skia2/bench/nanobench.cpp

1280 lines
48 KiB
C++
Raw Normal View History

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "nanobench.h"
#include "Benchmark.h"
#include "BitmapRegionDecoderBench.h"
#include "CodecBench.h"
#include "CodecBenchPriv.h"
#include "CrashHandler.h"
#include "DecodingBench.h"
#include "GMBench.h"
#include "ProcStats.h"
#include "ResultsWriter.h"
#include "RecordingBench.h"
#include "SKPAnimationBench.h"
#include "SKPBench.h"
#include "SubsetSingleBench.h"
#include "SubsetTranslateBench.h"
#include "SubsetZoomBench.h"
#include "Stats.h"
#include "SkBitmapRegionDecoder.h"
#include "SkBBoxHierarchy.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkPictureUtils.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTaskGroup.h"
#include <stdlib.h>
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
#include "nanobenchAndroid.h"
#endif
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "GrCaps.h"
#include "GrContextFactory.h"
SkAutoTDelete<GrContextFactory> gGrFactory;
#endif
struct GrContextOptions;
__SK_FORCE_IMAGE_DECODER_LINKING;
static const int kAutoTuneLoops = 0;
static const int kDefaultLoops =
#ifdef SK_DEBUG
1;
#else
kAutoTuneLoops;
#endif
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
static SkString to_string(int n) {
SkString str;
str.appendS32(n);
return str;
}
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag.");
DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to "
"software path rendering.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
"function that ping-pongs between 1.0 and zoomMax.");
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run.");
DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test.");
DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface.reset(SkSurface::NewRaster(info));
if (!this->surface.get()) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->setInfo(canvas->imageInfo());
if (!canvas->readPixels(bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
#if SK_SUPPORT_GPU
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c), gl(nullptr) { }
SkGLContext* gl;
void setup() override {
this->gl->makeCurrent();
// Make sure we're done with whatever came before.
SK_GL(*this->gl, Finish());
}
void endTiming() override {
if (this->gl) {
SK_GL(*this->gl, Flush());
this->gl->swapBuffers();
}
}
void fence() override {
SK_GL(*this->gl, Finish());
}
bool needsFrameTiming(int* maxFrameLag) const override {
if (!this->gl->getMaxGpuFrameLag(maxFrameLag)) {
// Frame lag is unknown.
*maxFrameLag = FLAGS_gpuFrameLag;
}
return true;
}
bool init(SkImageInfo info, Benchmark* bench) override {
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag :
0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
this->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(this->config.ctxType),
SkSurface::kNo_Budgeted, info,
this->config.samples, &props));
this->gl = gGrFactory->getContextInfo(this->config.ctxType)->fGLContext;
if (!this->surface.get()) {
return false;
}
if (!this->gl->fenceSyncSupport()) {
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
"Timings might not be accurate.\n", this->config.name);
}
return true;
}
void fillOptions(ResultsWriter* log) override {
const GrGLubyte* version;
SK_GL_RET(*this->gl, version, GetString(GR_GL_VERSION));
log->configOption("GL_VERSION", (const char*)(version));
SK_GL_RET(*this->gl, version, GetString(GR_GL_RENDERER));
log->configOption("GL_RENDERER", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_VENDOR));
log->configOption("GL_VENDOR", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
};
#endif
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
bench->preDraw(canvas);
double start = now_ms();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
if (canvas) {
canvas->flush();
}
target->endTiming();
double elapsed = now_ms() - start;
bench->postDraw(canvas);
return elapsed;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
double start = now_ms();
overhead += now_ms() - start;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ≈ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
return loops;
}
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round.
for (int i = 0; i < maxGpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < maxGpuFrameLag - 1; i++) {
time(loops, bench, target);
}
return loops;
}
static SkString to_lower(const char* str) {
SkString lower(str);
for (size_t i = 0; i < lower.size(); i++) {
lower[i] = tolower(lower[i]);
}
return lower;
}
static bool is_cpu_config_allowed(const char* name) {
for (int i = 0; i < FLAGS_config.count(); i++) {
if (to_lower(FLAGS_config[i]).equals(name)) {
return true;
}
}
return false;
}
#if SK_SUPPORT_GPU
static bool is_gpu_config_allowed(const char* name, GrContextFactory::GLContextType ctxType,
int sampleCnt) {
if (!is_cpu_config_allowed(name)) {
return false;
}
if (const GrContext* ctx = gGrFactory->get(ctxType)) {
return sampleCnt <= ctx->caps()->maxSampleCount();
}
return false;
}
#endif
#if SK_SUPPORT_GPU
#define kBogusGLContextType GrContextFactory::kNative_GLContextType
#else
#define kBogusGLContextType 0
#endif
// Append all configs that are enabled and supported.
