This is a rudimentary - but working - port.
Glyph uploads are still using the old machinery, a bunch of functions
still exist that probably aren't necessary anymore and each glyph emits
its own node.
This will need to be improved in further commits.
This shader is an updated version of the mask shader, but I want to use
the mask name for the mask node and that's a different functionality.
Also, add an operation for it and partially implement the mask node
using it, so we can test that this shader works.
Replacing the shader used for text rendering is the next step.
The benefit here is that we can now properly cross-fade when one of
start/end is fully clipped out by just replacing it with an opacity op
for the other.
This was not possible with the old way we did things.
Instead of creating a pipeline GObject, just ask for the VkPipeline.
And instead of having the Op handle it, just let the renderpass look
up/create the relevant pipeline while creating commands so that it can
insert vkCmdBindPipeline calls as-needed.
Have a resource path => vkShaderModule hash table instead of doing fancy
custom objects.
A benefit is that shader modules are now shared between all renderers
and pipelines.
GskVulkanOp is meant to be a proper abstraction of operations
the Vulkan renderer will be doing.
For now it's an atrocious clunky piece of junk wedged into the
renderpass codebase.
It's so temporary that I didn't even adjust indentation of the code.
We weren't looking in the build dir for generated files.
Actually make sure that we look in the build dir *first*, otherwise
glib-compile-resources will still use the wrong files.
In certain scenarios, address the issue where gnome.compile_resources
fails to transmit the present source directory. This is most notably
visible with MSBuild.
We can't use this flag for any code that may get run
outside the __builtin_cpu_supports() check, and meson
doesn't allow per-file cflags. So we have to split this
code off into its own static library.
Use an IFUNC resolver to determine whether we can use
intrinsics for FP16 conversion. This requires the functions
to be no longer inline.
Sadly, it turns out that __builtin_cpu_supports ("f16c")
doesn't compile on the systems where we want it to prevent
us from getting a SIGILL at runtime.
This reduces the size of our Vertex struct from
48 to 32 bytes. It would be nicer if we could store
the colors in fp16 format in the rendernodes, and
avoid conversion here. But this is still good.
Move the resources of each renderer to its subdirectory.
We've previously done that for the ngl renderer, but it
is better to be consistent and do it for all the renderers.
If cairo is a subproject, it's not necessarily installed when gtk
is built. In the build tree, libcairo-script-interpreter is not stored
in the same directory as other cairo libraries.
Recognize a common pattern: A rounded clip with
a color node, followed by a border node, with the
same outline. This is what CSS backgrounds frequently
produce, and we can render it more efficiently with
a combined shader.
We may want to change the interface between the
shaders and the renderer for ngl, and therefore,
sharing the shaders between gl and ngl will not
be practical, going forward.
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
For vulkan/broadway this just means to ignore it, but for the gl
backend we support (with up to 4 texture inputs, which is similar to
what shadertoy does, so should be widely supported).
A GskGLShader is an abstraction of a GLSL fragment shader that
can produce pixel values given inputs:
* N (currently max 4) textures
* Current arguments for the shader uniform
Uniform types are: float,(u)int,bool,vec234)
There is also a builder for the uniform arguments which are
passed around as immutable GBytes in the built form.
A GskGLShaderNode is a render node that renders a GskGLShader inside a
specified rectangular bounds. It renders its child nodes as textures
and passes those as texture arguments to the shader. You also pass it
a uniform arguments object.
Don't install headers for code that we don't build.
And don't include those headers in gsk.h.
Just as we do in gdk, require applications to include
the backend-specific headers they need explicitly.
Update the one affected demo, gtk4-node-editor.
We use a compilation symbol in our build to allow the inclusion of
specific headers while building GTK, to avoid the need to include only
the global header.
Each namespace has its own compilation symbol because we used to have
different libraries, and strict symbol visibility between libraries;
now that we have a single library, and we can use private symbols across
namespaces while building GTK, we should have a single compilation
symbol, and simplify the build rules.
Use cairo-script-interpreter to parse the scripts that generate cairo
nodes.
This requires libcairoscriptinterpreter.so to work properly, but if
it isn't found we disable this (unimportant for normal functioning)
code and just emits a parser warning.
The testsuite requires it however or it will fail.
A new test is included that tests all of this.
Base the rewrite on testsuite/css/parser/test-css-parser - we now
require the node file to match a reference node and track the errors it
triggers.
We also no longer use gtester.
Instead of the previous approach using GVariant, this new approach uses
human-readable text files as the serialization format for render nodes.
The format is a custom one, but it is inspired by QML and conforms to
the CSS syntax. Because of that, we can use the CSS machinery from GTK
to parse it, and in particular share code to parse properties that GTK's
CSS machinery also supports, such as colors.
This commit breaks all existing usages of node files - such as the
testsuite and various test tools - they will be fixed in further
commits.
This reverts commit 8e74eb382f.
This code is not necessary. It worked around a bug in graphene where
graphene was requiring stricter alignment than glib allocators could
guarantee.
The code is mostly stolen from graphene.
Allocators support any alignment, but their implementation
only calls system aligned allocator functions if malloc()
is not aligned to 16-byte boundaries. If it is aligned,
the implementation just calls malloc() regardless of which
alignment is requested by the caller.
This can be fixed by saving the result of meson malloc()
alignment check and adding a few conditions to the implementation,
but right now GSK and GTK only need 16-byte alignment either way.
This includes a copy of the diff(1) algorithm used by git diff by Davide
Libenzi.
It's used for the common case ofcontainer nodes having only very few
changes for the few nodes of child widgets that changed (like a button
lighting up when hilighted or a spinning spinner).
This is another example for a 2-texture shader.
So far, only separable blend modes are implemented.
The implementation is not optimized, with an
if-else cascade in the shader.
This commit takes several steps towards rendering text
like we want to.
The creation of the cairo surface and texture is moved
to the backend (in GskVulkanRenderer). We add a mask
shader that is used in the next text pipeline to use
the texture as a mask, like cairo_mask_surface does.
There is a separate color text pipeline that uses the
already existing blend shaders to use the texture as
a source, like cairo_paint does.
The text node api is simplified to have just a single
offset, which determines the left end of the text baseline,
like all our other text drawing APIs.
This fixes the proper dependencies getting set up for generating
the shaders and only the necessary things getting rebuilt on
resources changing in gsk.
Spooky action at a distance is not really allowed in Meson, so the rules
to generate the SPV files should go in their own directory.
Tested by: Rico Tzschichholz <ricotz@ubuntu.com>