skia2/samplecode/SampleApp.cpp

2533 lines
78 KiB
C++
Raw Normal View History

Automatic update of all copyright notices to reflect new license terms. I have manually examined all of these diffs and restored a few files that seem to require manual adjustment. The following files still need to be modified manually, in a separate CL: android_sample/SampleApp/AndroidManifest.xml android_sample/SampleApp/res/layout/layout.xml android_sample/SampleApp/res/menu/sample.xml android_sample/SampleApp/res/values/strings.xml android_sample/SampleApp/src/com/skia/sampleapp/SampleApp.java android_sample/SampleApp/src/com/skia/sampleapp/SampleView.java experimental/CiCarbonSampleMain.c experimental/CocoaDebugger/main.m experimental/FileReaderApp/main.m experimental/SimpleCocoaApp/main.m experimental/iOSSampleApp/Shared/SkAlertPrompt.h experimental/iOSSampleApp/Shared/SkAlertPrompt.m experimental/iOSSampleApp/SkiOSSampleApp-Base.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Debug.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Release.xcconfig gpu/src/android/GrGLDefaultInterface_android.cpp gyp/common.gypi gyp_skia include/ports/SkHarfBuzzFont.h include/views/SkOSWindow_wxwidgets.h make.bat make.py src/opts/memset.arm.S src/opts/memset16_neon.S src/opts/memset32_neon.S src/opts/opts_check_arm.cpp src/ports/SkDebug_brew.cpp src/ports/SkMemory_brew.cpp src/ports/SkOSFile_brew.cpp src/ports/SkXMLParser_empty.cpp src/utils/ios/SkImageDecoder_iOS.mm src/utils/ios/SkOSFile_iOS.mm src/utils/ios/SkStream_NSData.mm tests/FillPathTest.cpp Review URL: http://codereview.appspot.com/4816058 git-svn-id: http://skia.googlecode.com/svn/trunk@1982 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-07-28 14:26:00 +00:00
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleApp.h"
#include "OverView.h"
#include "Resources.h"
#include "SampleCode.h"
#include "SkAnimTimer.h"
#include "SkCanvas.h"
#include "SkColorSpace_XYZ.h"
#include "SkCommandLineFlags.h"
#include "SkCommonFlagsPathRenderer.h"
#include "SkData.h"
#include "SkDocument.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkPaint.h"
#include "SkPaintFilterCanvas.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPM4fPriv.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTSort.h"
#include "SkTime.h"
#include "SkTypeface.h"
#include "SkWindow.h"
#include "sk_tool_utils.h"
#include "SkScan.h"
#include "SkClipOpPriv.h"
#include "SkThreadedBMPDevice.h"
#include "SkReadBuffer.h"
#include "SkStream.h"
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
#include "SkCGUtils.h"
#endif
#define PICTURE_MEANS_PIPE false
#define SERIALIZE_PICTURE true
#if SK_SUPPORT_GPU
# include "gl/GrGLInterface.h"
# include "gl/GrGLUtil.h"
# include "GrContext.h"
# include "SkGr.h"
# if SK_ANGLE
# include "gl/angle/GLTestContext_angle.h"
# endif
#else
class GrContext;
#endif
extern bool gSkForceRasterPipelineBlitter;
enum OutputColorSpace {
kLegacy_OutputColorSpace,
kSRGB_OutputColorSpace,
kNarrow_OutputColorSpace,
kMonitor_OutputColorSpace,
};
const struct {
SkColorType fColorType;
OutputColorSpace fColorSpace;
const char* fName;
} gConfig[] = {
{ kN32_SkColorType, kLegacy_OutputColorSpace, "L32" },
{ kN32_SkColorType, kSRGB_OutputColorSpace, "S32" },
{ kRGBA_F16_SkColorType, kSRGB_OutputColorSpace, "F16" },
{ kRGBA_F16_SkColorType, kNarrow_OutputColorSpace, "F16 Narrow" },
{ kRGBA_F16_SkColorType, kMonitor_OutputColorSpace, "F16 Device" },
};
// Should be 3x + 1
#define kMaxFatBitsScale 28
extern SampleView* CreateSamplePictFileView(const char filename[]);
class PictFileFactory : public SkViewFactory {
SkString fFilename;
public:
PictFileFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePictFileView(fFilename.c_str());
}
};
extern SampleView* CreateSamplePathFinderView(const char filename[]);
class PathFinderFactory : public SkViewFactory {
SkString fFilename;
public:
PathFinderFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePathFinderView(fFilename.c_str());
}
};
extern SampleView* CreateSampleSVGFileView(const SkString& filename);
class SVGFileFactory : public SkViewFactory {
SkString fFilename;
public:
SVGFileFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSampleSVGFileView(fFilename);
}
};
#ifdef SAMPLE_PDF_FILE_VIEWER
extern SampleView* CreateSamplePdfFileViewer(const char filename[]);
class PdfFileViewerFactory : public SkViewFactory {
SkString fFilename;
public:
PdfFileViewerFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePdfFileViewer(fFilename.c_str());
}
};
#endif // SAMPLE_PDF_FILE_VIEWER
#if SK_ANGLE
//#define DEFAULT_TO_ANGLE 1
#else
#define DEFAULT_TO_GPU 0 // if 1 default rendering is on GPU
#endif
#define ANIMATING_EVENTTYPE "nextSample"
#define ANIMATING_DELAY 250
#ifdef SK_DEBUG
#define FPS_REPEAT_MULTIPLIER 1
#else
#define FPS_REPEAT_MULTIPLIER 10
#endif
#define FPS_REPEAT_COUNT (10 * FPS_REPEAT_MULTIPLIER)
static SampleWindow* gSampleWindow;
static bool gShowGMBounds;
static void post_event_to_sink(SkEvent* evt, SkEventSink* sink) {
evt->setTargetID(sink->getSinkID())->post();
}
static SkAnimTimer gAnimTimer;
///////////////////////////////////////////////////////////////////////////////
static const char* skip_until(const char* str, const char* skip) {
if (!str) {
return nullptr;
}
return strstr(str, skip);
}
static const char* skip_past(const char* str, const char* skip) {
const char* found = skip_until(str, skip);
if (!found) {
return nullptr;
}
return found + strlen(skip);
}
static const char* gPrefFileName = "sampleapp_prefs.txt";
static bool readTitleFromPrefs(SkString* title) {
SkFILEStream stream(gPrefFileName);
if (!stream.isValid()) {
return false;
}
size_t len = stream.getLength();
SkString data(len);
stream.read(data.writable_str(), len);
const char* s = data.c_str();
s = skip_past(s, "curr-slide-title");
s = skip_past(s, "=");
s = skip_past(s, "\"");
const char* stop = skip_until(s, "\"");
if (stop > s) {
title->set(s, stop - s);
return true;
}
return false;
}
static void writeTitleToPrefs(const char* title) {
SkFILEWStream stream(gPrefFileName);
SkString data;
data.printf("curr-slide-title = \"%s\"\n", title);
stream.write(data.c_str(), data.size());
}
///////////////////////////////////////////////////////////////////////////////
class SampleWindow::DefaultDeviceManager : public SampleWindow::DeviceManager {
public:
DefaultDeviceManager() {
#if SK_SUPPORT_GPU
fCurContext = nullptr;
fCurIntf = nullptr;
fMSAASampleCount = 0;
fDeepColor = false;
fActualColorBits = 0;
#endif
fBackend = kNone_BackEndType;
}
~DefaultDeviceManager() override {
#if SK_SUPPORT_GPU
SkSafeUnref(fCurContext);
SkSafeUnref(fCurIntf);
#endif
}
void setUpBackend(SampleWindow* win, const BackendOptions& backendOptions) override {
SkASSERT(kNone_BackEndType == fBackend);
fBackend = kNone_BackEndType;
#if SK_SUPPORT_GPU
switch (win->getDeviceType()) {
case kRaster_DeviceType: // fallthrough
case kGPU_DeviceType:
// all these guys use the native backend
fBackend = kNativeGL_BackEndType;
break;
#if SK_ANGLE
case kANGLE_DeviceType:
// ANGLE is really the only odd man out
fBackend = kANGLE_BackEndType;
break;
#endif // SK_ANGLE
default:
SkASSERT(false);
break;
}
AttachmentInfo attachmentInfo;
bool result = win->attach(fBackend, backendOptions.fMSAASampleCount,
backendOptions.fDeepColor, &attachmentInfo);
if (!result) {
SkDebugf("Failed to initialize GL");
return;
}
fMSAASampleCount = backendOptions.fMSAASampleCount;
fDeepColor = backendOptions.fDeepColor;
// Assume that we have at least 24-bit output, for backends that don't supply this data
fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24);
SkASSERT(nullptr == fCurIntf);
switch (win->getDeviceType()) {
case kRaster_DeviceType: // fallthrough
case kGPU_DeviceType:
// all these guys use the native interface
fCurIntf = GrGLCreateNativeInterface();
break;
#if SK_ANGLE
case kANGLE_DeviceType:
fCurIntf = sk_gpu_test::CreateANGLEGLInterface();
break;
#endif // SK_ANGLE
default:
SkASSERT(false);
break;
}
SkASSERT(nullptr == fCurContext);
fCurContext = GrContext::MakeGL(fCurIntf, backendOptions.fGrContextOptions).release();
if (nullptr == fCurContext || nullptr == fCurIntf) {
// We need some context and interface to see results
SkSafeUnref(fCurContext);
SkSafeUnref(fCurIntf);
fCurContext = nullptr;
fCurIntf = nullptr;
SkDebugf("Failed to setup 3D");
win->release();
}
#endif // SK_SUPPORT_GPU
// call windowSizeChanged to create the gpu-backed Surface
this->windowSizeChanged(win);
}
void tearDownBackend(SampleWindow *win) override {
#if SK_SUPPORT_GPU
if (fCurContext) {
// in case we have outstanding refs to this guy (lua?)
fCurContext->abandonContext();
fCurContext->unref();
fCurContext = nullptr;
}
SkSafeUnref(fCurIntf);
fCurIntf = nullptr;
fGpuSurface = nullptr;
#endif
win->release();
fBackend = kNone_BackEndType;
}
sk_sp<SkSurface> makeSurface(SampleWindow::DeviceType dType, SampleWindow* win) override {
#if SK_SUPPORT_GPU
if (IsGpuDeviceType(dType) && fCurContext) {
SkSurfaceProps props(win->getSurfaceProps());
if (kRGBA_F16_SkColorType == win->info().colorType() || fActualColorBits > 24) {
// If we're rendering to F16, we need an off-screen surface - the current render
// target is most likely the wrong format.
