBodyByIndex(i);
if (colObj)
{
btRigidBody* rb = btRigidBody::upcast(colObj);
if (rb)
{
int bodyUniqueId = m_data->allocHandle();
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
colObj->setUserIndex2(bodyUniqueId);
bodyHandle->m_rigidBody = rb;
if (serverStatusOut.m_sdfLoadedArgs.m_numBodies<MAX_SDF_BODIES)
{
serverStatusOut.m_sdfLoadedArgs.m_numBodies++;
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = bodyUniqueId;
}
}
}
}
serverCmd.m_type = CMD_BULLET_LOADING_COMPLETED;
m_data->m_guiHelper->autogenerateGraphicsObjects(m_data->m_dynamicsWorld);
hasStatus = true;
break;
}
}
serverCmd.m_type = CMD_BULLET_LOADING_FAILED;
hasStatus = true;
break;
}
case CMD_SAVE_BULLET:
{
BT_PROFILE("CMD_SAVE_BULLET");
SharedMemoryStatus& serverCmd = serverStatusOut;
FILE* f = fopen(clientCmd.m_fileArguments.m_fileName, "wb");
if (f)
{
btDefaultSerializer* ser = new btDefaultSerializer();
m_data->m_dynamicsWorld->serialize(ser);
fwrite(ser->getBufferPointer(), ser->getCurrentBufferSize(), 1, f);
fclose(f);
serverCmd.m_type = CMD_BULLET_SAVING_COMPLETED;
delete ser;
}
serverCmd.m_type = CMD_BULLET_SAVING_FAILED;
hasStatus = true;
break;
}
case CMD_LOAD_MJCF:
{
BT_PROFILE("CMD_LOAD_MJCF");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_MJCF_LOADING_FAILED;
const MjcfArgs& mjcfArgs = clientCmd.m_mjcfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_MJCF:%s", mjcfArgs.m_mjcfFileName);
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (mjcfArgs.m_useMultiBody!=0) : true;
int flags = CUF_USE_MJCF;//CUF_USE_URDF_INERTIA
bool completedOk = loadMjcf(mjcfArgs.m_mjcfFileName,bufferServerToClient, bufferSizeInBytes, useMultiBody, flags);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i=0;i<maxBodies;i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_MJCF_LOADING_COMPLETED;
} else
{
serverStatusOut.m_type = CMD_MJCF_LOADING_FAILED;
}
hasStatus = true;
break;
}
case CMD_USER_DEBUG_DRAW:
{
BT_PROFILE("CMD_USER_DEBUG_DRAW");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_FAILED;
hasStatus = true;
if (clientCmd.m_updateFlags & USER_DEBUG_ADD_PARAMETER)
{
int uid = m_data->m_guiHelper->addUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_rangeMin,
clientCmd.m_userDebugDrawArgs.m_rangeMax,
clientCmd.m_userDebugDrawArgs.m_startValue
);
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags &USER_DEBUG_READ_PARAMETER)
{
int ok = m_data->m_guiHelper->readUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_itemUniqueId,
&serverCmd.m_userDebugDrawArgs.m_parameterValue);
if (ok)
{
serverCmd.m_type = CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED;
}
}
2016-11-21 15:42:11 +00:00
if ((clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR) || (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR))
{
int bodyUniqueId = clientCmd.m_userDebugDrawArgs.m_objectUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body)
{
btCollisionObject* destColObj = 0;
if (body->m_multiBody)
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex == -1)
{
destColObj = body->m_multiBody->getBaseCollider();
}
else
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex >= 0 && clientCmd.m_userDebugDrawArgs.m_linkIndex < body->m_multiBody->getNumLinks())
{
destColObj = body->m_multiBody->getLink(clientCmd.m_userDebugDrawArgs.m_linkIndex).m_collider;
}
}
}
if (body->m_rigidBody)
{
destColObj = body->m_rigidBody;
}
if (destColObj)
{
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR)
{
destColObj->removeCustomDebugColor();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR)
{
btVector3 objectColorRGB;
objectColorRGB.setValue(clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[0],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[1],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[2]);
destColObj->setCustomDebugColor(objectColorRGB);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT)
{
int uid = m_data->m_guiHelper->addUserDebugText3D(clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_textPositionXYZ,
clientCmd.m_userDebugDrawArgs.m_textColorRGB,
clientCmd.m_userDebugDrawArgs.m_textSize,
clientCmd.m_userDebugDrawArgs.m_lifeTime);
if (uid>=0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_LINE)
{
int uid = m_data->m_guiHelper->addUserDebugLine(