static void create_configs(SkTDArray<Config>* configs) {
#define CPU_CONFIG(name, backend, color, alpha) \
if (is_cpu_config_allowed(#name)) { \
Config config = { #name, Benchmark::backend, color, alpha, 0, \
kBogusGLContextType, false }; \
configs->push(config); \
}
if (FLAGS_cpu) {
CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType)
CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType)
}
#if SK_SUPPORT_GPU
#define GPU_CONFIG(name, ctxType, samples, useDFText) \
if (is_gpu_config_allowed(#name, GrContextFactory::ctxType, samples)) { \
Config config = { \
#name, \
Benchmark::kGPU_Backend, \
kN32_SkColorType, \
kPremul_SkAlphaType, \
samples, \
GrContextFactory::ctxType, \
useDFText }; \
configs->push(config); \
}
if (FLAGS_gpu) {
GPU_CONFIG(gpu, kNative_GLContextType, 0, false)
GPU_CONFIG(msaa4, kNative_GLContextType, 4, false)
GPU_CONFIG(msaa16, kNative_GLContextType, 16, false)
GPU_CONFIG(nvprmsaa4, kNVPR_GLContextType, 4, false)
GPU_CONFIG(nvprmsaa16, kNVPR_GLContextType, 16, false)
GPU_CONFIG(gpudft, kNative_GLContextType, 0, true)
GPU_CONFIG(debug, kDebug_GLContextType, 0, false)
GPU_CONFIG(nullgpu, kNull_GLContextType, 0, false)
#ifdef SK_ANGLE
GPU_CONFIG(angle, kANGLE_GLContextType, 0, false)
GPU_CONFIG(angle-gl, kANGLE_GL_GLContextType, 0, false)
#endif
#ifdef SK_COMMAND_BUFFER
GPU_CONFIG(commandbuffer, kCommandBuffer_GLContextType, 0, false)
#endif
#if SK_MESA
GPU_CONFIG(mesa, kMESA_GLContextType, 0, false)
#endif
}
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (is_cpu_config_allowed("hwui")) {
Config config = { "hwui", Benchmark::kHWUI_Backend, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, 0, kBogusGLContextType, false };
configs->push(config);
}
#endif
}
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return nullptr;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha);
Target* target = nullptr;
switch (config.backend) {
#if SK_SUPPORT_GPU
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
case Benchmark::kHWUI_Backend:
target = new HWUITarget(config, bench);
break;
#endif
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return nullptr;
}
return target;
}
/*
* We only run our subset benches on files that are supported by BitmapRegionDecoder:
* i.e. PNG, JPEG, and WEBP. We do *not* test WEBP, since we do not have a scanline
* decoder for WEBP, which is necessary for running the subset bench. (Another bench
* must be used to test WEBP, which decodes subsets natively.)
*/
static bool run_subset_bench(const SkString& path) {
static const char* const exts[] = {
"jpg", "jpeg", "png",
"JPG", "JPEG", "PNG",
};
for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) {
if (path.endsWith(exts[i])) {
return true;
}
}
return false;
}
/*
* Returns true if set up for a subset decode succeeds, false otherwise
* If the set-up succeeds, the width and height parameters will be set
*/
static bool valid_subset_bench(const SkString& path, SkColorType colorType,
int* width, int* height) {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
// Check that we can create a codec.
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
if (nullptr == codec) {
SkDebugf("Could not create codec for %s. Skipping bench.\n", path.c_str());
return false;
}
// These will be initialized by SkCodec if the color type is kIndex8 and
// unused otherwise.