//
// If we're using a deep (10-bit or higher) surface, we probably need an off-screen
// surface. 10-bit, in particular, has strange gamma behavior.
return SkSurface::MakeRenderTarget(fCurContext, SkBudgeted::kNo, win->info(),
fMSAASampleCount, &props);
} else {
return fGpuSurface;
}
}
#endif
return nullptr;
}
void publishCanvas(SampleWindow::DeviceType dType,
SkCanvas* renderingCanvas, SampleWindow* win) override {
#if SK_SUPPORT_GPU
if (!IsGpuDeviceType(dType) ||
kRGBA_F16_SkColorType == win->info().colorType() ||
fActualColorBits > 24) {
// We made/have an off-screen surface. Extract the pixels exactly as we rendered them:
SkImageInfo info = win->info();
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
auto data = SkData::MakeUninitialized(size);
SkASSERT(data);
if (!renderingCanvas->readPixels(info, data->writable_data(), rowBytes, 0, 0)) {
SkDEBUGFAIL("Failed to read canvas pixels");
return;
}
// Now, re-interpret those pixels as sRGB, so they won't be color converted when we
// draw then to FBO0. This ensures that if we rendered in any strange gamut, we'll see
// the "correct" output (because we generated the pixel values we wanted in the
// offscreen canvas).
auto colorSpace = kRGBA_F16_SkColorType == info.colorType()
? SkColorSpace::MakeSRGBLinear()
: SkColorSpace::MakeSRGB();
auto offscreenImage = SkImage::MakeRasterData(info.makeColorSpace(colorSpace), data,
rowBytes);
SkCanvas* gpuCanvas = fGpuSurface->getCanvas();
// With ten-bit output, we need to manually apply the gamma of the output device
// (unless we're in non-gamma correct mode, in which case our data is already
// fake-sRGB, like we're expected to put in the 10-bit buffer):
bool doGamma = (fActualColorBits == 30) && win->info().colorSpace();
SkPaint gammaPaint;
gammaPaint.setBlendMode(SkBlendMode::kSrc);
if (doGamma) {
gammaPaint.setColorFilter(SkColorFilter::MakeLinearToSRGBGamma());
}
gpuCanvas->drawImage(offscreenImage, 0, 0, &gammaPaint);
}
fGpuSurface->prepareForExternalIO();
#endif
win->present();
}
void windowSizeChanged(SampleWindow* win) override {
win->resetFPS();
#if SK_SUPPORT_GPU
if (fCurContext) {
AttachmentInfo attachmentInfo;
win->attach(fBackend, fMSAASampleCount, fDeepColor, &attachmentInfo);
fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24);
fGpuSurface = win->makeGpuBackedSurface(attachmentInfo, fCurIntf, fCurContext);
}
#endif
}
GrContext* getGrContext() override {
#if SK_SUPPORT_GPU
return fCurContext;
#else
return nullptr;
#endif
}
int numColorSamples() const override {
#if SK_SUPPORT_GPU
return fMSAASampleCount;
#else
return 0;
#endif
}
int getColorBits() override {
#if SK_SUPPORT_GPU
return fActualColorBits;
#else
return 24;
#endif
}
private:
#if SK_SUPPORT_GPU
GrContext* fCurContext;
const GrGLInterface* fCurIntf;
sk_sp<SkSurface> fGpuSurface;
int fMSAASampleCount;
bool fDeepColor;
int fActualColorBits;
#endif
SkOSWindow::SkBackEndTypes fBackend;
typedef SampleWindow::DeviceManager INHERITED;
};
///////////////
static const char view_inval_msg[] = "view-inval-msg";
void SampleWindow::postInvalDelay() {
(new SkEvent(view_inval_msg, this->getSinkID()))->postDelay(1);
}
static bool isInvalEvent(const SkEvent& evt) {
return evt.isType(view_inval_msg);
}
//////////////////
#include "GMSampleView.h"
class AutoUnrefArray {
public:
AutoUnrefArray() {}
~AutoUnrefArray() {
int count = fObjs.count();
for (int i = 0; i < count; ++i) {
fObjs[i]->unref();
}
}
SkRefCnt*& push_back() { return *fObjs.append(); }
private:
SkTDArray<SkRefCnt*> fObjs;
};
// registers GMs as Samples
// This can't be performed during static initialization because it could be
// run before GMRegistry has been fully built.
static void SkGMRegistyToSampleRegistry() {
static bool gOnce;
static AutoUnrefArray fRegisters;
if (!gOnce) {
const skiagm::GMRegistry* gmreg = skiagm::GMRegistry::Head();
while (gmreg) {
fRegisters.push_back() = new SkViewRegister(gmreg->factory());
gmreg = gmreg->next();
}
gOnce = true;
}
}
//////////////////////////////////////////////////////////////////////////////
enum FlipAxisEnum {
kFlipAxis_X = (1 << 0),
kFlipAxis_Y = (1 << 1)
};
#include "SkDrawFilter.h"
struct HintingState {
SkPaint::Hinting hinting;
const char* name;
const char* label;
};
static HintingState gHintingStates[] = {
{SkPaint::kNo_Hinting, "Mixed", nullptr },
{SkPaint::kNo_Hinting, "None", "H0 " },
{SkPaint::kSlight_Hinting, "Slight", "Hs " },
{SkPaint::kNormal_Hinting, "Normal", "Hn " },
{SkPaint::kFull_Hinting, "Full", "Hf " },
};
struct PixelGeometryState {
SkPixelGeometry pixelGeometry;
const char* name;
const char* label;
};
static PixelGeometryState gPixelGeometryStates[] = {
{SkPixelGeometry::kUnknown_SkPixelGeometry, "Mixed", nullptr },
{SkPixelGeometry::kUnknown_SkPixelGeometry, "Flat", "{Flat} " },
{SkPixelGeometry::kRGB_H_SkPixelGeometry, "RGB H", "{RGB H} " },
{SkPixelGeometry::kBGR_H_SkPixelGeometry, "BGR H", "{BGR H} " },
{SkPixelGeometry::kRGB_V_SkPixelGeometry, "RGB_V", "{RGB V} " },
{SkPixelGeometry::kBGR_V_SkPixelGeometry, "BGR_V", "{BGR V} " },
};
struct FilterQualityState {
SkFilterQuality fQuality;
const char* fName;
const char* fLabel;
};
static FilterQualityState gFilterQualityStates[] = {
{ kNone_SkFilterQuality, "Mixed", nullptr },
{ kNone_SkFilterQuality, "None", "F0 " },
{ kLow_SkFilterQuality, "Low", "F1 " },
{ kMedium_SkFilterQuality, "Medium", "F2 " },
{ kHigh_SkFilterQuality, "High", "F3 " },
};
class FlagsFilterCanvas : public SkPaintFilterCanvas {
public:
FlagsFilterCanvas(SkCanvas* canvas, SkOSMenu::TriState lcd, SkOSMenu::TriState aa,
SkOSMenu::TriState subpixel, int hinting, int filterQuality)
: INHERITED(canvas)
, fLCDState(lcd)
, fAAState(aa)
, fSubpixelState(subpixel)
, fHintingState(hinting)
, fFilterQualityIndex(filterQuality) {
SkASSERT((unsigned)filterQuality < SK_ARRAY_COUNT(gFilterQualityStates));
}
protected:
bool onFilter(SkTCopyOnFirstWrite<SkPaint>* paint, Type t) const override {
if (!*paint) {
return true;
}
if (kText_Type == t && SkOSMenu::kMixedState != fLCDState) {
paint->writable()->setLCDRenderText(SkOSMenu::kOnState == fLCDState);
}
if (SkOSMenu::kMixedState != fAAState) {
paint->writable()->setAntiAlias(SkOSMenu::kOnState == fAAState);
}
if (0 != fFilterQualityIndex) {
paint->writable()->setFilterQuality(gFilterQualityStates[fFilterQualityIndex].fQuality);
}
if (SkOSMenu::kMixedState != fSubpixelState) {
paint->writable()->setSubpixelText(SkOSMenu::kOnState == fSubpixelState);
}
if (0 != fHintingState && fHintingState < (int)SK_ARRAY_COUNT(gHintingStates)) {
paint->writable()->setHinting(gHintingStates[fHintingState].hinting);
}
return true;
}
private:
SkOSMenu::TriState fLCDState;
SkOSMenu::TriState fAAState;
SkOSMenu::TriState fSubpixelState;
int fHintingState;
int fFilterQualityIndex;
typedef SkPaintFilterCanvas INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class SampleTFSerializer : public SkTypefaceSerializer {
public:
sk_sp<SkData> serialize(SkTypeface* tf) override {
tf->ref();
return SkData::MakeWithCopy(&tf, sizeof(tf));
}
};
class SampleTFDeserializer : public SkTypefaceDeserializer {
public:
sk_sp<SkTypeface> deserialize(const void* data, size_t size) override {
SkASSERT(sizeof(SkTypeface*) == size);
SkTypeface* tf;
memcpy(&tf, data, size);
return sk_sp<SkTypeface>(tf); // this was ref'd in SampleTFSerializer
}
};
///////////////////////////////////////////////////////////////////////////////
enum TilingMode {
kNo_Tiling,
kAbs_128x128_Tiling,
kAbs_256x256_Tiling,
kRel_4x4_Tiling,
kRel_1x16_Tiling,
kRel_16x1_Tiling,
kLast_TilingMode_Enum
};
struct TilingInfo {
const char* label;
SkScalar w, h;
};
static const struct TilingInfo gTilingInfo[] = {
{ "No tiling", SK_Scalar1 , SK_Scalar1 }, // kNo_Tiling
{ "128x128" , SkIntToScalar(128), SkIntToScalar(128) }, // kAbs_128x128_Tiling
{ "256x256" , SkIntToScalar(256), SkIntToScalar(256) }, // kAbs_256x256_Tiling
{ "1/4x1/4" , SK_Scalar1 / 4 , SK_Scalar1 / 4 }, // kRel_4x4_Tiling
{ "1/1x1/16" , SK_Scalar1 , SK_Scalar1 / 16 }, // kRel_1x16_Tiling
{ "1/16x1/1" , SK_Scalar1 / 16 , SK_Scalar1 }, // kRel_16x1_Tiling
};
static_assert((SK_ARRAY_COUNT(gTilingInfo) == kLast_TilingMode_Enum),
"Incomplete_tiling_labels");
SkSize SampleWindow::tileSize() const {
SkASSERT((TilingMode)fTilingMode < kLast_TilingMode_Enum);
const struct TilingInfo* info = gTilingInfo + fTilingMode;
return SkSize::Make(info->w > SK_Scalar1 ? info->w : this->width() * info->w,
info->h > SK_Scalar1 ? info->h : this->height() * info->h);
}
//////////////////////////////////////////////////////////////////////////////
static SkView* curr_view(SkWindow* wind) {
SkView::F2BIter iter(wind);
return iter.next();
}
static bool curr_title(SkWindow* wind, SkString* title) {
SkView* view = curr_view(wind);
if (view) {
SkEvent evt(gTitleEvtName);
if (view->doQuery(&evt)) {
title->set(evt.findString(gTitleEvtName));
return true;
}
}
return false;
}
bool SampleWindow::sendAnimatePulse() {
SkView* view = curr_view(this);
if (SampleView::IsSampleView(view)) {
return ((SampleView*)view)->animate(gAnimTimer);
}
return false;
}
void SampleWindow::setZoomCenter(float x, float y) {
fZoomCenterX = x;
fZoomCenterY = y;
}
bool SampleWindow::zoomIn() {
// Arbitrarily decided
if (fFatBitsScale == kMaxFatBitsScale) return false;
fFatBitsScale++;
this->inval(nullptr);
return true;
}
bool SampleWindow::zoomOut() {
if (fFatBitsScale == 1) return false;
fFatBitsScale--;
this->inval(nullptr);
return true;
}
void SampleWindow::updatePointer(int x, int y) {
fMouseX = x;
fMouseY = y;
if (fShowZoomer) {
this->inval(nullptr);
}
}
static inline SampleWindow::DeviceType cycle_devicetype(SampleWindow::DeviceType ct) {
static const SampleWindow::DeviceType gCT[] = {
SampleWindow::kRaster_DeviceType