clientCmd.m_userDebugDrawArgs.m_debugLineFromXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineToXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineColorRGB,
clientCmd.m_userDebugDrawArgs.m_lineWidth,
clientCmd.m_userDebugDrawArgs.m_lifeTime);
if (uid>=0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ALL)
{
m_data->m_guiHelper->removeAllUserDebugItems();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ONE_ITEM)
{
m_data->m_guiHelper->removeUserDebugItem(clientCmd.m_userDebugDrawArgs.m_itemUniqueId);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
break;
}
default:
{
BT_PROFILE("CMD_UNKNOWN");
b3Error("Unknown command encountered");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_UNKNOWN_COMMAND_FLUSHED;
hasStatus = true;
}
};
}
}
return hasStatus;
}
//static int skip=1;
void PhysicsServerCommandProcessor::renderScene()
{
if (m_data->m_guiHelper)
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
m_data->m_guiHelper->render(m_data->m_dynamicsWorld);
}
#ifdef USE_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
for ( int i=0;i<m_data->m_dynamicsWorld->getSoftBodyArray().size();i++)
{
btSoftBody* psb=(btSoftBody*)m_data->m_dynamicsWorld->getSoftBodyArray()[i];
if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
{
//btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer());
btSoftBodyHelpers::Draw(psb,m_data->m_dynamicsWorld->getDebugDrawer(),m_data->m_dynamicsWorld->getDrawFlags());
}
}
#endif
}
void PhysicsServerCommandProcessor::physicsDebugDraw(int debugDrawFlags)
{
if (m_data->m_dynamicsWorld)
{
if (m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags);
m_data->m_dynamicsWorld->debugDrawWorld();
}
}
}
bool PhysicsServerCommandProcessor::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_dynamicsWorld==0)
return false;
btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld);
m_data->m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
gLastPickPos = pickPos;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_data->m_pickedBody = body;
m_data->m_savedActivationState = body->getActivationState();
m_data->m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot);
m_data->m_dynamicsWorld->addConstraint(p2p, true);
m_data->m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
} else
{
btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject);
if (multiCol && multiCol->m_multiBody)
{
m_data->m_prevCanSleep = multiCol->m_multiBody->getCanSleep();
multiCol->m_multiBody->setCanSleep(false);
btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos);
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody,multiCol->m_link,0,pivotInA,pickPos);
//if you add too much energy to the system, causing high angular velocities, simulation 'explodes'
//see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949
//so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply
//it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?)
btScalar scaling=1;
p2p->setMaxAppliedImpulse(2*scaling);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
m_data->m_pickingMultiBodyPoint2Point =p2p;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_data->m_oldPickingPos = rayToWorld;
m_data->m_hitPos = pickPos;
m_data->m_oldPickingDist = (pickPos - rayFromWorld).length();
// printf("hit !\n");
//add p2p
}
return false;
}
bool PhysicsServerCommandProcessor::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_pickedBody && m_data->m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_data->m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
pickCon->setPivotB(newPivotB);
}
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
m_data->m_pickingMultiBodyPoint2Point->setPivotInB(newPivotB);
}
return false;
}
void PhysicsServerCommandProcessor::removePickingConstraint()
{
if (m_data->m_pickedConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(m_data->m_pickedConstraint);
delete m_data->m_pickedConstraint;
m_data->m_pickedConstraint = 0;
m_data->m_pickedBody->forceActivationState(m_data->m_savedActivationState);
m_data->m_pickedBody = 0;
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(m_data->m_prevCanSleep);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->removeMultiBodyConstraint(m_data->m_pickingMultiBodyPoint2Point);
