Now that the GskRenderNode subclasses are recognised as proper
sub-types, we can annotate the constructors with their type. The C API
remains the same.
The introspection scanner tries to match a type name with a get_type()
function, in order to correctly identify a type as a class.
If the function is not available, we have two choices:
- add some special case inside the introspection scanner, similar to
how GParamSpec subclasses are handled in GObject
- add a simple get_type() function
The latter is the simplest approach, and we don't need to change that
much, since we still register all render nodes at once.
Language bindings—especially ones based on introspection—cannot deal
with custom type hiearchies. Luckily for us, GType has a derivable type
with low overhead: GTypeInstance.
By turning GskRenderNode into a GTypeInstance, and creating derived
types for each class of node, we can provide an introspectable API to
our non-C API consumers, with no functional change to the C API itself.
Compute the pattern matrix directly instead of transforming the cairo_t.
This ensures that when node_size / texture_size is some obscure floating
point value, we don't get rounding issues from scaling by it once we
draw the texture_size rectangle.
I have no actual failure where this comes in handy, but I had written
the code anyway, so decided to keep it.
We currently disable when draw()ing nodes using the cairo fallback path,
which means we can't just use cairo_paint(). Use a proper rectangle
instead.
Fixes#2431
We're not in the business of adding Cairo APIs. That's Cairo's job.
Also, we don't need this API anywhere like the original commit claimed,
so there's no need to make it available in any way.
This reverts commit afa6cc2369.
When attaching renderer-specific data, we need to
make sure that we key it off the renderer that is
in use, and cope with the absence of render data.
This fixes recording nodes in the inspector.
This is a quick implementation that avoids many
glyph cache lookups. We keep an array of direct
pointers in the text render node, and throw those
cached pointers away whenever any atlases have
been dropped (since that may invalidate the cached
glyphs).
Instead of only allowing for glyph indexes, allow ASCII characters as
replacements. So this glyph sequence
glyphs: 65 8, 66 8, 67 8
Can be replaced by
glyphs: "ABC"
provided that the glyph for "A", "B" and "C" are 65, 66 and 67
respectively and their advance is exactly 8.
x offset and y offset must always be 0 and every glyph must start a
cluster.
Change the way we compute border color cutoffs to the same method that
browsers use. This method does not consider the corner sizes at all and
only looks at border-width.
This fixed the reftest introduced in the previous commit.
I'm using a mesh gradient here instead of drawing 4 individual sides to
avoid artifacts when those sides overlap in rounded corners.
This reinstates diffing in the same way that it worked for offset nodes.
It would be possible to add diffing for affine transforms or even all
transforms, but I think this is unnecessary right now - and also quite
expensive to compute.
Make the API expect a tranform of the proper category instead of
doing the check ourselves and returning TRUE/FALSE.
The benefit is that the mai use case is switch (transform->category)
statements and in those we know the category and don't need to check
TRUE/FALSE.
Using the wrong matrix will now cause a g_warning().
If the given matrix is explicitly of category IDENTITY, we don't need to
do anything, and in the 2D_TRANSLATE case, just offset the child bounds.
Those are the two most common cases.
The code didn't change, it was just shuffled around to make the
with_bounds() versions of the text rendering unnecessary and instead
pass through the generic append_node() path.
They were a neat idea while they lasted. But now, it's time for
categorized transform nodes, where matrices with
GSK_MATRIX_CATEGORY_2D_TRANSLATE are the exact replacement.
Renderers have not been adapted for this purpose, so they (continue to)
run slow paths.
Some of the _diff implementations did a whole bunch of work just to
throw it away afterwards and invalidate the entire union of the two
render nodes, most notably the two clip nodes. Fix this to only call
gsk_render_node_diff_impossible if the previous if-condition is FALSE
and not always.
When the max cost for finding a path gets to high, the diff can now be
aborted.
Because render nodes have a fallback method (by just marking the whole
bounds of the nodes as different), we use this to improve performance
of diffs.
This brings fishbowl (which is basically a container node with N images
that change every frame) back to close to previous performance.
This includes a copy of the diff(1) algorithm used by git diff by Davide
Libenzi.
It's used for the common case ofcontainer nodes having only very few
changes for the few nodes of child widgets that changed (like a button
lighting up when hilighted or a spinning spinner).
... and gsk_render_node_can_diff(). Those are vfuncs to compute a region
containing all the pixels that differ between the two nodes.
This is just the plumbing that chains into node classes. No node
implements it yet.
Adding the offset node broke serialization in 2 ways:
1. We store the enum value in the node, so make sure to not change it
for existing values
2. The offset node was missing in the deserialization lookup table
This is a special case of the transform node that does a 2D translation.
The implementation in the Vulkan and GL renderers is crude and just does
the same as the transform node.
Nothing uses that node yet.