#if SK_SUPPORT_GPU
, SampleWindow::kGPU_DeviceType
#if SK_ANGLE
, SampleWindow::kANGLE_DeviceType
#endif // SK_ANGLE
#endif // SK_SUPPORT_GPU
};
static_assert(SK_ARRAY_COUNT(gCT) == SampleWindow::kDeviceTypeCnt, "array_size_mismatch");
return gCT[ct];
}
static SkString getSampleTitle(const SkViewFactory* sampleFactory) {
SkView* view = (*sampleFactory)();
SkString title;
SampleCode::RequestTitle(view, &title);
view->unref();
return title;
}
static bool compareSampleTitle(const SkViewFactory* first, const SkViewFactory* second) {
return strcmp(getSampleTitle(first).c_str(), getSampleTitle(second).c_str()) < 0;
}
static int find_by_title(const SkViewFactory* const* factories, int count, const char title[]) {
for (int i = 0; i < count; i++) {
if (getSampleTitle(factories[i]).equals(title)) {
return i;
}
}
return -1;
}
static void restrict_samples(SkTDArray<const SkViewFactory*>& factories, const SkString titles[],
int count) {
int newCount = 0;
for (int i = 0; i < count; ++i) {
int index = find_by_title(factories.begin(), factories.count(), titles[i].c_str());
if (index >= 0) {
SkTSwap(factories.begin()[newCount], factories.begin()[index]);
newCount += 1;
}
}
if (newCount) {
factories.setCount(newCount);
}
}
DEFINE_string(slide, "", "Start on this sample.");
DEFINE_string(pictureDir, "", "Read pictures from here.");
DEFINE_string(picture, "", "Path to single picture.");
DEFINE_string(pathfinder, "", "SKP file with a single path to isolate.");
DEFINE_string(svg, "", "Path to single SVG file.");
DEFINE_string(svgDir, "", "Read SVGs from here.");
DEFINE_string(sequence, "", "Path to file containing the desired samples/gms to show.");
DEFINE_bool(sort, false, "Sort samples by title.");
DEFINE_bool(list, false, "List samples?");
DEFINE_bool(startgpu, false, "Start up with gpu?");
DEFINE_bool(redraw, false, "Force continuous redrawing, for profiling or debugging tools.");
#ifdef SAMPLE_PDF_FILE_VIEWER
DEFINE_string(pdfPath, "", "Path to direcotry of pdf files.");
#endif
#if SK_SUPPORT_GPU
DEFINE_pathrenderer_flag;
DEFINE_int32(msaa, 0, "Request multisampling with this count.");
DEFINE_bool(deepColor, false, "Request deep color (10-bit/channel or more) display buffer.");
#endif
#include "SkTaskGroup.h"
SampleWindow::SampleWindow(void* hwnd, int argc, char** argv, DeviceManager* devManager)
: INHERITED(hwnd)
, fDevManager(nullptr) {
SkCommandLineFlags::Parse(argc, argv);
fCurrIndex = -1;
if (!FLAGS_pictureDir.isEmpty()) {
SkOSFile::Iter iter(FLAGS_pictureDir[0], "skp");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new PictFileFactory(
SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str()));
}
}
if (!FLAGS_picture.isEmpty()) {
SkString path(FLAGS_picture[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new PictFileFactory(path);
}
if (!FLAGS_pathfinder.isEmpty()) {
SkString path(FLAGS_pathfinder[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new PathFinderFactory(path);
}
if (!FLAGS_svg.isEmpty()) {
SkString path(FLAGS_svg[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new SVGFileFactory(path);
}
if (!FLAGS_svgDir.isEmpty()) {
SkOSFile::Iter iter(FLAGS_svgDir[0], "svg");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new SVGFileFactory(
SkOSPath::Join(FLAGS_svgDir[0], filename.c_str()));
}
}
#ifdef SAMPLE_PDF_FILE_VIEWER
if (!FLAGS_pdfPath.isEmpty()) {
SkOSFile::Iter iter(FLAGS_pdfPath[0], "pdf");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new PdfFileViewerFactory(
SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str()));
}
}
#endif
SkGMRegistyToSampleRegistry();
{
const SkViewRegister* reg = SkViewRegister::Head();
while (reg) {
*fSamples.append() = reg->factory();
reg = reg->next();
}
}
if (!FLAGS_sequence.isEmpty()) {
// The sequence file just contains a list (separated by CRs) of the samples or GM:gms
// you want to restrict to. Only these will appear when you cycle through.
// If none are found, or the file is empty, then it will be ignored, and all samples
// will be available.
SkFILEStream stream(FLAGS_sequence[0]);
if (stream.isValid()) {
size_t len = stream.getLength();
SkAutoTMalloc<char> storage(len + 1);
char* buffer = storage.get();
stream.read(buffer, len);
buffer[len] = 0;
SkTArray<SkString> titles;
SkStrSplit(buffer, "\n\r", &titles);
restrict_samples(fSamples, titles.begin(), titles.count());
}
}
if (FLAGS_sort) {
// Sort samples, so foo.skp and foo.pdf are consecutive and we can quickly spot where
// skp -> pdf -> png fails.
SkTQSort(fSamples.begin(), fSamples.end() ? fSamples.end() - 1 : nullptr, compareSampleTitle);
}
if (!FLAGS_slide.isEmpty()) {
fCurrIndex = findByTitle(FLAGS_slide[0]);
if (fCurrIndex < 0) {
fprintf(stderr, "Unknown sample \"%s\"\n", FLAGS_slide[0]);
listTitles();
}
}
#if SK_SUPPORT_GPU
fBackendOptions.fGrContextOptions.fGpuPathRenderers = CollectGpuPathRenderersFromFlags();
fBackendOptions.fMSAASampleCount = FLAGS_msaa;
fBackendOptions.fDeepColor = FLAGS_deepColor;
#endif
fColorConfigIndex = 0;
if (FLAGS_list) {
listTitles();
}
if (fCurrIndex < 0) {
SkString title;
if (readTitleFromPrefs(&title)) {
fCurrIndex = findByTitle(title.c_str());
}
}
if (fCurrIndex < 0) {
fCurrIndex = 0;
}
static SkTaskGroup::Enabler enabled(-1);
gSampleWindow = this;
fDeviceType = kRaster_DeviceType;
#if SK_SUPPORT_GPU
if (FLAGS_startgpu) {
fDeviceType = kGPU_DeviceType;
}
#endif
#if DEFAULT_TO_GPU
fDeviceType = kGPU_DeviceType;
#endif
#if SK_ANGLE && DEFAULT_TO_ANGLE
fDeviceType = kANGLE_DeviceType;
#endif
fUseClip = false;
fUsePicture = false;
fAnimating = false;
fRotate = false;
fPerspAnim = false;
fRequestGrabImage = false;
fTilingMode = kNo_Tiling;
fMeasureFPS = false;
fUseDeferredCanvas = false;
fLCDState = SkOSMenu::kMixedState;
fAAState = SkOSMenu::kMixedState;
fSubpixelState = SkOSMenu::kMixedState;
fHintingState = 0;
fPixelGeometryIndex = 0;
fFilterQualityIndex = 0;
fFlipAxis = 0;
fMouseX = fMouseY = 0;
fFatBitsScale = 8;
fTypeface = SkTypeface::MakeFromName("Courier", SkFontStyle(SkFontStyle::kBold_Weight,
SkFontStyle::kNormal_Width,
SkFontStyle::kUpright_Slant));
fShowZoomer = false;
fZoomLevel = 0;
fZoomScale = SK_Scalar1;
fOffset = { 0, 0 };
fMagnify = false;
fSaveToPdf = false;
fSaveToSKP = false;
if (true) {
fPipeSerializer.setTypefaceSerializer(new SampleTFSerializer);
fPipeDeserializer.setTypefaceDeserializer(new SampleTFDeserializer);
}
int sinkID = this->getSinkID();
fAppMenu = new SkOSMenu;
fAppMenu->setTitle("Global Settings");
int itemID;
itemID = fAppMenu->appendList("ColorType", "ColorType", sinkID, 0,
gConfig[0].fName,
gConfig[1].fName,
gConfig[2].fName,
gConfig[3].fName,
gConfig[4].fName,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'C');
itemID = fAppMenu->appendList("Device Type", "Device Type", sinkID, 0,
"Raster",
"OpenGL",
#if SK_ANGLE
"ANGLE",
#endif
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'd');
itemID = fAppMenu->appendTriState("AA", "AA", sinkID, fAAState);
fAppMenu->assignKeyEquivalentToItem(itemID, 'b');
itemID = fAppMenu->appendTriState("LCD", "LCD", sinkID, fLCDState);
fAppMenu->assignKeyEquivalentToItem(itemID, 'l');
itemID = fAppMenu->appendList("FilterQuality", "FilterQuality", sinkID, fFilterQualityIndex,
gFilterQualityStates[0].fName,
gFilterQualityStates[1].fName,
gFilterQualityStates[2].fName,
gFilterQualityStates[3].fName,
gFilterQualityStates[4].fName,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'n');
itemID = fAppMenu->appendTriState("Subpixel", "Subpixel", sinkID, fSubpixelState);
fAppMenu->assignKeyEquivalentToItem(itemID, 's');
itemID = fAppMenu->appendList("Hinting", "Hinting", sinkID, fHintingState,
gHintingStates[0].name,
gHintingStates[1].name,
gHintingStates[2].name,
gHintingStates[3].name,
gHintingStates[4].name,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'h');
itemID = fAppMenu->appendList("Pixel Geometry", "Pixel Geometry", sinkID, fPixelGeometryIndex,
gPixelGeometryStates[0].name,
gPixelGeometryStates[1].name,
gPixelGeometryStates[2].name,
gPixelGeometryStates[3].name,
gPixelGeometryStates[4].name,
gPixelGeometryStates[5].name,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'P');
itemID =fAppMenu->appendList("Tiling", "Tiling", sinkID, fTilingMode,
gTilingInfo[kNo_Tiling].label,
gTilingInfo[kAbs_128x128_Tiling].label,
gTilingInfo[kAbs_256x256_Tiling].label,
gTilingInfo[kRel_4x4_Tiling].label,
gTilingInfo[kRel_1x16_Tiling].label,
gTilingInfo[kRel_16x1_Tiling].label,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 't');
itemID = fAppMenu->appendSwitch("Slide Show", "Slide Show" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'a');
itemID = fAppMenu->appendSwitch("Clip", "Clip" , sinkID, fUseClip);
fAppMenu->assignKeyEquivalentToItem(itemID, 'c');
itemID = fAppMenu->appendSwitch("Flip X", "Flip X" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'x');
itemID = fAppMenu->appendSwitch("Flip Y", "Flip Y" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'y');
itemID = fAppMenu->appendSwitch("Zoomer", "Zoomer" , sinkID, fShowZoomer);
fAppMenu->assignKeyEquivalentToItem(itemID, 'z');
itemID = fAppMenu->appendSwitch("Magnify", "Magnify" , sinkID, fMagnify);
fAppMenu->assignKeyEquivalentToItem(itemID, 'm');
itemID = fAppMenu->appendAction("Save to PDF", sinkID);
fAppMenu->assignKeyEquivalentToItem(itemID, 'e');
this->addMenu(fAppMenu);
fSlideMenu = new SkOSMenu;
this->addMenu(fSlideMenu);
this->setVisibleP(true);
this->setClipToBounds(false);
this->loadView((*fSamples[fCurrIndex])());
if (nullptr == devManager) {
fDevManager = new DefaultDeviceManager();
} else {
devManager->ref();
fDevManager = devManager;
}
fDevManager->setUpBackend(this, fBackendOptions);
// If another constructor set our dimensions, ensure that our
// onSizeChange gets called.