SkPMColor colors[256];
int colorCount;
const SkImageInfo info = codec->getInfo().makeColorType(colorType);
if (codec->startScanlineDecode(info, nullptr, colors, &colorCount) != SkCodec::kSuccess)
{
SkDebugf("Could not create scanline decoder for %s with color type %s. "
"Skipping bench.\n", path.c_str(), color_type_to_str(colorType));
return false;
}
*width = info.width();
*height = info.height();
// Check if the image is large enough for a meaningful subset benchmark.
if (*width <= 512 && *height <= 512) {
// This should not print a message since it is not an error.
return false;
}
return true;
}
static bool valid_brd_bench(SkData* encoded, SkBitmapRegionDecoder::Strategy strategy,
SkColorType colorType, uint32_t sampleSize, uint32_t minOutputSize, int* width,
int* height) {
SkAutoTDelete<SkBitmapRegionDecoder> brd(
SkBitmapRegionDecoder::Create(encoded, strategy));
if (nullptr == brd.get()) {
// This is indicates that subset decoding is not supported for a particular image format.
return false;
}
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, brd->width(), brd->height()),
1, colorType, false)) {
return false;
}
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
(uint32_t) brd->height()) {
// This indicates that the image is not large enough to decode a
// minOutputSize x minOutputSize subset at the given sampleSize.
return false;
}
// Set the image width and height. The calling code will use this to choose subsets to decode.
*width = brd->width();
*height = brd->height();
return true;
}
static void cleanup_run(Target* target) {
delete target;
#if SK_SUPPORT_GPU
if (FLAGS_abandonGpuContext) {
gGrFactory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
gGrFactory->destroyContexts();
}
#endif
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head())
, fCurrentRecording(0)
, fCurrentScale(0)
, fCurrentSKP(0)
, fCurrentUseMPD(0)
, fCurrentCodec(0)
, fCurrentImage(0)
, fCurrentSubsetImage(0)
, fCurrentBRDImage(0)
, fCurrentColorType(0)
, fCurrentSubsetType(0)
, fCurrentBRDStrategy(0)
, fCurrentBRDSampleSize(0)
, fCurrentAnimSKP(0) {
for (int i = 0; i < FLAGS_skps.count(); i++) {
if (SkStrEndsWith(FLAGS_skps[i], ".skp")) {
fSKPs.push_back() = FLAGS_skps[i];
} else {
SkOSFile::Iter it(FLAGS_skps[i], ".skp");
SkString path;
while (it.next(&path)) {
fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str());
}
}
}
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
exit(1);
}
if (FLAGS_mpd) {
fUseMPDs.push_back() = true;
}
fUseMPDs.push_back() = false;
// Prepare the images for decoding
for (int i = 0; i < FLAGS_images.count(); i++) {
const char* flag = FLAGS_images[i];
if (sk_isdir(flag)) {
// If the value passed in is a directory, add all the images
SkOSFile::Iter it(flag);
SkString file;
while (it.next(&file)) {
fImages.push_back() = SkOSPath::Join(flag, file.c_str());
}
} else if (sk_exists(flag)) {
// Also add the value if it is a single image
fImages.push_back() = flag;
}
}
// Choose the candidate color types for image decoding
const SkColorType colorTypes[] =
{ kN32_SkColorType,
kRGB_565_SkColorType,
kAlpha_8_SkColorType,
kIndex_8_SkColorType,
kGray_8_SkColorType };
fColorTypes.reset(colorTypes, SK_ARRAY_COUNT(colorTypes));
}
static bool ReadPicture(const char* path, SkAutoTUnref<SkPicture>* pic) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path)) {
return false;
}