delete m_data->m_pickingMultiBodyPoint2Point;
m_data->m_pickingMultiBodyPoint2Point = 0;
}
}
void PhysicsServerCommandProcessor::enableCommandLogging(bool enable, const char* fileName)
{
if (enable)
{
if (0==m_data->m_commandLogger)
{
m_data->m_commandLogger = new CommandLogger(fileName);
}
} else
{
if (0!=m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
}
}
void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName)
{
CommandLogPlayback* pb = new CommandLogPlayback(fileName);
m_data->m_logPlayback = pb;
}
btVector3 gVRGripperPos(0.7, 0.3, 0.7);
btQuaternion gVRGripperOrn(0,0,0,1);
btVector3 gVRController2Pos(0,0,0.2);
btQuaternion gVRController2Orn(0,0,0,1);
btScalar gVRGripper2Analog = 0;
btScalar gVRGripperAnalog = 0;
bool gVRGripperClosed = false;
2016-09-09 18:28:38 +00:00
int gDroppedSimulationSteps = 0;
int gNumSteps = 0;
double gDtInSec = 0.f;
double gSubStep = 0.f;
void PhysicsServerCommandProcessor::enableRealTimeSimulation(bool enableRealTimeSim)
{
m_data->m_allowRealTimeSimulation = enableRealTimeSim;
}
void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec, const struct b3VRControllerEvent* vrControllerEvents, int numVRControllerEvents,const struct b3KeyboardEvent* keyEvents, int numKeyEvents)
{
m_data->m_vrControllerEvents.addNewVREvents(vrControllerEvents,numVRControllerEvents);
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
if (m_data->m_stateLoggers[i]->m_loggingType==STATE_LOGGING_VR_CONTROLLERS)
{
VRControllerStateLogger* vrLogger = (VRControllerStateLogger*) m_data->m_stateLoggers[i];
vrLogger->m_vrEvents.addNewVREvents(vrControllerEvents,numVRControllerEvents);
}
}
for (int i=0;i<numKeyEvents;i++)
{
const b3KeyboardEvent& event = keyEvents[i];
bool found = false;
//search a matching one first, otherwise add new event
for (int e=0;e<m_data->m_keyboardEvents.size();e++)
{
if (event.m_keyCode == m_data->m_keyboardEvents[e].m_keyCode)
{
m_data->m_keyboardEvents[e].m_keyState |= event.m_keyState;
if (event.m_keyState & eButtonIsDown)
{
m_data->m_keyboardEvents[e].m_keyState |= eButtonIsDown;
} else
{
m_data->m_keyboardEvents[e].m_keyState &= ~eButtonIsDown;
}
found=true;
}
}
if (!found)
{
m_data->m_keyboardEvents.push_back(event);
}
}
if (gResetSimulation)
{
resetSimulation();
gResetSimulation = false;
}
if ((m_data->m_allowRealTimeSimulation) && m_data->m_guiHelper)
{
///this hardcoded C++ scene creation is temporary for demo purposes. It will be done in Python later...
if (gCreateDefaultRobotAssets)
{
createDefaultRobotAssets();
}
int maxSteps = m_data->m_numSimulationSubSteps+3;
if (m_data->m_numSimulationSubSteps)
{
gSubStep = m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps;
}
else
{
gSubStep = m_data->m_physicsDeltaTime;
}
if (gVRTrackingObjectUniqueId >= 0)
{
InternalBodyHandle* bodyHandle = m_data->getHandle(gVRTrackingObjectUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
gVRTrackingObjectTr = bodyHandle->m_multiBody->getBaseWorldTransform();
}
}
int numSteps = m_data->m_dynamicsWorld->stepSimulation(dtInSec*simTimeScalingFactor,maxSteps, gSubStep);
gDroppedSimulationSteps += numSteps > maxSteps ? numSteps - maxSteps : 0;
if (numSteps)
{
gNumSteps = numSteps;
gDtInSec = dtInSec;
}
}
}
void PhysicsServerCommandProcessor::applyJointDamping(int bodyUniqueId)
{
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body) {
btMultiBody* mb = body->m_multiBody;
if (mb) {
for (int l=0;l<mb->getNumLinks();l++) {
for (int d=0;d<mb->getLink(l).m_dofCount;d++) {
double damping_coefficient = mb->getLink(l).m_jointDamping;
double damping = -damping_coefficient*mb->getJointVelMultiDof(l)[d];
mb->addJointTorqueMultiDof(l, d, damping);
}
}
}
}
}
void PhysicsServerCommandProcessor::resetSimulation()
{
//clean up all data
2016-09-25 23:05:53 +00:00
if (m_data && m_data->m_guiHelper)
{
m_data->m_guiHelper->removeAllGraphicsInstances();
m_data->m_guiHelper->removeAllUserDebugItems();
}
if (m_data)
{
m_data->m_visualConverter.resetAll();
}
removePickingConstraint();
deleteDynamicsWorld();
createEmptyDynamicsWorld();
m_data->exitHandles();
m_data->initHandles();
m_data->m_hasGround = false;
m_data->m_gripperRigidbodyFixed = 0;
}
//todo: move this to Python/scripting (it is almost ready to be removed!)