if (this->height() && this->width()) {
this->onSizeChange();
}
// can't call this synchronously, since it may require a subclass to
// to implement, or the caller may need us to have returned from the
// constructor first. Hence we post an event to ourselves.
// this->updateTitle();
post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this);
gAnimTimer.run();
}
SampleWindow::~SampleWindow() {
SkSafeUnref(fDevManager);
}
int SampleWindow::findByTitle(const char title[]) {
int i, count = fSamples.count();
for (i = 0; i < count; i++) {
if (getSampleTitle(i).equals(title)) {
return i;
}
}
return -1;
}
void SampleWindow::listTitles() {
int count = fSamples.count();
SkDebugf("All Slides:\n");
for (int i = 0; i < count; i++) {
SkDebugf(" %s\n", getSampleTitle(i).c_str());
}
}
static SkBitmap capture_bitmap(SkCanvas* canvas) {
SkBitmap bm;
if (bm.tryAllocPixels(canvas->imageInfo())) {
canvas->readPixels(bm, 0, 0);
}
return bm;
}
static void drawText(SkCanvas* canvas, SkString str, SkScalar left, SkScalar top, SkPaint& paint) {
SkColor desiredColor = paint.getColor();
paint.setColor(SK_ColorWHITE);
const char* c_str = str.c_str();
size_t size = str.size();
SkRect bounds;
paint.measureText(c_str, size, &bounds);
bounds.offset(left, top);
SkScalar inset = SkIntToScalar(-2);
bounds.inset(inset, inset);
canvas->drawRect(bounds, paint);
paint.setColor(desiredColor);
canvas->drawText(c_str, size, left, top, paint);
}
#define XCLIP_N 8
#define YCLIP_N 8
#include "SkDeferredCanvas.h"
#include "SkDumpCanvas.h"
void SampleWindow::draw(SkCanvas* canvas) {
std::unique_ptr<SkThreadedBMPDevice> tDev;
std::unique_ptr<SkCanvas> tCanvas;
if (fTiles > 0 && fDeviceType == kRaster_DeviceType) {
tDev.reset(new SkThreadedBMPDevice(this->getBitmap(), fTiles, fThreads));
tCanvas.reset(new SkCanvas(tDev.get()));
canvas = tCanvas.get();
}
gAnimTimer.updateTime();
if (fGesture.isActive()) {
this->updateMatrix();
}
if (fMeasureFPS) {
fMeasureFPS_Time = 0;
}
SkSize tile = this->tileSize();
if (kNo_Tiling == fTilingMode) {
SkDebugfDumper dumper;
SkDumpCanvas dump(&dumper);
SkDeferredCanvas deferred(canvas, SkDeferredCanvas::kEager);
SkCanvas* c = fUseDeferredCanvas ? &deferred : canvas;
this->INHERITED::draw(c); // no looping or surfaces needed
} else {
const SkScalar w = SkScalarCeilToScalar(tile.width());
const SkScalar h = SkScalarCeilToScalar(tile.height());
SkImageInfo info = SkImageInfo::MakeN32Premul(SkScalarTruncToInt(w), SkScalarTruncToInt(h));
auto surface(canvas->makeSurface(info));
SkCanvas* tileCanvas = surface->getCanvas();
for (SkScalar y = 0; y < height(); y += h) {
for (SkScalar x = 0; x < width(); x += w) {
SkAutoCanvasRestore acr(tileCanvas, true);
tileCanvas->translate(-x, -y);
tileCanvas->clear(0);
this->INHERITED::draw(tileCanvas);
surface->draw(canvas, x, y, nullptr);
}
}
// for drawing the borders between tiles
SkPaint paint;
paint.setColor(0x60FF00FF);
paint.setStyle(SkPaint::kStroke_Style);
for (SkScalar y = 0; y < height(); y += tile.height()) {
for (SkScalar x = 0; x < width(); x += tile.width()) {
canvas->drawRect(SkRect::MakeXYWH(x, y, tile.width(), tile.height()), paint);
}
}
}
if (fShowZoomer && !fSaveToPdf) {
showZoomer(canvas);
}
if (fMagnify && !fSaveToPdf) {
magnify(canvas);
}
if (fMeasureFPS && fMeasureFPS_Time) {
this->updateTitle();
this->postInvalDelay();
}
if (this->sendAnimatePulse() || FLAGS_redraw) {
this->inval(nullptr);
}
canvas->flush();
// do this last
fDevManager->publishCanvas(fDeviceType, canvas, this);
}
static float clipW = 200;
static float clipH = 200;
void SampleWindow::magnify(SkCanvas* canvas) {
SkRect r;
int count = canvas->save();
SkMatrix m = canvas->getTotalMatrix();
if (!m.invert(&m)) {
return;
}
SkPoint offset, center;
SkScalar mouseX = fMouseX * SK_Scalar1;
SkScalar mouseY = fMouseY * SK_Scalar1;
m.mapXY(mouseX - clipW/2, mouseY - clipH/2, &offset);
m.mapXY(mouseX, mouseY, &center);
r.set(0, 0, clipW * m.getScaleX(), clipH * m.getScaleX());
r.offset(offset.fX, offset.fY);
SkPaint paint;
paint.setColor(0xFF66AAEE);
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(10.f * m.getScaleX());
//lense offset
//canvas->translate(0, -250);
canvas->drawRect(r, paint);
canvas->clipRect(r);
m = canvas->getTotalMatrix();
m.setTranslate(-center.fX, -center.fY);
m.postScale(0.5f * fFatBitsScale, 0.5f * fFatBitsScale);
m.postTranslate(center.fX, center.fY);
canvas->concat(m);
this->INHERITED::draw(canvas);
canvas->restoreToCount(count);
}
static SkPaint& set_color_ref(SkPaint& paint, SkColor c) {
paint.setColor(c);
return paint;
}
static void show_lcd_box(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c,
SkScalar sx, SkScalar sy) {
const SkScalar w = (1 - 1/sx) / 3;
SkPaint paint;
SkRect r = SkRect::MakeXYWH(x, y, w, 1 - 1/sy);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0)));
r.offset(w, 0);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0)));
r.offset(w, 0);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c))));
}
static void show_lcd_circle(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c,
SkScalar, SkScalar) {
const SkRect r = SkRect::MakeXYWH(x, y, 1, 1);
const SkScalar cx = x + 0.5f;
const SkScalar cy = y + 0.5f;
SkPaint paint;
paint.setAntiAlias(true);
SkPath path;
path.addArc(r, 0, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0)));
path.reset(); path.addArc(r, 120, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0)));
path.reset(); path.addArc(r, 240, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c))));
}
typedef void (*ShowLCDProc)(SkCanvas*, SkScalar, SkScalar, SkColor, SkScalar, SkScalar);
/*
* Like drawBitmapRect but we manually draw each pixels in RGB
*/
static void show_lcd_grid(SkCanvas* canvas, const SkBitmap& bitmap,
const SkIRect& origSrc, const SkRect& dst, ShowLCDProc proc) {
SkIRect src;
if (!src.intersect(origSrc, bitmap.bounds())) {
return;
}
const SkScalar sx = dst.width() / src.width();
const SkScalar sy = dst.height() / src.height();
SkAutoCanvasRestore acr(canvas, true);
canvas->translate(dst.left(), dst.top());
canvas->scale(sx, sy);
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
proc(canvas, SkIntToScalar(x), SkIntToScalar(y),
bitmap.getColor(src.left() + x, src.top() + y), sx, sy);
}
}
}
void SampleWindow::showZoomer(SkCanvas* canvas) {
int count = canvas->save();
canvas->resetMatrix();
// Ensure the mouse position is on screen.
int width = SkScalarRoundToInt(this->width());
int height = SkScalarRoundToInt(this->height());
if (fMouseX >= width) fMouseX = width - 1;
else if (fMouseX < 0) fMouseX = 0;
if (fMouseY >= height) fMouseY = height - 1;
else if (fMouseY < 0) fMouseY = 0;
SkBitmap bitmap = capture_bitmap(canvas);
// Find the size of the zoomed in view, forced to be odd, so the examined pixel is in the middle.