Make SkStream *not* ref counted. SkStream is a stateful object, so it does not make sense for it to have multiple owners. Make SkStream inherit directly from SkNoncopyable. Update methods which previously called SkStream::ref() (e.g. SkImageDecoder::buildTileIndex() and SkFrontBufferedStream::Create(), which required the existing owners to call SkStream::unref()) to take ownership of their SkStream parameters and delete when done (including on failure). Switch all SkAutoTUnref<SkStream>s to SkAutoTDelete<SkStream>s. In some cases this means heap allocating streams that were previously stack allocated. Respect ownership rules of SkTypeface::CreateFromStream() and SkImageDecoder::buildTileIndex(). Update the comments for exceptional methods which do not affect the ownership of their SkStream parameters (e.g. SkPicture::CreateFromStream() and SkTypeface::Deserialize()) to be explicit about ownership. Remove test_stream_life, which tested that buildTileIndex() behaved correctly when SkStream was a ref counted object. The test does not make sense now that it is not. In SkPDFStream, remove the SkMemoryStream member. Instead of using it, create a new SkMemoryStream to pass to fDataStream (which is now an SkAutoTDelete). Make other pdf rasterizers behave like SkPDFDocumentToBitmap. SkPDFDocumentToBitmap delete the SkStream, so do the same in the following pdf rasterizers: SkPopplerRasterizePDF SkNativeRasterizePDF SkNoRasterizePDF Requires a change to Android, which currently treats SkStreams as ref counted objects. Review URL: https://codereview.chromium.org/849103004
2015-01-21 20:09:53 +00:00
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(path));
if (stream.get() == nullptr) {
SkDebugf("Could not read %s.\n", path);
return false;
}
Revert of nanobench: lazily decode bitmaps in .skps. (patchset #1 id:1 of https://codereview.chromium.org/743613005/) Reason for revert: Well, it still crashes. Original issue's description: > nanobench: lazily decode bitmaps in .skps. > > This cuts down on tool overhead when running something like recording only, > $ out/Release/nanobench --match skp --config nonrendering > which doesn't usually ever need to decode the images. > > The actual measurements for recording don't change, as the decode is not in the timed section. It just skips irrelevant code, removing it from the profile and making the tool run faster. > > This does, however, make a significant difference for playback speed. Most skps draw faster with this patch, some slower. I don't really have a good intuition for what's going on here. There is a fixed clip acting as a viewport, so there are probably lots of images that don't ever need to be decoded. Ideas? Is this perhaps because we're now blitting from smaller, partially decoded source images? > > ~/skia (clean) $ compare clean.log lazy-decode-bitmaps.log > tabl_slashdot.skp_1 2.76ms -> 4.33ms 1.57x > tabl_slashdot.skp_1_mpd 2.79ms -> 4.07ms 1.46x > tabl_sahadan.skp_1 3.41ms -> 4.87ms 1.43x > tabl_googleblog.skp_1 1.52ms -> 2.05ms 1.35x > tabl_techmeme.skp_1_mpd 1.14ms -> 1.51ms 1.32x > tabl_transformice.skp_1 2.61ms -> 3.43ms 1.31x > tabl_sahadan.skp_1_mpd 3.54ms -> 4.48ms 1.26x > tabl_techmeme.skp_1 1.01ms -> 1.27ms 1.26x > tabl_nytimes.skp_1_mpd 1ms -> 1.23ms 1.23x > tabl_worldjournal.skp_1_mpd 1.98ms -> 2.43ms 1.23x > tabl_pravda.skp_1_mpd 2.05ms -> 2.51ms 1.22x > tabl_transformice.skp_1_mpd 2.75ms -> 3.19ms 1.16x > tabl_nytimes.skp_1 874us -> 1.01ms 1.15x > tabl_pravda.skp_1 1.83ms -> 1.99ms 1.09x > tabl_worldjournal.skp_1 1.76ms -> 1.91ms 1.09x > desk_wowwiki.skp_1_mpd 3.7ms -> 3.9ms 1.05x > tabl_digg.skp_1 3.99ms -> 4.16ms 1.04x > tabl_ukwsj.skp_1_mpd 3ms -> 3.12ms 1.04x > desk_booking.skp_1 3.74ms -> 3.81ms 1.02x > desk_googlespreadsheetdashed.skp_1 10.6ms -> 10.6ms 1x > tabl_ukwsj.skp_1 2.88ms -> 2.89ms 1x > desk_googlespreadsheetdashed.skp_1_mpd 11.8ms -> 11.8ms 1x > desk_jsfiddlehumperclip.skp_1_mpd 891us -> 888us 1x > desk_googlespreadsheet.skp_1 4.65ms -> 4.62ms 0.99x > tabl_gspro.skp_1_mpd 1.97ms -> 1.94ms 0.99x > desk_booking.skp_1_mpd 4.1ms -> 4ms 0.98x > desk_carsvg.skp_1 18.2ms -> 17.7ms 0.97x > desk_gmailthread.skp_1_mpd 2.81ms -> 2.73ms 0.97x > desk_tigersvg.skp_1_mpd 19.5ms -> 18.9ms 0.97x > desk_mapsvg.skp_1 88.4ms -> 85.6ms 0.97x > tabl_cnet.skp_1_mpd 1.43ms -> 1.38ms 0.97x > desk_jsfiddlebigcar.skp_1 1.26ms -> 1.22ms 0.96x > desk_gws.skp_1 1.87ms -> 1.8ms 0.96x > desk_linkedin.skp_1 2.07ms -> 1.98ms 0.96x > tabl_deviantart.skp_1_mpd 118ms -> 113ms 0.96x > tabl_cnet.skp_1 1.2ms -> 1.14ms 0.95x > tabl_androidpolice.skp_1_mpd 5.95ms -> 5.63ms 0.95x > desk_sfgate.skp_1 1.75ms -> 1.64ms 0.94x > desk_twitter.skp_1 74ms -> 69.6ms 0.94x > desk_youtube.skp_1_mpd 3.17ms -> 2.96ms 0.93x > desk_gmailthread.skp_1 2.73ms -> 2.54ms 0.93x > desk_silkfinance.skp_1_mpd 1.71ms -> 1.59ms 0.93x > desk_jsfiddlebigcar.skp_1_mpd 1.45ms -> 1.35ms 0.93x > desk_pokemonwiki.skp_1_mpd 2.72ms -> 2.51ms 0.92x > desk_gws.skp_1_mpd 2.14ms -> 1.98ms 0.92x > desk_googlehome.skp_1 563us -> 517us 0.92x > desk_espn.skp_1 4.24ms -> 3.89ms 0.92x > tabl_culturalsolutions.skp_1 12.7ms -> 11.6ms 0.91x > desk_sfgate.skp_1_mpd 1.91ms -> 1.74ms 0.91x > tabl_hsfi.skp_1 1.06ms -> 966us 0.91x > desk_samoasvg.skp_1_mpd 10.5ms -> 9.47ms 0.91x > desk_facebook.skp_1_mpd 3.8ms -> 3.43ms 0.9x > desk_youtube.skp_1 3.52ms -> 3.14ms 0.89x > desk_ebay.skp_1_mpd 2.95ms -> 2.62ms 0.89x > desk_samoasvg.skp_1 10.9ms -> 9.66ms 0.89x > desk_googlespreadsheet.skp_1_mpd 5.59ms -> 4.94ms 0.88x > desk_mapsvg.skp_1_mpd 100ms -> 87.9ms 0.88x > desk_espn.skp_1_mpd 4.7ms -> 4.12ms 0.88x > desk_wordpress.skp_1_mpd 1.92ms -> 1.68ms 0.87x > tabl_deviantart.skp_1 140ms -> 122ms 0.87x > tabl_cuteoverload.skp_1_mpd 4.41ms -> 3.83ms 0.87x > desk_tigersvg.skp_1 19.6ms -> 17ms 0.87x > tabl_googlecalendar.skp_1 4.01ms -> 3.44ms 0.86x > desk_blogger.skp_1 2.49ms -> 2.14ms 0.86x > desk_chalkboard.skp_1_mpd 52.7ms -> 45ms 0.85x > desk_weather.skp_1 2.88ms -> 2.46ms 0.85x > desk_chalkboard.skp_1 51ms -> 43.4ms 0.85x > desk_yahooanswers.skp_1 2.74ms -> 2.32ms 0.85x > desk_forecastio.skp_1_mpd 1.26ms -> 1.07ms 0.85x > tabl_androidpolice.skp_1 5.18ms -> 4.34ms 0.84x > desk_yahooanswers.skp_1_mpd 3.44ms -> 2.85ms 0.83x > tabl_cnn.skp_1_mpd 2.59ms -> 2.15ms 0.83x > desk_pinterest.skp_1 2.69ms -> 2.22ms 0.83x > tabl_hsfi.skp_1_mpd 1.6ms -> 1.32ms 0.82x > tabl_culturalsolutions.skp_1_mpd 13.8ms -> 11.3ms 0.82x > desk_twitter.skp_1_mpd 76.6ms -> 63ms 0.82x > desk_ebay.skp_1 3.11ms -> 2.51ms 0.81x > tabl_mlb.skp_1_mpd 3.17ms -> 2.53ms 0.8x > tabl_mozilla.skp_1 2.42ms -> 1.91ms 0.79x > desk_pokemonwiki.skp_1 2.84ms -> 2.22ms 0.78x > desk_carsvg.skp_1_mpd 23.3ms -> 17.8ms 0.77x > desk_wowwiki.skp_1 4.21ms -> 3.21ms 0.76x > desk_amazon.skp_1 963us -> 728us 0.76x > desk_css3gradients.skp_1 2.58ms -> 1.92ms 0.74x > tabl_cuteoverload.skp_1 4.55ms -> 3.38ms 0.74x > tabl_cnn.skp_1 3.13ms -> 2.29ms 0.73x > tabl_googleblog.skp_1_mpd 2.32ms -> 1.7ms 0.73x > desk_mobilenews.skp_1 3.65ms -> 2.61ms 0.71x > desk_googleplus.skp_1 3.76ms -> 2.66ms 0.71x > tabl_mozilla.skp_1_mpd 2.88ms -> 2.03ms 0.71x > desk_pinterest.skp_1_mpd 3.17ms -> 2.21ms 0.7x > desk_css3gradients.skp_1_mpd 2.98ms -> 2.07ms 0.69x > desk_silkfinance.skp_1 2.06ms -> 1.42ms 0.69x > desk_facebook.skp_1 4.5ms -> 3.07ms 0.68x > desk_mobilenews.skp_1_mpd 4.05ms -> 2.73ms 0.68x > desk_baidu.skp_1_mpd 2.73ms -> 1.81ms 0.66x > desk_weather.skp_1_mpd 3.93ms -> 2.5ms 0.64x > desk_wordpress.skp_1 2.15ms -> 1.36ms 0.63x > desk_googlehome.skp_1_mpd 1.02ms -> 605us 0.59x > desk_fontwipe.skp_1 722us -> 402us 0.56x > desk_fontwipe.skp_1_mpd 897us -> 486us 0.54x > desk_baidu.skp_1 3.02ms -> 1.6ms 0.53x > desk_forecastio.skp_1 2.01ms -> 999us 0.5x > desk_amazon.skp_1_mpd 1.77ms -> 860us 0.49x > > BUG=skia: > > Committed: https://skia.googlesource.com/skia/+/7e225bdb1f00ae4aed524ff8d0a61df3d3abb109 > > Committed: https://skia.googlesource.com/skia/+/1b6b626f9bc0deebe4fe2e63f422d6b122419205 TBR=reed@google.com,robertphillips@google.com,scroggo@google.com,mtklein@chromium.org NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG=skia: Review URL: https://codereview.chromium.org/902783005
2015-02-09 19:58:41 +00:00
pic->reset(SkPicture::CreateFromStream(stream.get()));
if (pic->get() == nullptr) {
SkDebugf("Could not read %s as an SkPicture.\n", path);
return false;
}
return true;
}
Benchmark* next() {
if (fBenches) {
Benchmark* bench = fBenches->factory()(nullptr);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