void PhysicsServerCommandProcessor::createDefaultRobotAssets()
{
static btAlignedObjectArray<char> gBufferServerToClient;
gBufferServerToClient.resize(SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
int bodyId = 0;
if (gCreateObjectSimVR >= 0)
{
gCreateObjectSimVR = -1;
btMatrix3x3 mat(gVRGripperOrn);
btScalar spawnDistance = 0.1;
btVector3 spawnDir = mat.getColumn(0);
btVector3 shiftPos = spawnDir*spawnDistance;
btVector3 spawnPos = gVRGripperPos + shiftPos;
loadUrdf("sphere_small.urdf", spawnPos, gVRGripperOrn, true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size(),0);
//loadUrdf("lego/lego.urdf", spawnPos, gVRGripperOrn, true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
m_data->m_sphereId = bodyId;
InteralBodyData* parentBody = m_data->getHandle(bodyId);
if (parentBody->m_multiBody)
{
parentBody->m_multiBody->setBaseVel(spawnDir * 5);
}
}
if (!m_data->m_hasGround)
{
m_data->m_hasGround = true;
loadUrdf("plane.urdf", btVector3(0, 0, 0), btQuaternion(0, 0, 0, 1), true, true, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("samurai.urdf", btVector3(0, 0, 0), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
// loadUrdf("quadruped/quadruped.urdf", btVector3(2, 2, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
if (m_data->m_gripperRigidbodyFixed == 0)
{
int bodyId = 0;
if (loadUrdf("pr2_gripper.urdf", btVector3(-0.2, 0.15, 0.9), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size()))
{
InteralBodyData* parentBody = m_data->getHandle(bodyId);
if (parentBody->m_multiBody)
{
parentBody->m_multiBody->setHasSelfCollision(0);
btVector3 pivotInParent(0.2, 0, 0);
btMatrix3x3 frameInParent;
//frameInParent.setRotation(btQuaternion(0, 0, 0, 1));
frameInParent.setIdentity();
btVector3 pivotInChild(0, 0, 0);
btMatrix3x3 frameInChild;
frameInChild.setIdentity();
m_data->m_gripperRigidbodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody, -1, 0, pivotInParent, pivotInChild, frameInParent, frameInChild);
m_data->m_gripperMultiBody = parentBody->m_multiBody;
if (m_data->m_gripperMultiBody->getNumLinks() > 2)
{
m_data->m_gripperMultiBody->setJointPos(0, 0);
m_data->m_gripperMultiBody->setJointPos(2, 0);
}
m_data->m_gripperRigidbodyFixed->setMaxAppliedImpulse(500);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(m_data->m_gripperRigidbodyFixed);
}
}
}
2016-09-25 23:05:53 +00:00
loadUrdf("kuka_iiwa/model_vr_limits.urdf", btVector3(1.4, -0.2, 0.6), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
m_data->m_KukaId = bodyId;
if (m_data->m_KukaId>=0)
{
InteralBodyData* kukaBody = m_data->getHandle(m_data->m_KukaId);
if (kukaBody->m_multiBody && kukaBody->m_multiBody->getNumDofs() == 7)
{
btScalar q[7];
q[0] = 0;// -SIMD_HALF_PI;
q[1] = 0;
q[2] = 0;
q[3] = SIMD_HALF_PI;
q[4] = 0;
q[5] = -SIMD_HALF_PI*0.66;
q[6] = 0;
for (int i = 0; i < 7; i++)
{
kukaBody->m_multiBody->setJointPos(i, q[i]);
}
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
kukaBody->m_multiBody->forwardKinematics(scratch_q, scratch_m);
int nLinks = kukaBody->m_multiBody->getNumLinks();
scratch_q.resize(nLinks + 1);
scratch_m.resize(nLinks + 1);
kukaBody->m_multiBody->updateCollisionObjectWorldTransforms(scratch_q, scratch_m);
}
}
#if 1
loadUrdf("lego/lego.urdf", btVector3(1.0, -0.2, .7), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("lego/lego.urdf", btVector3(1.0, -0.2, .8), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("lego/lego.urdf", btVector3(1.0, -0.2, .9), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
#endif
// loadUrdf("r2d2.urdf", btVector3(-2, -4, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