int zoomedWidth = (width >> 1) | 1;
int zoomedHeight = (height >> 1) | 1;
SkIRect src;
src.set(0, 0, zoomedWidth / fFatBitsScale, zoomedHeight / fFatBitsScale);
src.offset(fMouseX - (src.width()>>1), fMouseY - (src.height()>>1));
SkRect dest;
dest.set(0, 0, SkIntToScalar(zoomedWidth), SkIntToScalar(zoomedHeight));
dest.offset(SkIntToScalar(width - zoomedWidth), SkIntToScalar(height - zoomedHeight));
SkPaint paint;
// Clear the background behind our zoomed in view
paint.setColor(SK_ColorWHITE);
canvas->drawRect(dest, paint);
switch (fFatBitsScale) {
case kMaxFatBitsScale:
show_lcd_grid(canvas, bitmap, src, dest, show_lcd_box);
break;
case kMaxFatBitsScale - 1:
show_lcd_grid(canvas, bitmap, src, dest, show_lcd_circle);
break;
default:
canvas->drawBitmapRect(bitmap, src, dest, nullptr);
break;
}
paint.setColor(SK_ColorBLACK);
paint.setStyle(SkPaint::kStroke_Style);
// Draw a border around the pixel in the middle
SkRect originalPixel;
originalPixel.set(SkIntToScalar(fMouseX), SkIntToScalar(fMouseY), SkIntToScalar(fMouseX + 1), SkIntToScalar(fMouseY + 1));
SkMatrix matrix;
SkRect scalarSrc;
scalarSrc.set(src);
SkColor color = bitmap.getColor(fMouseX, fMouseY);
if (matrix.setRectToRect(scalarSrc, dest, SkMatrix::kFill_ScaleToFit)) {
SkRect pixel;
matrix.mapRect(&pixel, originalPixel);
// TODO Perhaps measure the values and make the outline white if it's "dark"
if (color == SK_ColorBLACK) {
paint.setColor(SK_ColorWHITE);
}
canvas->drawRect(pixel, paint);
}
paint.setColor(SK_ColorBLACK);
// Draw a border around the destination rectangle
canvas->drawRect(dest, paint);
paint.setStyle(SkPaint::kStrokeAndFill_Style);
// Identify the pixel and its color on screen
paint.setTypeface(fTypeface);
paint.setAntiAlias(true);
paint.setTextSize(18);
SkScalar lineHeight = paint.getFontMetrics(nullptr);
SkString string;
string.appendf("(%i, %i)", fMouseX, fMouseY);
SkScalar left = dest.fLeft + SkIntToScalar(3);
SkScalar i = SK_Scalar1;
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Alpha
i += SK_Scalar1;
string.reset();
string.appendf("A: %X", SkColorGetA(color));
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Red
i += SK_Scalar1;
string.reset();
string.appendf("R: %X", SkColorGetR(color));
paint.setColor(SK_ColorRED);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Green
i += SK_Scalar1;
string.reset();
string.appendf("G: %X", SkColorGetG(color));
paint.setColor(0xFF008800);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Blue
i += SK_Scalar1;
string.reset();
string.appendf("B: %X", SkColorGetB(color));
paint.setColor(SK_ColorBLUE);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
canvas->restoreToCount(count);
}
void SampleWindow::onDraw(SkCanvas* canvas) {
}
#include "SkColorPriv.h"
void SampleWindow::saveToPdf()
{
fSaveToPdf = true;
this->inval(nullptr);
}
SkCanvas* SampleWindow::beforeChildren(SkCanvas* canvas) {
if (fSaveToPdf) {
SkString name;
if (!this->getRawTitle(&name)) {
name.set("unknown_sample");
}
name.append(".pdf");
#ifdef SK_BUILD_FOR_ANDROID
name.prepend("/sdcard/");
#endif
fPDFDocument = SkDocument::MakePDF(name.c_str());
canvas = fPDFDocument->beginPage(this->width(), this->height());
} else if (fSaveToSKP) {
canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0);
} else if (fUsePicture) {
if (PICTURE_MEANS_PIPE) {
fPipeStream.reset(new SkDynamicMemoryWStream);
canvas = fPipeSerializer.beginWrite(SkRect::MakeWH(this->width(), this->height()),
fPipeStream.get());
} else {
canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0);
}
} else {
canvas = this->INHERITED::beforeChildren(canvas);
}
if (fUseClip) {
canvas->drawColor(0xFFFF88FF);
canvas->clipPath(fClipPath, kIntersect_SkClipOp, true);
}
// Install a flags filter proxy canvas if needed
if (fLCDState != SkOSMenu::kMixedState ||
fAAState != SkOSMenu::kMixedState ||
fSubpixelState != SkOSMenu::kMixedState ||
fHintingState > 0 ||
fFilterQualityIndex > 0) {
canvas = new FlagsFilterCanvas(canvas, fLCDState, fAAState, fSubpixelState, fHintingState,
fFilterQualityIndex);
fFlagsFilterCanvas.reset(canvas);
}
return canvas;
}
#include "SkMultiPictureDraw.h"
void SampleWindow::afterChildren(SkCanvas* orig) {
fFlagsFilterCanvas.reset(nullptr);
if (fSaveToPdf) {
fSaveToPdf = false;
fPDFDocument->endPage();
fPDFDocument.reset(nullptr);
// We took over the draw calls in order to create the PDF, so we need
// to redraw.
this->inval(nullptr);
return;
}
if (fRequestGrabImage) {
fRequestGrabImage = false;
SkBitmap bmp = capture_bitmap(orig);
if (!bmp.isNull()) {
static int gSampleGrabCounter;
SkString name;
name.printf("sample_grab_%d.png", gSampleGrabCounter++);
sk_tool_utils::EncodeImageToFile(name.c_str(), bmp,
SkEncodedImageFormat::kPNG, 100);
}
this->inval(nullptr);
return;
}
if (fSaveToSKP) {
sk_sp<SkPicture> picture(fRecorder.finishRecordingAsPicture());
SkFILEWStream stream("sample_app.skp");
picture->serialize(&stream);
fSaveToSKP = false;
this->inval(nullptr);
return;
}
if (fUsePicture) {
if (PICTURE_MEANS_PIPE) {
fPipeSerializer.endWrite();
sk_sp<SkData> data(fPipeStream->detachAsData());
fPipeDeserializer.playback(data->data(), data->size(), orig);
fPipeStream.reset();
} else {
sk_sp<SkPicture> picture(fRecorder.finishRecordingAsPicture());
if (SERIALIZE_PICTURE) {
auto data = picture->serialize();
picture = SkPicture::MakeFromData(data.get(), nullptr);
}
orig->drawPicture(picture.get());
}
}
// Do this after presentGL and other finishing, rather than in afterChild
if (fMeasureFPS) {
orig->flush();
fTimer.end();
fMeasureFPS_Time += fTimer.fWall;
fCumulativeFPS_Time += fTimer.fWall;
fCumulativeFPS_Count += FPS_REPEAT_COUNT;
}
}
void SampleWindow::beforeChild(SkView* child, SkCanvas* canvas) {
if (fRotate) {
SkScalar cx = this->width() / 2;
SkScalar cy = this->height() / 2;
canvas->rotate(gAnimTimer.scaled(10), cx, cy);
}
if (fPerspAnim) {
SkScalar secs = gAnimTimer.scaled(1);
static const SkScalar gAnimPeriod = 10 * SK_Scalar1;
static const SkScalar gAnimMag = SK_Scalar1 / 1000;
SkScalar t = SkScalarMod(secs, gAnimPeriod);
if (SkScalarFloorToInt(secs / gAnimPeriod) & 0x1) {
t = gAnimPeriod - t;
}
t = 2 * t - gAnimPeriod;
t *= gAnimMag / gAnimPeriod;
SkMatrix m;
m.reset();
#if 1
m.setPerspY(t);
#else
m.setPerspY(SK_Scalar1 / 1000);
m.setSkewX(8.0f / 25);
m.dump();
#endif
canvas->concat(m);
}
if (fMeasureFPS) {
(void)SampleView::SetRepeatDraw(child, FPS_REPEAT_COUNT);
fTimer.start();
} else {
(void)SampleView::SetRepeatDraw(child, 1);
}
if (fPerspAnim || fRotate) {
this->inval(nullptr);
}
}
void SampleWindow::changeOffset(SkVector delta) {
fOffset += delta;
this->updateMatrix();
}
void SampleWindow::changeZoomLevel(float delta) {
fZoomLevel += delta;
if (fZoomLevel > 0) {
fZoomLevel = SkMinScalar(fZoomLevel, MAX_ZOOM_LEVEL);
fZoomScale = fZoomLevel + SK_Scalar1;
} else if (fZoomLevel < 0) {
fZoomLevel = SkMaxScalar(fZoomLevel, MIN_ZOOM_LEVEL);
fZoomScale = SK_Scalar1 / (SK_Scalar1 - fZoomLevel);
} else {
fZoomScale = SK_Scalar1;
}
this->updateMatrix();
}
void SampleWindow::updateMatrix(){
SkMatrix m;
m.reset();
if (fZoomLevel) {
SkPoint center;
//m = this->getLocalMatrix();//.invert(&m);
m.mapXY(fZoomCenterX, fZoomCenterY, &center);
SkScalar cx = center.fX;
SkScalar cy = center.fY;
m.setTranslate(-cx, -cy);
m.postScale(fZoomScale, fZoomScale);
m.postTranslate(cx, cy);
}
m.postTranslate(fOffset.fX, fOffset.fY);
if (fFlipAxis) {
m.preTranslate(fZoomCenterX, fZoomCenterY);
if (fFlipAxis & kFlipAxis_X) {
m.preScale(-SK_Scalar1, SK_Scalar1);
}
if (fFlipAxis & kFlipAxis_Y) {
m.preScale(SK_Scalar1, -SK_Scalar1);
}
m.preTranslate(-fZoomCenterX, -fZoomCenterY);
//canvas->concat(m);
}
// Apply any gesture matrix
m.preConcat(fGesture.localM());
m.preConcat(fGesture.globalM());
this->setLocalMatrix(m);
this->updateTitle();
this->inval(nullptr);
}
bool SampleWindow::previousSample() {
this->resetFPS();
fCurrIndex = (fCurrIndex - 1 + fSamples.count()) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
return true;
}
#include "SkResourceCache.h"
#include "SkGlyphCache.h"
bool SampleWindow::nextSample() {
this->resetFPS();
fCurrIndex = (fCurrIndex + 1) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
if (false) {
SkResourceCache::TestDumpMemoryStatistics();
SkGlyphCache::Dump();
SkDebugf("\n");
}
return true;
}
bool SampleWindow::goToSample(int i) {
this->resetFPS();
fCurrIndex = (i) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
return true;
}
SkString SampleWindow::getSampleTitle(int i) {
return ::getSampleTitle(fSamples[i]);
}
int SampleWindow::sampleCount() {
return fSamples.count();
}
void SampleWindow::showOverview() {
this->loadView(create_overview(fSamples.count(), fSamples.begin()));
}
void SampleWindow::postAnimatingEvent() {
if (fAnimating) {
(new SkEvent(ANIMATING_EVENTTYPE, this->getSinkID()))->postDelay(ANIMATING_DELAY);
}
}
static sk_sp<SkColorSpace> getMonitorColorSpace() {
#if defined(SK_BUILD_FOR_MAC)
CGColorSpaceRef cs = CGDisplayCopyColorSpace(CGMainDisplayID());
CFDataRef dataRef = CGColorSpaceCopyICCProfile(cs);
const uint8_t* data = CFDataGetBytePtr(dataRef);
size_t size = CFDataGetLength(dataRef);
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(data, size);
CFRelease(cs);
CFRelease(dataRef);
return colorSpace;
#elif defined(SK_BUILD_FOR_WIN)
DISPLAY_DEVICE dd = { sizeof(DISPLAY_DEVICE) };
// Chrome's code for this currently just gets the primary monitor's profile. This code iterates
// over all attached monitors, so it's "better" in that sense. Making intelligent use of this
// information (via things like MonitorFromWindow or MonitorFromRect to pick the correct
// profile for a particular window or region of a window), is an exercise left to the reader.
for (int i = 0; EnumDisplayDevices(NULL, i, &dd, 0); ++i) {
if (dd.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
// There are other helpful things in dd at this point:
// dd.DeviceString has a longer name for the adapter
// dd.StateFlags indicates primary display, mirroring, etc...
