- address indexing inconsistencies with Uniform PatchTables (#737)
- suppress generation of Varying patches and/or their local point stencils
- added suppression of Varying patches to far/tutorial_6
- converted classes for stencils, tables and factories to templates
- added backward compatible class wrappers around new templates
- extended PatchTable to support variable precision stencil tables
- extended PatchTableBuilder to manage PatchTable's new stencil tables
- templated PatchTableBuilder conversion from SparseMatrix to stencils
- extended public PatchTableFactory interface to specify precision
- converted PrimvarRefiner class to template and added wrapper class
Fixed the method signature of the internal limitFVar method to make
the dst argument a reference rather than a pointer to be more consistent
with earlier changes for other primvar classes. This also makes it
easier to use the public template LimitFaceVarying method to operate
on a wider range of primvar container types.
- retained precision of constants in Sdc Catmark scheme
- improved precision of constants & intermediate values in Sdc Loop scheme
- improved precision of constants & intermediate values CatmarkPatchBuilder
- converted all internal Far patch basis evaluation to templates
The issue is that FeatureMask structure has size of an integer, but only
first 11 bytes are initialized, the rest is left non-initialized to a
stack memory of RefineAdaptive(). This will cause issues with IsEmpty()
which check whether any of integer's bits are set, effectively causing
jumps dependent on a non-initialized memory.
- new PatchTableBuilder class now implements PatchTableFactory::Create()
- population of tables now independent of scheme or patch type
- nested LocalPointHelper handles local point sharing and stencils
- new PatchBuilder class encapsulates patch queries and conversions:
- provides patch types associated with schemes and client options
- handles all topological queries about patches in the base class
- subclasses for the three subdivision schemes to support conversions
- conversions encapsulated in new SparseMatrix class for re-use
- removed Far end-cap factory classes and Far::GregoryBasis
- extended adaptive refinement to support Bilinear scheme (not enabled)
- extended Vtr::StackBuffer to avoid compiler inefficiencies
Previously, Far::PatchTableFactory::computePatchParam() was
considering all faces with a face vertex count != 4 as
irregular. This was incorrect for triangle refinement as
was the calculation of the UV subface parametric offsets for
triangle subfaces.
This is foundational work for implementing full support
for Loop scheme patch tables. This fix also allows correct
decoding of the parameter mapping for triangles resulting
from uniform refinement of Loop scheme meshes.
Updated Metal patch shaders to resolve degenerate normals.
This fix was ported from the GLSL patch shader source.
Also, added missing inf sharp test cases to mtlViewer.
Updated HLSL patch shaders to resolve degenerate normals.
This fix was ported from the GLSL patch shader source.
Also, added missing inf sharp test cases to dxViewer.
- corrected assertion to use face-varying index offset instead of vertex
- added missing face-varying conditional when generateAllLevels set
- factored base-level index offsets into local options for clarity
- added Doxygen comments to describe overall indexing behavior
- modified Gregory patch shader to use existing Bezier patch evaluation
- rewrote Bezier patch evaluation to use intermediate bilinear points
- added detection and resolution of degenerate normal
- eval normal partials no longer uses Weingarten eqns (requires N != 0)
- updated normal partials to use differentiation/projection
Updated MtlComputeEvaluator documentation to be
consistent with the documentation for other compute
evaluator implementations and fixed missing or
incorrect doxygen tags.
Also, updated the overloads for the EvalStencils
and EvalPatches methods to account for 1st and
2nd derivative evaluation.
Most GL implementations support a maximum of 4 transform
feedback buffer bindings. With the addition of 1st and 2nd
derivative evaluation up to 6 bindings might be required,
i.e. dst, du, dv, duu, duv, dvv.
This change extends the GLXFB Evaluator interface to allow
a client to specialize the evaluator when it is known that
(at least) the 1st derivative and 2nd derivative outputs
are interleaved together into shared buffers.
When this option is used, the maximum number of transform
feedback buffer bindings can be reduced to 3 instead of 6.
Now that Far::LimitStencilTable and Far::PatchTable
support evaluation of 1st and 2nd derivatives the
Osd Evaluator API for evaluating stencils and patches
has been updated to match.