#if 1
// Load one motor gripper for kuka
loadSdf("gripper/wsg50_one_motor_gripper_new_free_base.sdf", &gBufferServerToClient[0], gBufferServerToClient.size(), true,CUF_USE_SDF);
m_data->m_gripperId = bodyId + 1;
{
InteralBodyData* gripperBody = m_data->getHandle(m_data->m_gripperId);
// Reset the default gripper motor maximum torque for damping to 0
for (int i = 0; i < gripperBody->m_multiBody->getNumLinks(); i++)
{
if (supportsJointMotor(gripperBody->m_multiBody, i))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)gripperBody->m_multiBody->getLink(i).m_userPtr;
if (motor)
{
motor->setMaxAppliedImpulse(0);
}
}
}
}
#endif
#if 1
for (int i = 0; i < 6; i++)
{
loadUrdf("jenga/jenga.urdf", btVector3(1.3-0.1*i,-0.7, .75), btQuaternion(btVector3(0,1,0),SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
}
#endif
//loadUrdf("nao/nao.urdf", btVector3(2,5, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
// Add slider joint for fingers
btVector3 pivotInParent1(-0.055, 0, 0.02);
btVector3 pivotInChild1(0, 0, 0);
btMatrix3x3 frameInParent1(btQuaternion(0, 0, 0, 1.0));
btMatrix3x3 frameInChild1(btQuaternion(0, 0, 0, 1.0));
btVector3 jointAxis1(1.0, 0, 0);
btVector3 pivotInParent2(0.055, 0, 0.02);
btVector3 pivotInChild2(0, 0, 0);
btMatrix3x3 frameInParent2(btQuaternion(0, 0, 0, 1.0));
btMatrix3x3 frameInChild2(btQuaternion(0, 0, 1.0, 0));
btVector3 jointAxis2(1.0, 0, 0);
if (m_data->m_gripperId>=0)
{
InteralBodyData* gripperBody = m_data->getHandle(m_data->m_gripperId);
m_data->m_kukaGripperRevolute1 = new btMultiBodyPoint2Point(gripperBody->m_multiBody, 2, gripperBody->m_multiBody, 4, pivotInParent1, pivotInChild1);
m_data->m_kukaGripperRevolute1->setMaxAppliedImpulse(5.0);
m_data->m_kukaGripperRevolute2 = new btMultiBodyPoint2Point(gripperBody->m_multiBody, 3, gripperBody->m_multiBody, 6, pivotInParent2, pivotInChild2);
m_data->m_kukaGripperRevolute2->setMaxAppliedImpulse(5.0);
m_data->m_dynamicsWorld->addMultiBodyConstraint(m_data->m_kukaGripperRevolute1);
m_data->m_dynamicsWorld->addMultiBodyConstraint(m_data->m_kukaGripperRevolute2);
}
if (m_data->m_KukaId>=0)
{
InteralBodyData* kukaBody = m_data->getHandle(m_data->m_KukaId);
if (kukaBody->m_multiBody && kukaBody->m_multiBody->getNumDofs()==7)
{
if (m_data->m_gripperId>=0)
{
InteralBodyData* gripperBody = m_data->getHandle(m_data->m_gripperId);
gripperBody->m_multiBody->setHasSelfCollision(0);
btVector3 pivotInParent(0, 0, 0.05);
btMatrix3x3 frameInParent;
frameInParent.setIdentity();
btVector3 pivotInChild(0, 0, 0);
btMatrix3x3 frameInChild;
frameInChild.setIdentity();
m_data->m_kukaGripperFixed = new btMultiBodyFixedConstraint(kukaBody->m_multiBody, 6, gripperBody->m_multiBody, 0, pivotInParent, pivotInChild, frameInParent, frameInChild);
m_data->m_kukaGripperMultiBody = gripperBody->m_multiBody;
m_data->m_kukaGripperFixed->setMaxAppliedImpulse(500);
m_data->m_dynamicsWorld->addMultiBodyConstraint(m_data->m_kukaGripperFixed);
}
}
}
#if 0
for (int i = 0; i < 10; i++)
{
loadUrdf("cube.urdf", btVector3(-4, -2, 0.5 + i), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
}
loadUrdf("sphere2.urdf", btVector3(-5, 0, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("sphere2.urdf", btVector3(-5, 0, 2), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("sphere2.urdf", btVector3(-5, 0, 3), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
#endif
btTransform objectLocalTr[] = {
btTransform(btQuaternion(0, 0, 0, 1), btVector3(0.0, 0.0, 0.0)),