SkAutoTDelete<skiagm::GM> gm(fGMs->factory()(nullptr));
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return new GMBench(gm.detach());
}
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(SkPictureUtils::ApproximateBytesUsed(pic));
fSKPOps = pic->approximateOpCount();
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh);
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentSKP++;
continue;
}
while (fCurrentUseMPD < fUseMPDs.count()) {
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
static const int kFlags = SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory,
fUseMPDs[fCurrentUseMPD] ? kFlags : 0));
pic.reset(recorder.endRecording());
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP);
}
fCurrentUseMPD = 0;
fCurrentSKP++;
}
fCurrentSKP = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
SkAutoTUnref<SKPAnimationBench::Animation> animation(
SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs));
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation,
FLAGS_loopSKP);
}
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentCodec];
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
fCurrentColorType++;
// Make sure we can decode to this color type.
SkImageInfo info = codec->getInfo().makeColorType(colorType);
SkAlphaType alphaType;
if (!SkColorTypeValidateAlphaType(colorType, info.alphaType(),
&alphaType)) {
continue;
}
if (alphaType != info.alphaType()) {
info = info.makeAlphaType(alphaType);
}
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.getSafeSize(rowBytes));
// Used if fCurrentColorType is kIndex_8_SkColorType
int colorCount = 256;
SkPMColor colors[256];
const SkCodec::Result result = codec->getPixels(
info, storage.get(), rowBytes, nullptr, colors,
&colorCount);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded, colorType);
case SkCodec::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run the DecodingBenches
while (fCurrentImage < fImages.count()) {
fSourceType = "image";
fBenchType = "skimagedecoder";
while (fCurrentColorType < fColorTypes.count()) {
const SkString& path = fImages[fCurrentImage];
SkColorType colorType = fColorTypes[fCurrentColorType];
fCurrentColorType++;
// Check if the image decodes to the right color type
// before creating the benchmark
SkBitmap bitmap;
if (SkImageDecoder::DecodeFile(path.c_str(), &bitmap,
colorType, SkImageDecoder::kDecodePixels_Mode)
&& bitmap.colorType() == colorType) {
return new DecodingBench(path, colorType);
}
}
fCurrentColorType = 0;
fCurrentImage++;
}
// Run the SubsetBenches
while (fCurrentSubsetImage < fImages.count()) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentSubsetImage];
if (!run_subset_bench(path)) {
fCurrentSubsetImage++;
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
SkColorType colorType = fColorTypes[fCurrentColorType];
while (fCurrentSubsetType <= kLast_SubsetType) {
int width = 0;
int height = 0;
int currentSubsetType = fCurrentSubsetType++;
if (valid_subset_bench(path, colorType, &width, &height)) {
switch (currentSubsetType) {
case kTopLeft_SubsetType:
return new SubsetSingleBench(path, colorType, width/3,
height/3, 0, 0);
case kTopRight_SubsetType:
return new SubsetSingleBench(path, colorType, width/3,
height/3, 2*width/3, 0);
case kMiddle_SubsetType:
return new SubsetSingleBench(path, colorType, width/3,
height/3, width/3, height/3);
case kBottomLeft_SubsetType:
return new SubsetSingleBench(path, colorType, width/3,
height/3, 0, 2*height/3);
case kBottomRight_SubsetType:
return new SubsetSingleBench(path, colorType, width/3,
height/3, 2*width/3, 2*height/3);
case kTranslate_SubsetType:
return new SubsetTranslateBench(path, colorType, 512, 512);
case kZoom_SubsetType:
return new SubsetZoomBench(path, colorType, 512, 512);
}
} else {
break;
}
}
fCurrentSubsetType = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
fCurrentSubsetImage++;
}
// Run the BRDBenches
// We will benchmark multiple BRD strategies.