This way, we can postpone the actual rendeing of the node until the
renderer. This allows the renderer to choose the right scale to
render at, so it can decide to use 2x scale for hidpi on its own.
Last but not least, it makes all nodes independent of the context they
are created in, because they do not need to know at snapshot time what
they will ultimately be rendered into.
An alternative GskTextNode constructor that does no text measuring. That
way, we can measure the text before and check if the node will be
outside of the current clip anyway.
Remove all the old 2.x and 3.x version annotations.
GTK+ 4 is a new start, and from the perspective of a
GTK+ 4 developer all these APIs have been around since
the beginning.
This happens when deserializing testcases and it really confuses
valgrind into thinking we're longjmp()ing.
And deserializing rendernodes is slow anyway, so who cares about a few
more malloc()s.
Add a setter for per-renderer debug flags, and use
them where possible. Some places don't have easy access
to a renderer, so this is not complete.
Also, use g_message instead of g_print throughout.
The copy of the PangoGlyphString we do here was showing up
in some profiles. To avoid it, allocate the PangoGlyphInfo array
as part of the node itself. Update all callers to deal with
the slight api change required for this.
Rename the surface getter to peek, following other render
node getters, and make the surface-based constructor private,
since it is not something we want to encourage.
Update all callers.
This commit takes several steps towards rendering text
like we want to.
The creation of the cairo surface and texture is moved
to the backend (in GskVulkanRenderer). We add a mask
shader that is used in the next text pipeline to use
the texture as a mask, like cairo_mask_surface does.
There is a separate color text pipeline that uses the
already existing blend shaders to use the texture as
a source, like cairo_paint does.
The text node api is simplified to have just a single
offset, which determines the left end of the text baseline,
like all our other text drawing APIs.
Currently, this information is not used since cairo_show_glyphs
deals with color glyphs for us. But when we get to uploading
glyphs to a texture atlas, we will need it to do the right thing.
We don't look at individual glyphs here, but just whether the
font has the has-color flag set. In practice, all glyphs in
such a font will be color glyphs, and we can avoid loading all
the glyphs this way.
This node essentially implements the feColorMatrix SVG filter. I got the
idea yesterday after looking at the opacity implementation.
It can be used for opacity (not sure if we want to) and to implement a
bunch of the CSS filters.
Use g_newa() instead of VLAs, as VLAs may never be supported by some
compilers as it became optional in C11 and there are concerns about their
implementations in compilers that do support it.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Note: We interpolate premultiplied colors as per the CSS spec. This i
different from Cairo, which interpolates unpremultiplied.
So in testcases with translucent gradients, it's actually Cairo that is
wrong.
This does a conversion to/from GBytes and is intended for writing tests.
It's really crude but it works.
And that probably means Alex will (ab)use it for broadway.
Instead of a separate allocation for any arrays in the render node
we allocate these as part of the render node itself, using C99
flexible arrays.
This leads to less allocations, which is nice, but the major reason
for this is that it allows us to change the allocation scheme further
in the future. For instance, we want to do stack-like allocation so
that all the render-nodes for an entire frame are allocated in one
(or a few) chunks.
Instead of constantly recalculating this (especially recursively for
parents!) we do it only on construction, because everything is
immutable anyway. Also, most nodes had a bounds already and can
use the new parent member instead.
We also do direct access to the node bounds rather than calling
gsk_render_node_get_bounds in various places, which means
we do less copying.
... and make the icon rendering code use it.
This requires moving even more shadow renering code into GSK, but so be
it. At least the "shadows not implemented" warning is now gone!
The node draws a solid CSS border, which can be used to cover everything
but dashed and dotted borders (double, groove, inset, ...).
For different border styles, we overlay multiple nodes and set their
colors to transparent for sides with non-matching styles.
Instead of appending a container node and adding the nodes to it as they
come in, we now collect the nodes until gtk_snapshot_pop() is called and
then hand them out in a container node.
The caller of gtk_snapshot_push() is then responsible for doing whatever
he wants with the created node.
Another addigion is the keep_coordinates flag to gtk_snapshot_push()
which allows callers to keep the current offset and clip region or
discard it. Discarding is useful when doing transforms, keeping it is
useful when inserting effect nodes (like the ones I'm about to add).
Instead of having a setter for the transform, have a GskTransformNode.
Most of the oprations that GTK does do not require a transform, so it
doesn't make sense to have it as a primary attribute.
Also, changing the transform requires updating the uniforms of the GL
renderer, so we're happy if we can avoid that.
gsk_render_node_get_bounds() still exists and is computed via vfunc
call:
- containers dynamically compute the bounds from their children
- surface and texture nodes get bounds passed on construction
If we ever feel, we need this function again, we can readd it later.
But nobody is using it other than for overriding opactiy. And you can
just override opacity directly if you care.