btTransform(btQuaternion(btVector3(0,0,1),-SIMD_HALF_PI), btVector3(0.0, 0.15, 0.64)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(0.1, 0.15, 0.85)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(-0.4, 0.05, 0.85)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(-0.3, -0.05, 0.7)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(0.1, 0.05, 0.7)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(-0.2, 0.15, 0.7)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(-0.2, 0.15, 0.9)),
btTransform(btQuaternion(0, 0, 0, 1), btVector3(0.2, 0.05, 0.8))
};
btAlignedObjectArray<btTransform> objectWorldTr;
int numOb = sizeof(objectLocalTr) / sizeof(btTransform);
objectWorldTr.resize(numOb);
btTransform tr;
tr.setIdentity();
tr.setRotation(btQuaternion(btVector3(0, 0, 1), SIMD_HALF_PI));
tr.setOrigin(btVector3(1.0, -0.2, 0));
for (int i = 0; i < numOb; i++)
{
objectWorldTr[i] = tr*objectLocalTr[i];
}
// Table area
loadUrdf("table/table.urdf", objectWorldTr[0].getOrigin(), objectWorldTr[0].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("tray/tray_textured.urdf", objectWorldTr[1].getOrigin(), objectWorldTr[1].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("cup_small.urdf", objectWorldTr[2].getOrigin(), objectWorldTr[2].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("pitcher_small.urdf", objectWorldTr[3].getOrigin(), objectWorldTr[3].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("teddy_vhacd.urdf", objectWorldTr[4].getOrigin(), objectWorldTr[4].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("cube_small.urdf", objectWorldTr[5].getOrigin(), objectWorldTr[5].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("sphere_small.urdf", objectWorldTr[6].getOrigin(), objectWorldTr[6].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("duck_vhacd.urdf", objectWorldTr[7].getOrigin(), objectWorldTr[7].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("Apple/apple.urdf", objectWorldTr[8].getOrigin(), objectWorldTr[8].getRotation(), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
// Shelf area
loadSdf("kiva_shelf/model.sdf", &gBufferServerToClient[0], gBufferServerToClient.size(), true, CUF_USE_SDF);
loadUrdf("teddy_vhacd.urdf", btVector3(-0.1, 0.6, 0.85), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("sphere_small.urdf", btVector3(-0.1, 0.6, 1.25), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("cube_small.urdf", btVector3(0.3, 0.6, 0.85), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
// Chess area
loadUrdf("table_square/table_square.urdf", btVector3(-1.0, 0, 0.0), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("pawn.urdf", btVector3(-0.8, -0.1, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("queen.urdf", btVector3(-0.9, -0.2, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("king.urdf", btVector3(-1.0, 0, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("bishop.urdf", btVector3(-1.1, 0.1, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("rook.urdf", btVector3(-1.2, 0, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
//loadUrdf("knight.urdf", btVector3(-1.2, 0.2, 0.7), btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
loadUrdf("husky/husky.urdf", btVector3(2, -5, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
m_data->m_huskyId = bodyId;
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
}
if (m_data->m_kukaGripperFixed && m_data->m_kukaGripperMultiBody)
{
InteralBodyData* childBody = m_data->getHandle(m_data->m_gripperId);
// Add gripper controller
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)childBody->m_multiBody->getLink(1).m_userPtr;
if (motor)
{