HDC dc = CreateDC(NULL, dd.DeviceName, NULL, NULL);
if (dc) {
char icmPath[MAX_PATH + 1];
DWORD pathLength = MAX_PATH;
BOOL success = GetICMProfileA(dc, &pathLength, icmPath);
DeleteDC(dc);
if (success) {
sk_sp<SkData> iccData = SkData::MakeFromFileName(icmPath);
return SkColorSpace::MakeICC(iccData->data(), iccData->size());
}
}
}
}
return nullptr;
#else
return nullptr;
#endif
}
bool SampleWindow::onEvent(const SkEvent& evt) {
if (evt.isType(gUpdateWindowTitleEvtName)) {
this->updateTitle();
return true;
}
if (evt.isType(ANIMATING_EVENTTYPE)) {
if (fAnimating) {
this->nextSample();
this->postAnimatingEvent();
}
return true;
}
if (evt.isType("set-curr-index")) {
this->goToSample(evt.getFast32());
return true;
}
if (isInvalEvent(evt)) {
this->inval(nullptr);
return true;
}
int selected = -1;
if (SkOSMenu::FindListIndex(evt, "Device Type", &selected)) {
this->setDeviceType((DeviceType)selected);
return true;
}
if (SkOSMenu::FindListIndex(evt, "ColorType", &selected)) {
fColorConfigIndex = selected;
sk_sp<SkColorSpace> colorSpace = nullptr;
switch (gConfig[selected].fColorSpace) {
case kSRGB_OutputColorSpace:
colorSpace = SkColorSpace::MakeSRGB();
break;
case kNarrow_OutputColorSpace:
{
// NarrowGamut RGB (an artifically smaller than sRGB gamut)
SkColorSpacePrimaries primaries ={
0.54f, 0.33f, // Rx, Ry
0.33f, 0.50f, // Gx, Gy
0.25f, 0.20f, // Bx, By
0.3127f, 0.3290f, // Wx, Wy
};
SkMatrix44 narrowGamutRGBMatrix(SkMatrix44::kUninitialized_Constructor);
primaries.toXYZD50(&narrowGamutRGBMatrix);
colorSpace = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
narrowGamutRGBMatrix);
}
break;
case kMonitor_OutputColorSpace:
colorSpace = getMonitorColorSpace();
if (!colorSpace) {
// Fallback for platforms / machines where we can't get a monitor profile
colorSpace = SkColorSpace::MakeSRGB();
}
break;
case kLegacy_OutputColorSpace:
default:
// Do nothing
break;
}
if (kRGBA_F16_SkColorType == gConfig[selected].fColorType) {
SkASSERT(colorSpace);
SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type());
SkColorSpace_XYZ* csXYZ = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
colorSpace = csXYZ->makeLinearGamma();
}
this->setDeviceColorType(gConfig[selected].fColorType, colorSpace);
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Slide Show", nullptr)) {
this->toggleSlideshow();
return true;
}
if (SkOSMenu::FindTriState(evt, "AA", &fAAState) ||
SkOSMenu::FindTriState(evt, "LCD", &fLCDState) ||
SkOSMenu::FindListIndex(evt, "FilterQuality", &fFilterQualityIndex) ||
SkOSMenu::FindTriState(evt, "Subpixel", &fSubpixelState) ||
SkOSMenu::FindListIndex(evt, "Hinting", &fHintingState) ||
SkOSMenu::FindSwitchState(evt, "Clip", &fUseClip) ||
SkOSMenu::FindSwitchState(evt, "Zoomer", &fShowZoomer) ||
SkOSMenu::FindSwitchState(evt, "Magnify", &fMagnify))
{
this->inval(nullptr);
this->updateTitle();
return true;
}
if (SkOSMenu::FindListIndex(evt, "Pixel Geometry", &fPixelGeometryIndex)) {
this->setPixelGeometry(fPixelGeometryIndex);
return true;
}
if (SkOSMenu::FindListIndex(evt, "Tiling", &fTilingMode)) {
if (SampleView::IsSampleView(curr_view(this))) {
((SampleView*)curr_view(this))->onTileSizeChanged(this->tileSize());
}
this->inval(nullptr);
this->updateTitle();
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Flip X", nullptr)) {
fFlipAxis ^= kFlipAxis_X;
this->updateMatrix();
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Flip Y", nullptr)) {
fFlipAxis ^= kFlipAxis_Y;
this->updateMatrix();
return true;
}
if (SkOSMenu::FindAction(evt,"Save to PDF")) {
this->saveToPdf();
return true;
}
return this->INHERITED::onEvent(evt);
}
bool SampleWindow::onQuery(SkEvent* query) {
if (query->isType("get-slide-count")) {
query->setFast32(fSamples.count());
return true;
}
if (query->isType("get-slide-title")) {
SkView* view = (*fSamples[query->getFast32()])();
SkEvent evt(gTitleEvtName);
if (view->doQuery(&evt)) {
query->setString("title", evt.findString(gTitleEvtName));
}
SkSafeUnref(view);
return true;
}
if (query->isType("use-fast-text")) {
SkEvent evt(gFastTextEvtName);
return curr_view(this)->doQuery(&evt);
}
if (query->isType("ignore-window-bitmap")) {
query->setFast32(this->getGrContext() != nullptr);
return true;
}
return this->INHERITED::onQuery(query);
}
DECLARE_bool(portableFonts);
bool SampleWindow::onHandleChar(SkUnichar uni) {
{
SkView* view = curr_view(this);
if (view) {
SkEvent evt(gCharEvtName);
evt.setFast32(uni);
if (view->doQuery(&evt)) {
return true;
}
}
}
int dx = 0xFF;
int dy = 0xFF;
switch (uni) {
case '5': dx = 0; dy = 0; break;
case '8': dx = 0; dy = -1; break;
case '6': dx = 1; dy = 0; break;
case '2': dx = 0; dy = 1; break;
case '4': dx = -1; dy = 0; break;
case '7': dx = -1; dy = -1; break;
case '9': dx = 1; dy = -1; break;
case '3': dx = 1; dy = 1; break;
case '1': dx = -1; dy = 1; break;
default:
break;
}
if (0xFF != dx && 0xFF != dy) {
this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)});
return true;
}
switch (uni) {
case 27: // ESC
gAnimTimer.stop();
if (this->sendAnimatePulse()) {
this->inval(nullptr);
}
break;
case '+':
gSampleWindow->setTiles(gSampleWindow->getTiles() + 1);
this->inval(nullptr);
this->updateTitle();
break;
case '-':
gSampleWindow->setTiles(SkTMax(0, gSampleWindow->getTiles() - 1));
this->inval(nullptr);
this->updateTitle();
break;
case '>':
gSampleWindow->setThreads(gSampleWindow->getThreads() + 1);
this->inval(nullptr);
this->updateTitle();
break;
case '<':
gSampleWindow->setThreads(SkTMax(0, gSampleWindow->getThreads() - 1));
this->inval(nullptr);
this->updateTitle();
break;
case ' ':
gAnimTimer.togglePauseResume();
if (this->sendAnimatePulse()) {
this->inval(nullptr);
}
break;
case '0':
this->resetFPS();
break;
case 'A':
New analytic AA scan converter using delta (I call it DAA for now) DAA is: 1. Much simpler than AAA. SkScan_AAAPath.cpp is about 1700 lines. SkScan_DAAPath.cpp is about 300 lines. The whole DAA CL is only about 800 lines. 2. Much faster than AAA for complicated paths. The speedup applies to GL backend (including ccpr)! Here's the frame time of 'SampleApp --slide Chart' on macbook pro: AAA-raster: 33ms DAA-raster: 21ms AAA-gl: 30ms DAA-gl: 20ms AAA-ccpr: 18ms DAA-ccpr: 12ms My linux desktop doesn't have SSE3 so the speedup is smaller (~25% for Chart). I believe that DAA is so fast that I can enable it for any paths (AAA is not enabled by default for complicated paths because it is slow; hence our older supersampling scan converter is used for stroking on Chart for AAA-xxx config.) 3. The SkCoverageDelta is suitable for threaded backend with out-of-order concurrent scan conversion as commented in the source code. Maybe we can also just send deltas to GPU. 4. Similar to most analytic path renderers, the quality is on the best ground-truth level, unless there are intersections within a pixel. The intersections look good to my eyes although theoretically that could be arbitrary far from the ground truth (see my AAA slides). 5. For simple paths, such as circle, triangle, rrect, etc., DAA is slower than AAA. But DAA is faster than our older supersampling scan converter in most cases. As those simple paths usually don't constitute the bottleneck of a picture (skp or svg), I strongly recommend use DAA. 6. DAA also heavily favors blitMask so it may work quite well with SkRasterPipeline and SkRasterPipelineBlitter. Finally, please check https://skia-review.googlesource.com/c/22420/ which accelerate DAA by specializing blitCoverageDeltas for SkARGB32_Blitter and SkARGB32_Black_Blitter. It brings a little(<5%) speedup. But I couldn't figure out how to reduce the duplicate code so I don't intend to land it. Bug: skia: Change-Id: I3b7ed6a727447922e645b1acb737a506e7c09a4c Reviewed-on: https://skia-review.googlesource.com/19666 Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
2017-07-25 15:26:31 +00:00
if (!gSkUseAnalyticAA) {
gSkUseAnalyticAA = true;
} else if (!gSkForceAnalyticAA && !gSkUseDeltaAA) {
gSkForceAnalyticAA = true;
New analytic AA scan converter using delta (I call it DAA for now) DAA is: 1. Much simpler than AAA. SkScan_AAAPath.cpp is about 1700 lines. SkScan_DAAPath.cpp is about 300 lines. The whole DAA CL is only about 800 lines. 2. Much faster than AAA for complicated paths. The speedup applies to GL backend (including ccpr)! Here's the frame time of 'SampleApp --slide Chart' on macbook pro: AAA-raster: 33ms DAA-raster: 21ms AAA-gl: 30ms DAA-gl: 20ms AAA-ccpr: 18ms DAA-ccpr: 12ms My linux desktop doesn't have SSE3 so the speedup is smaller (~25% for Chart). I believe that DAA is so fast that I can enable it for any paths (AAA is not enabled by default for complicated paths because it is slow; hence our older supersampling scan converter is used for stroking on Chart for AAA-xxx config.) 3. The SkCoverageDelta is suitable for threaded backend with out-of-order concurrent scan conversion as commented in the source code. Maybe we can also just send deltas to GPU. 4. Similar to most analytic path renderers, the quality is on the best ground-truth level, unless there are intersections within a pixel. The intersections look good to my eyes although theoretically that could be arbitrary far from the ground truth (see my AAA slides). 5. For simple paths, such as circle, triangle, rrect, etc., DAA is slower than AAA. But DAA is faster than our older supersampling scan converter in most cases. As those simple paths usually don't constitute the bottleneck of a picture (skp or svg), I strongly recommend use DAA. 6. DAA also heavily favors blitMask so it may work quite well with SkRasterPipeline and SkRasterPipelineBlitter. Finally, please check https://skia-review.googlesource.com/c/22420/ which accelerate DAA by specializing blitCoverageDeltas for SkARGB32_Blitter and SkARGB32_Black_Blitter. It brings a little(<5%) speedup. But I couldn't figure out how to reduce the duplicate code so I don't intend to land it. Bug: skia: Change-Id: I3b7ed6a727447922e645b1acb737a506e7c09a4c Reviewed-on: https://skia-review.googlesource.com/19666 Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