static const struct {
SkBitmapRegionDecoder::Strategy fStrategy;
const char* fName;
} strategies[] = {
{ SkBitmapRegionDecoder::kCanvas_Strategy, "BRD_canvas" },
{ SkBitmapRegionDecoder::kAndroidCodec_Strategy, "BRD_android_codec" },
};
// We intend to create benchmarks that model the use cases in
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
// the image. For that reason, we will benchmark decodes in five representative locations
// in the image. Additionally, this use case utilizes power of two scaling, so we will
// test on power of two sample sizes. The output tile is always 512x512, so, when a
// sampleSize is used, the size of the subset that is decoded is always
// (sampleSize*512)x(sampleSize*512).
// There are a few good reasons to only test on power of two sample sizes at this time:
// JPEG decodes using kOriginal_Strategy are broken for non-powers of two.
// https://bug.skia.org/4319
// All use cases we are aware of only scale by powers of two.
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
// these tests are sufficient to provide good coverage of our scaling options.
const uint32_t sampleSizes[] = { 1, 2, 4, 8, 16, 32, 64 };
const uint32_t minOutputSize = 512;
while (fCurrentBRDImage < fImages.count()) {
while (fCurrentBRDStrategy < (int) SK_ARRAY_COUNT(strategies)) {
fSourceType = "image";
fBenchType = strategies[fCurrentBRDStrategy].fName;
const SkString& path = fImages[fCurrentBRDImage];
const SkBitmapRegionDecoder::Strategy strategy =
strategies[fCurrentBRDStrategy].fStrategy;
while (fCurrentColorType < fColorTypes.count()) {
while (fCurrentBRDSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
const SkColorType colorType = fColorTypes[fCurrentColorType];
uint32_t sampleSize = sampleSizes[fCurrentBRDSampleSize];
int currentSubsetType = fCurrentSubsetType++;
int width = 0;
int height = 0;
if (!valid_brd_bench(encoded.get(), strategy, colorType, sampleSize,
minOutputSize, &width, &height)) {
break;
}
SkString basename = SkOSPath::Basename(path.c_str());
SkIRect subset;
const uint32_t subsetSize = sampleSize * minOutputSize;
switch (currentSubsetType) {
case kTopLeft_SubsetType:
basename.append("_TopLeft");
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
break;
case kTopRight_SubsetType:
basename.append("_TopRight");
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
subsetSize);
break;
case kMiddle_SubsetType:
basename.append("_Middle");
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
(height - subsetSize) / 2, subsetSize, subsetSize);
break;
case kBottomLeft_SubsetType:
basename.append("_BottomLeft");
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
subsetSize);
break;
case kBottomRight_SubsetType:
basename.append("_BottomRight");
subset = SkIRect::MakeXYWH(width - subsetSize,
height - subsetSize, subsetSize, subsetSize);
break;
default:
SkASSERT(false);
}
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
strategy, colorType, sampleSize, subset);
}
fCurrentSubsetType = 0;
fCurrentBRDSampleSize++;
}
fCurrentBRDSampleSize = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
fCurrentBRDStrategy++;
}
fCurrentBRDStrategy = 0;
fCurrentBRDImage++;
}
return nullptr;
}
void fillCurrentOptions(ResultsWriter* log) const {
log->configOption("source_type", fSourceType);
log->configOption("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log->configOption("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
SK_ALWAYSBREAK(fCurrentScale < fScales.count()); // debugging paranoia
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
if (fCurrentUseMPD > 0) {
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
}
}
if (0 == strcmp(fBenchType, "recording")) {
log->metric("bytes", fSKPBytes);
log->metric("ops", fSKPOps);
}
}
private:
enum SubsetType {
kTopLeft_SubsetType = 0,
kTopRight_SubsetType = 1,
kMiddle_SubsetType = 2,
kBottomLeft_SubsetType = 3,
kBottomRight_SubsetType = 4,
kTranslate_SubsetType = 5,
kZoom_SubsetType = 6,
kLast_SubsetType = kZoom_SubsetType,