btScalar posTarget = (-0.048)*btMin(btScalar(0.75), gVRGripper2Analog) / 0.75;
motor->setPositionTarget(posTarget, .8);
motor->setVelocityTarget(0.0, .5);
motor->setMaxAppliedImpulse(1.0);
}
}
2016-09-26 04:13:31 +00:00
if (m_data->m_gripperRigidbodyFixed && m_data->m_gripperMultiBody)
{
m_data->m_gripperRigidbodyFixed->setFrameInB(btMatrix3x3(gVRGripperOrn));
m_data->m_gripperRigidbodyFixed->setPivotInB(gVRGripperPos);
btScalar avg = 0.f;
for (int i = 0; i < m_data->m_gripperMultiBody->getNumLinks(); i++)
{
if (supportsJointMotor(m_data->m_gripperMultiBody, i))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)m_data->m_gripperMultiBody->getLink(i ).m_userPtr;
if (motor)
{
motor->setErp(0.2);
btScalar posTarget = 0.1 + (1 - btMin(btScalar(0.75),gVRGripperAnalog)*btScalar(1.5))*SIMD_HALF_PI*0.29;
btScalar maxPosTarget = 0.55;
btScalar correction = 0.f;
if (avg)
{
correction = m_data->m_gripperMultiBody->getJointPos(i) - avg;
}
if (m_data->m_gripperMultiBody->getJointPos(i) < 0)
{
m_data->m_gripperMultiBody->setJointPos(i,0);
}
if (m_data->m_gripperMultiBody->getJointPos(i) > maxPosTarget)
{
m_data->m_gripperMultiBody->setJointPos(i, maxPosTarget);
}
if (avg)
{
motor->setPositionTarget(avg, 1);
}
else
{
motor->setPositionTarget(posTarget, 1);
}
motor->setVelocityTarget(0, 0.5);
btScalar maxImp = (1+0.1*i)*m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
avg = m_data->m_gripperMultiBody->getJointPos(i);
//motor->setRhsClamp(gRhsClamp);
}
}
}
}
// Inverse kinematics for KUKA
if (m_data->m_KukaId>=0)
{
InternalBodyHandle* bodyHandle = m_data->getHandle(m_data->m_KukaId);
if (bodyHandle && bodyHandle->m_multiBody && bodyHandle->m_multiBody->getNumDofs()==7)
{
btMultiBody* mb = bodyHandle->m_multiBody;
btScalar sqLen = (mb->getBaseWorldTransform().getOrigin() - gVRController2Pos).length2();
btScalar distanceThreshold = 1.3;
gCloseToKuka=(sqLen<(distanceThreshold*distanceThreshold));
int numDofs = bodyHandle->m_multiBody->getNumDofs();
btAlignedObjectArray<double> q_new;
btAlignedObjectArray<double> q_current;
q_current.resize(numDofs);
for (int i = 0; i < numDofs; i++)
{
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
}
q_new.resize(numDofs);
//sensible rest-pose
q_new[0] = 0;// -SIMD_HALF_PI;
q_new[1] = 0;
q_new[2] = 0;
q_new[3] = SIMD_HALF_PI;
q_new[4] = 0;
q_new[5] = -SIMD_HALF_PI*0.66;
q_new[6] = 0;
if (gCloseToKuka && gEnableKukaControl)
{
double dampIk[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 0.0};
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
IKTrajectoryHelper* ikHelperPtr = 0;
if (ikHelperPtrPtr)
{
ikHelperPtr = *ikHelperPtrPtr;
}
else
{
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
ikHelperPtr = tmpHelper;
}
int endEffectorLinkIndex = 6;
if (ikHelperPtr && (endEffectorLinkIndex<bodyHandle->m_multiBody->getNumLinks()))
{
b3AlignedObjectArray<double> jacobian_linear;
jacobian_linear.resize(3*numDofs);
b3AlignedObjectArray<double> jacobian_angular;
jacobian_angular.resize(3*numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
jacSize = jacobian_linear.size();
// Set jacobian value
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
btInverseDynamics::vecx nu(numDofs+baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
for (int i = 0; i < numDofs; i++)
{
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
q[i+baseDofs] = bodyHandle->m_multiBody->getJointPos(i);
qdot[i + baseDofs] = 0;
nu[i+baseDofs] = 0;
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3,numDofs);
btInverseDynamics::mat3x jac_r(3,numDofs);