2017-07-25 15:26:31 +00:00
} else if (!gSkUseDeltaAA) {
gSkForceAnalyticAA = false;
New analytic AA scan converter using delta (I call it DAA for now) DAA is: 1. Much simpler than AAA. SkScan_AAAPath.cpp is about 1700 lines. SkScan_DAAPath.cpp is about 300 lines. The whole DAA CL is only about 800 lines. 2. Much faster than AAA for complicated paths. The speedup applies to GL backend (including ccpr)! Here's the frame time of 'SampleApp --slide Chart' on macbook pro: AAA-raster: 33ms DAA-raster: 21ms AAA-gl: 30ms DAA-gl: 20ms AAA-ccpr: 18ms DAA-ccpr: 12ms My linux desktop doesn't have SSE3 so the speedup is smaller (~25% for Chart). I believe that DAA is so fast that I can enable it for any paths (AAA is not enabled by default for complicated paths because it is slow; hence our older supersampling scan converter is used for stroking on Chart for AAA-xxx config.) 3. The SkCoverageDelta is suitable for threaded backend with out-of-order concurrent scan conversion as commented in the source code. Maybe we can also just send deltas to GPU. 4. Similar to most analytic path renderers, the quality is on the best ground-truth level, unless there are intersections within a pixel. The intersections look good to my eyes although theoretically that could be arbitrary far from the ground truth (see my AAA slides). 5. For simple paths, such as circle, triangle, rrect, etc., DAA is slower than AAA. But DAA is faster than our older supersampling scan converter in most cases. As those simple paths usually don't constitute the bottleneck of a picture (skp or svg), I strongly recommend use DAA. 6. DAA also heavily favors blitMask so it may work quite well with SkRasterPipeline and SkRasterPipelineBlitter. Finally, please check https://skia-review.googlesource.com/c/22420/ which accelerate DAA by specializing blitCoverageDeltas for SkARGB32_Blitter and SkARGB32_Black_Blitter. It brings a little(<5%) speedup. But I couldn't figure out how to reduce the duplicate code so I don't intend to land it. Bug: skia: Change-Id: I3b7ed6a727447922e645b1acb737a506e7c09a4c Reviewed-on: https://skia-review.googlesource.com/19666 Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
2017-07-25 15:26:31 +00:00
gSkUseDeltaAA = true;
} else if (!gSkForceDeltaAA) {
gSkForceDeltaAA = true;
} else {
gSkUseAnalyticAA = gSkForceAnalyticAA = gSkUseDeltaAA = gSkForceDeltaAA = false;
}
this->inval(nullptr);
this->updateTitle();
break;
case 'B':
post_event_to_sink(new SkEvent("PictFileView::toggleBBox"), curr_view(this));
// Cannot call updateTitle() synchronously, because the toggleBBox event is still in
// the queue.
post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this);
this->inval(nullptr);
break;
case 'D':
toggleDistanceFieldFonts();
break;
case 'E':
fUseDeferredCanvas = !fUseDeferredCanvas;
this->inval(nullptr);
break;
case 'f':
// only
toggleFPS();
break;
case 'F':
FLAGS_portableFonts ^= true;
this->inval(nullptr);
break;
case 'g':
fRequestGrabImage = true;
this->inval(nullptr);
break;
case 'G':
gShowGMBounds = !gShowGMBounds;
post_event_to_sink(GMSampleView::NewShowSizeEvt(gShowGMBounds),
curr_view(this));
this->inval(nullptr);
break;
case 'i':
this->zoomIn();
break;
case 'o':
this->zoomOut();
break;
case 'r':
fRotate = !fRotate;
this->inval(nullptr);
this->updateTitle();
return true;
case 'R':
gSkForceRasterPipelineBlitter = !gSkForceRasterPipelineBlitter;
this->inval(nullptr);
this->updateTitle();
break;
case 'k':
fPerspAnim = !fPerspAnim;
this->inval(nullptr);
this->updateTitle();
return true;
case 'K':
fSaveToSKP = true;
this->inval(nullptr);
return true;
case 'M':
fUsePicture = !fUsePicture;
this->inval(nullptr);
this->updateTitle();
return true;
#if SK_SUPPORT_GPU
case 'p':
{
GrContext* grContext = this->getGrContext();
if (grContext) {
size_t cacheBytes;
grContext->getResourceCacheUsage(nullptr, &cacheBytes);
grContext->freeGpuResources();
SkDebugf("Purged %d bytes from the GPU resource cache.\n", cacheBytes);
}
}
return true;
#endif
default:
break;
}
if (fAppMenu->handleKeyEquivalent(uni)|| fSlideMenu->handleKeyEquivalent(uni)) {
this->onUpdateMenu(fAppMenu);
this->onUpdateMenu(fSlideMenu);
return true;
}
return this->INHERITED::onHandleChar(uni);
}
void SampleWindow::setDeviceType(DeviceType type) {
if (type == fDeviceType)
return;
fDevManager->tearDownBackend(this);
fDeviceType = type;
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::setDeviceColorType(SkColorType ct, sk_sp<SkColorSpace> cs) {
this->setColorType(ct, std::move(cs));
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::toggleSlideshow() {
fAnimating = !fAnimating;
this->postAnimatingEvent();
this->updateTitle();
}
void SampleWindow::toggleRendering() {
this->setDeviceType(cycle_devicetype(fDeviceType));
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::toggleFPS() {
fMeasureFPS = !fMeasureFPS;
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::resetFPS() {
fCumulativeFPS_Time = 0;
fCumulativeFPS_Count = 0;
}
void SampleWindow::toggleDistanceFieldFonts() {
SkSurfaceProps props = this->getSurfaceProps();
uint32_t flags = props.flags() ^ SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
this->setSurfaceProps(SkSurfaceProps(flags, props.pixelGeometry()));
// reset backend
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::setPixelGeometry(int pixelGeometryIndex) {
const SkSurfaceProps& oldProps = this->getSurfaceProps();
SkSurfaceProps newProps(oldProps.flags(), SkSurfaceProps::kLegacyFontHost_InitType);
if (pixelGeometryIndex > 0) {
newProps = SkSurfaceProps(oldProps.flags(),
gPixelGeometryStates[pixelGeometryIndex].pixelGeometry);
}
this->setSurfaceProps(newProps);
// reset backend
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
#include "SkDumpCanvas.h"
bool SampleWindow::onHandleKey(SkKey key) {
{
SkView* view = curr_view(this);
if (view) {
SkEvent evt(gKeyEvtName);
evt.setFast32(key);
if (view->doQuery(&evt)) {
return true;
}
}
}
int dx = 0xFF;
int dy = 0xFF;
switch (key) {
case kRight_SkKey:
if (this->nextSample()) {
return true;
}
break;
case kLeft_SkKey:
if (this->previousSample()) {
return true;
}
return true;
case kUp_SkKey:
this->changeZoomLevel(1.f / 32.f);
return true;
case kDown_SkKey:
this->changeZoomLevel(-1.f / 32.f);
return true;
case kOK_SkKey: {
SkString title;
if (curr_title(this, &title)) {
writeTitleToPrefs(title.c_str());
}
return true;
}
case kBack_SkKey:
this->showOverview();
return true;
case k5_SkKey: dx = 0; dy = 0; break;
case k8_SkKey: dx = 0; dy = -1; break;
case k6_SkKey: dx = 1; dy = 0; break;
case k2_SkKey: dx = 0; dy = 1; break;
case k4_SkKey: dx = -1; dy = 0; break;
case k7_SkKey: dx = -1; dy = -1; break;
case k9_SkKey: dx = 1; dy = -1; break;
case k3_SkKey: dx = 1; dy = 1; break;
case k1_SkKey: dx = -1; dy = 1; break;
default:
break;
}
if (0xFF != dx && 0xFF != dy) {
this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)});
return true;
}
return this->INHERITED::onHandleKey(key);
}
///////////////////////////////////////////////////////////////////////////////
static const char gGestureClickType[] = "GestureClickType";
bool SampleWindow::onDispatchClick(int x, int y, Click::State state,
void* owner, unsigned modi) {
if (Click::kMoved_State == state) {
updatePointer(x, y);
}
int w = SkScalarRoundToInt(this->width());
int h = SkScalarRoundToInt(this->height());
// check for the resize-box
if (w - x < 16 && h - y < 16) {
return false; // let the OS handle the click
}
else if (fMagnify) {
//it's only necessary to update the drawing if there's a click
this->inval(nullptr);
return false; //prevent dragging while magnify is enabled
} else {
// capture control+option, and trigger debugger
if ((modi & kControl_SkModifierKey) && (modi & kOption_SkModifierKey)) {
if (Click::kDown_State == state) {
SkEvent evt("debug-hit-test");
evt.setS32("debug-hit-test-x", x);
evt.setS32("debug-hit-test-y", y);
curr_view(this)->doEvent(evt);
}
return true;
} else {
return this->INHERITED::onDispatchClick(x, y, state, owner, modi);
}
}
}
class GestureClick : public SkView::Click {
public:
GestureClick(SkView* target) : SkView::Click(target) {
this->setType(gGestureClickType);
}
static bool IsGesture(Click* click) {
return click->isType(gGestureClickType);
}
};
SkView::Click* SampleWindow::onFindClickHandler(SkScalar x, SkScalar y,
unsigned modi) {
return new GestureClick(this);
}
bool SampleWindow::onClick(Click* click) {
if (GestureClick::IsGesture(click)) {
float x = static_cast<float>(click->fICurr.fX);
float y = static_cast<float>(click->fICurr.fY);
switch (click->fState) {
case SkView::Click::kDown_State:
fGesture.touchBegin(click->fOwner, x, y);
break;
case SkView::Click::kMoved_State:
fGesture.touchMoved(click->fOwner, x, y);
this->updateMatrix();