kLastSingle_SubsetType = kBottomRight_SubsetType,
};
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<bool> fUseMPDs;
SkTArray<SkString> fImages;
SkTArray<SkColorType, true> fColorTypes;
SkScalar fZoomMax;
double fZoomPeriodMs;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording;
int fCurrentScale;
int fCurrentSKP;
int fCurrentUseMPD;
int fCurrentCodec;
int fCurrentImage;
int fCurrentSubsetImage;
int fCurrentBRDImage;
int fCurrentColorType;
int fCurrentSubsetType;
int fCurrentBRDStrategy;
int fCurrentBRDSampleSize;
int fCurrentAnimSKP;
};
int nanobench_main();
int nanobench_main() {
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
#if SK_SUPPORT_GPU
GrContextOptions grContextOpts;
grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks;
gGrFactory.reset(new GrContextFactory(grContextOpts));
#endif
if (FLAGS_veryVerbose) {
FLAGS_verbose = true;
}
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, nullptr);
}
}
SkAutoTDelete<ResultsWriter> log(new ResultsWriter);
if (!FLAGS_outResultsFile.isEmpty()) {
log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0]));
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log->key(FLAGS_key[i-1], FLAGS_key[i]);
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkTArray<double> samples;
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_quiet) {
SkDebugf("median\tbench\tconfig\n");
} else if (FLAGS_ms) {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTDArray<Config> configs;
create_configs(&configs);
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
SkAutoTDelete<Benchmark> bench(b);
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
if (!configs.isEmpty()) {
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->delayedSetup();
}
for (int i = 0; i < configs.count(); ++i) {
Target* target = is_enabled(b, configs[i]);
if (!target) {
continue;
}
// During HWUI output this canvas may be nullptr.
SkCanvas* canvas = target->getCanvas();
const char* config = target->config.name;
target->setup();
bench->perCanvasPreDraw(canvas);
int maxFrameLag;
int loops = target->needsFrameTiming(&maxFrameLag)
? setup_gpu_bench(target, bench.get(), maxFrameLag)
: setup_cpu_bench(overhead, target, bench.get());
if (FLAGS_ms) {
samples.reset();
auto stop = now_ms() + FLAGS_ms;
do {
samples.push_back(time(loops, bench, target) / loops);
} while (now_ms() < stop);
} else {
samples.reset(FLAGS_samples);
for (int s = 0; s < FLAGS_samples; s++) {
samples[s] = time(loops, bench, target) / loops;
}
}
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != target->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(target, pngFilename);
}
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
cleanup_run(target);
continue;
}
Stats stats(samples);
log->config(config);
log->configOption("name", bench->getName());
benchStream.fillCurrentOptions(log.get());
target->fillOptions(log.get());
log->metric("min_ms", stats.min);
if (runs++ % FLAGS_flushEvery == 0) {
log->flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_quiet) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getUniqueName(), config);
} else {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
#if SK_SUPPORT_GPU
if (FLAGS_gpuStats &&
Benchmark::kGPU_Backend == configs[i].backend) {
gGrFactory->get(configs[i].ctxType)->printCacheStats();
gGrFactory->get(configs[i].ctxType)->printGpuStats();
}
#endif
if (FLAGS_verbose) {
SkDebugf("Samples: ");
for (int i = 0; i < samples.count(); i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
}
cleanup_run(target);
}
}
log->bench("memory_usage", 0,0);
log->config("meta");
log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
#if SK_SUPPORT_GPU
// Make sure we clean up the global GrContextFactory here, otherwise we might race with the
// SkEventTracer destructor
gGrFactory.reset(nullptr);
#endif
return 0;
}
#if !defined SK_BUILD_FOR_IOS
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
return nanobench_main();
}
#endif