tree->getBodyJacobianTrans(endEffectorLinkIndex+1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex+1, &jac_r);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[i*numDofs+j] = jac_t(i,j);
jacobian_angular[i*numDofs+j] = jac_r(i,j);
}
}
}
}
int ikMethod= IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;//IK2_VEL_DLS_WITH_ORIENTATION; //IK2_VEL_DLS;
btVector3DoubleData endEffectorWorldPosition;
btVector3DoubleData endEffectorWorldOrientation;
btVector3DoubleData targetWorldPosition;
btVector3DoubleData targetWorldOrientation;
btVector3 endEffectorPosWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform.getOrigin();
btQuaternion endEffectorOriWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform.getRotation();
btVector4 endEffectorOri(endEffectorOriWorld.x(),endEffectorOriWorld.y(),endEffectorOriWorld.z(),endEffectorOriWorld.w());
2016-09-25 21:24:28 +00:00
// Prescribed position and orientation
static btScalar time=0.f;
time+=0.01;
btVector3 targetPos(0.4-0.4*b3Cos( time), 0, 0.8+0.4*b3Cos( time));
targetPos +=mb->getBasePos();
btVector4 downOrn(0,1,0,0);
// Controller orientation
btVector4 controllerOrn(gVRController2Orn.x(), gVRController2Orn.y(), gVRController2Orn.z(), gVRController2Orn.w());
// Set position and orientation
endEffectorPosWorld.serializeDouble(endEffectorWorldPosition);
endEffectorOri.serializeDouble(endEffectorWorldOrientation);
downOrn.serializeDouble(targetWorldOrientation);
//targetPos.serializeDouble(targetWorldPosition);
2016-09-28 23:07:55 +00:00
gVRController2Pos.serializeDouble(targetWorldPosition);
2016-09-28 23:07:55 +00:00
//controllerOrn.serializeDouble(targetWorldOrientation);
2016-09-25 21:24:28 +00:00
if (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE)
{
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
lower_limit[0] = -.967;
lower_limit[1] = -2.0;
lower_limit[2] = -2.96;
lower_limit[3] = 0.19;
lower_limit[4] = -2.96;
lower_limit[5] = -2.09;
lower_limit[6] = -3.05;
upper_limit[0] = .96;
upper_limit[1] = 2.0;
upper_limit[2] = 2.96;
upper_limit[3] = 2.29;
upper_limit[4] = 2.96;
upper_limit[5] = 2.09;
upper_limit[6] = 3.05;
joint_range[0] = 5.8;
joint_range[1] = 4;
joint_range[2] = 5.8;
joint_range[3] = 4;
joint_range[4] = 5.8;
joint_range[5] = 4;
joint_range[6] = 6;
rest_pose[0] = 0;
rest_pose[1] = 0;
rest_pose[2] = 0;
rest_pose[3] = SIMD_HALF_PI;
rest_pose[4] = 0;
rest_pose[5] = -SIMD_HALF_PI*0.66;
rest_pose[6] = 0;
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
ikHelperPtr->computeIK(targetWorldPosition.m_floats, targetWorldOrientation.m_floats,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, endEffectorLinkIndex,
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, dampIk);
}
}
//directly set the position of the links, only for debugging IK, don't use this method!
#if 0
if (0)
{
for (int i=0;i<mb->getNumLinks();i++)
{
btScalar desiredPosition = q_new[i];
mb->setJointPosMultiDof(i,&desiredPosition);
}
} else
#endif
{
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int velIndex = 6;//skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7;//skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
btScalar desiredVelocity = 0.f;
btScalar desiredPosition = q_new[link];
motor->setRhsClamp(gRhsClamp);
//printf("link %d: %f", link, q_new[link]);
motor->setVelocityTarget(desiredVelocity,1.0);
motor->setPositionTarget(desiredPosition,0.6);
btScalar maxImp = 1.0;
motor->setMaxAppliedImpulse(maxImp);
numMotors++;
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
}
}
}
2016-11-01 22:46:09 +00:00
}
void PhysicsServerCommandProcessor::setTimeOut(double /*timeOutInSeconds*/)
{
}