break;
case SkView::Click::kUp_State:
fGesture.touchEnd(click->fOwner);
this->updateMatrix();
break;
}
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
void SampleWindow::loadView(SkView* view) {
SkView::F2BIter iter(this);
SkView* prev = iter.next();
if (prev) {
prev->detachFromParent();
}
view->setVisibleP(true);
view->setClipToBounds(false);
this->attachChildToFront(view)->unref();
view->setSize(this->width(), this->height());
//repopulate the slide menu when a view is loaded
fSlideMenu->reset();
this->onUpdateMenu(fSlideMenu);
this->updateTitle();
}
static const char* gDeviceTypePrefix[] = {
"raster: ",
#if SK_SUPPORT_GPU
"opengl: ",
#if SK_ANGLE
"angle: ",
#endif // SK_ANGLE
#endif // SK_SUPPORT_GPU
};
static_assert(SK_ARRAY_COUNT(gDeviceTypePrefix) == SampleWindow::kDeviceTypeCnt,
"array_size_mismatch");
static const char* trystate_str(SkOSMenu::TriState state,
const char trueStr[], const char falseStr[]) {
if (SkOSMenu::kOnState == state) {
return trueStr;
} else if (SkOSMenu::kOffState == state) {
return falseStr;
}
return nullptr;
}
bool SampleWindow::getRawTitle(SkString* title) {
return curr_title(this, title);
}
void SampleWindow::updateTitle() {
SkString title;
if (!this->getRawTitle(&title)) {
title.set("<unknown>");
}
title.prepend(gDeviceTypePrefix[fDeviceType]);
if (gSampleWindow->getTiles()) {
title.prependf("[T%d/%d] ", gSampleWindow->getTiles(), gSampleWindow->getThreads());
}
New analytic AA scan converter using delta (I call it DAA for now) DAA is: 1. Much simpler than AAA. SkScan_AAAPath.cpp is about 1700 lines. SkScan_DAAPath.cpp is about 300 lines. The whole DAA CL is only about 800 lines. 2. Much faster than AAA for complicated paths. The speedup applies to GL backend (including ccpr)! Here's the frame time of 'SampleApp --slide Chart' on macbook pro: AAA-raster: 33ms DAA-raster: 21ms AAA-gl: 30ms DAA-gl: 20ms AAA-ccpr: 18ms DAA-ccpr: 12ms My linux desktop doesn't have SSE3 so the speedup is smaller (~25% for Chart). I believe that DAA is so fast that I can enable it for any paths (AAA is not enabled by default for complicated paths because it is slow; hence our older supersampling scan converter is used for stroking on Chart for AAA-xxx config.) 3. The SkCoverageDelta is suitable for threaded backend with out-of-order concurrent scan conversion as commented in the source code. Maybe we can also just send deltas to GPU. 4. Similar to most analytic path renderers, the quality is on the best ground-truth level, unless there are intersections within a pixel. The intersections look good to my eyes although theoretically that could be arbitrary far from the ground truth (see my AAA slides). 5. For simple paths, such as circle, triangle, rrect, etc., DAA is slower than AAA. But DAA is faster than our older supersampling scan converter in most cases. As those simple paths usually don't constitute the bottleneck of a picture (skp or svg), I strongly recommend use DAA. 6. DAA also heavily favors blitMask so it may work quite well with SkRasterPipeline and SkRasterPipelineBlitter. Finally, please check https://skia-review.googlesource.com/c/22420/ which accelerate DAA by specializing blitCoverageDeltas for SkARGB32_Blitter and SkARGB32_Black_Blitter. It brings a little(<5%) speedup. But I couldn't figure out how to reduce the duplicate code so I don't intend to land it. Bug: skia: Change-Id: I3b7ed6a727447922e645b1acb737a506e7c09a4c Reviewed-on: https://skia-review.googlesource.com/19666 Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
2017-07-25 15:26:31 +00:00
if (gSkUseDeltaAA) {
if (gSkForceDeltaAA) {
title.prepend("<FDAA> ");
} else {
title.prepend("<DAA> ");
}
} else if (gSkUseAnalyticAA) {
if (gSkForceAnalyticAA) {
title.prepend("<FAAA> ");
} else {
title.prepend("<AAA> ");
}
}
if (fTilingMode != kNo_Tiling) {
title.prependf("<T: %s> ", gTilingInfo[fTilingMode].label);
}
if (fAnimating) {
title.prepend("<A> ");
}
if (fRotate) {
title.prepend("<R> ");
}
if (fPerspAnim) {
title.prepend("<K> ");
}
if (this->getSurfaceProps().flags() & SkSurfaceProps::kUseDeviceIndependentFonts_Flag) {
title.prepend("<DIF> ");
}
if (fUsePicture) {
title.prepend("<P> ");
}
if (fUseDeferredCanvas) {
title.prepend("<E> ");
}
if (gSkForceRasterPipelineBlitter) {
title.prepend("<R> ");
}
title.prepend(trystate_str(fLCDState, "LCD ", "lcd "));
title.prepend(trystate_str(fAAState, "AA ", "aa "));
title.prepend(gFilterQualityStates[fFilterQualityIndex].fLabel);
title.prepend(trystate_str(fSubpixelState, "S ", "s "));
title.prepend(fFlipAxis & kFlipAxis_X ? "X " : nullptr);
title.prepend(fFlipAxis & kFlipAxis_Y ? "Y " : nullptr);
title.prepend(gHintingStates[fHintingState].label);
title.prepend(gPixelGeometryStates[fPixelGeometryIndex].label);
if (fOffset.fX || fOffset.fY) {
title.prependf("(%.2f, %.2f) ", SkScalarToFloat(fOffset.fX), SkScalarToFloat(fOffset.fY));
}
if (fZoomLevel) {
title.prependf("{%.2f} ", SkScalarToFloat(fZoomLevel));
}
if (fMeasureFPS) {
title.appendf(" %8.4f ms", fMeasureFPS_Time / (float)FPS_REPEAT_COUNT);
title.appendf(" -> %4.4f ms", fCumulativeFPS_Time / (float)SkTMax(1, fCumulativeFPS_Count));
}
#if SK_SUPPORT_GPU
if (IsGpuDeviceType(fDeviceType) &&
fDevManager &&
fDevManager->numColorSamples() > 0) {
title.appendf(" [MSAA: %d]",
fDevManager->numColorSamples());
}
#endif
title.appendf(" %s", gConfig[fColorConfigIndex].fName);
if (fDevManager && fDevManager->getColorBits() > 24) {
title.appendf(" %d bpc", fDevManager->getColorBits());
}
this->setTitle(title.c_str());
}
void SampleWindow::onSizeChange() {
this->INHERITED::onSizeChange();
SkView::F2BIter iter(this);
SkView* view = iter.next();
view->setSize(this->width(), this->height());
// rebuild our clippath
{
const SkScalar W = this->width();
const SkScalar H = this->height();
fClipPath.reset();
#if 0
for (SkScalar y = SK_Scalar1; y < H; y += SkIntToScalar(32)) {
SkRect r;
r.set(SK_Scalar1, y, SkIntToScalar(30), y + SkIntToScalar(30));
for (; r.fLeft < W; r.offset(SkIntToScalar(32), 0))
fClipPath.addRect(r);
}
#else
SkRect r;
r.set(0, 0, W, H);
fClipPath.addRect(r, SkPath::kCCW_Direction);
r.set(W/4, H/4, W*3/4, H*3/4);
fClipPath.addRect(r, SkPath::kCW_Direction);
#endif
}
fZoomCenterX = SkScalarHalf(this->width());
fZoomCenterY = SkScalarHalf(this->height());
#ifdef SK_BUILD_FOR_ANDROID
// FIXME: The first draw after a size change does not work on Android, so
// we post an invalidate.
this->postInvalDelay();
#endif
this->updateTitle(); // to refresh our config
fDevManager->windowSizeChanged(this);
if (fTilingMode != kNo_Tiling && SampleView::IsSampleView(view)) {
((SampleView*)view)->onTileSizeChanged(this->tileSize());
}
}
///////////////////////////////////////////////////////////////////////////////
template <typename T> void SkTBSort(T array[], int count) {
for (int i = 1; i < count - 1; i++) {
bool didSwap = false;
for (int j = count - 1; j > i; --j) {
if (array[j] < array[j-1]) {
T tmp(array[j-1]);
array[j-1] = array[j];
array[j] = tmp;
didSwap = true;
}
}
if (!didSwap) {
break;
}
}
for (int k = 0; k < count - 1; k++) {
SkASSERT(!(array[k+1] < array[k]));
}
}
#include "SkRandom.h"
static void rand_rect(SkIRect* rect, SkRandom& rand) {
int bits = 8;
int shift = 32 - bits;
rect->set(rand.nextU() >> shift, rand.nextU() >> shift,
rand.nextU() >> shift, rand.nextU() >> shift);
rect->sort();
}
static void dumpRect(const SkIRect& r) {
SkDebugf(" { %d, %d, %d, %d },\n",
r.fLeft, r.fTop,
r.fRight, r.fBottom);
}
static void test_rects(const SkIRect rect[], int count) {
SkRegion rgn0, rgn1;
for (int i = 0; i < count; i++) {
rgn0.op(rect[i], SkRegion::kUnion_Op);
// dumpRect(rect[i]);
}
rgn1.setRects(rect, count);
if (rgn0 != rgn1) {
SkDebugf("\n");
for (int i = 0; i < count; i++) {
dumpRect(rect[i]);
}
SkDebugf("\n");
}
}
static void test() {
size_t i;
const SkIRect r0[] = {
{ 0, 0, 1, 1 },
{ 2, 2, 3, 3 },
};
const SkIRect r1[] = {
{ 0, 0, 1, 3 },
{ 1, 1, 2, 2 },
{ 2, 0, 3, 3 },
};
const SkIRect r2[] = {
{ 0, 0, 1, 2 },
{ 2, 1, 3, 3 },
{ 4, 0, 5, 1 },
{ 6, 0, 7, 4 },
};
static const struct {
const SkIRect* fRects;
int fCount;
} gRecs[] = {
{ r0, SK_ARRAY_COUNT(r0) },
{ r1, SK_ARRAY_COUNT(r1) },
{ r2, SK_ARRAY_COUNT(r2) },
};
for (i = 0; i < SK_ARRAY_COUNT(gRecs); i++) {
test_rects(gRecs[i].fRects, gRecs[i].fCount);
}
SkRandom rand;
for (i = 0; i < 10000; i++) {
SkRegion rgn0, rgn1;
const int N = 8;
SkIRect rect[N];
for (int j = 0; j < N; j++) {
rand_rect(&rect[j], rand);
}
test_rects(rect, N);
}
}
// FIXME: this should be in a header
SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv);
SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv) {
if (false) { // avoid bit rot, suppress warning
test();
}
return new SampleWindow(hwnd, argc, argv, nullptr);
}
// FIXME: this should be in a header
void get_preferred_size(int* x, int* y, int* width, int* height);
void get_preferred_size(int* x, int* y, int* width, int* height) {
*x = 10;
*y = 50;
*width = 640;
*height = 480;
}
#ifdef SK_BUILD_FOR_IOS
#include "SkApplication.h"
IOS_launch_type set_cmd_line_args(int , char *[], const char* resourceDir) {
SetResourcePath(resourceDir);
return kApplication__iOSLaunchType;
}
#endif
void application_init() {
// setenv("ANDROID_ROOT", "../../../data", 0);
#ifdef SK_BUILD_FOR_MAC
setenv("ANDROID_ROOT", "/android/device/data", 0);
#endif
SkGraphics::Init();
SkEvent::Init();
}
void application_term() {
SkEvent::Term();
}