Continuing fixes for ceil and floor functions not to raise the
"inexact" exception, this patch fixes the x86_64 SSE4.1 versions. The
roundss / roundsd instructions take an immediate operand that
determines the rounding mode and whether to raise "inexact"; this just
needs bit 3 set to disable "inexact", which this patch does.
Remark: we don't have an SSE4.1 version of trunc / truncf (using this
instruction with operand 11); I'd expect one to make sense, but of
course it should be benchmarked against the existing C code. I'll
file a bug in Bugzilla for the lack of such a version.
Tested for x86_64.
[BZ #15479]
* sysdeps/x86_64/fpu/multiarch/s_ceil.S (__ceil_sse41): Set bit 3
of immediate operand to rounding instruction.
* sysdeps/x86_64/fpu/multiarch/s_ceilf.S (__ceilf_sse41):
Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floor.S (__floor_sse41):
Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floorf.S (__floorf_sse41):
Likewise.
When --enable-bind-now is used to configure glibc build, we can avoid
an extra branch to the PLT entry by using indirect branch via the GOT
slot instead, which is similar to the first instructuon in the PLT
entry. Changes in the shared library sizes in text sections:
Shared library Before (bytes) After (bytes)
libm.so 1060813 1060797
libmvec.so 160881 160805
libpthread.so 94992 94984
librt.so 25064 25048
* config.h.in (BIND_NOW): New.
* configure.ac (BIND_NOW): New. Defined for --enable-bind-now.
* configure: Regenerated.
* sysdeps/x86_64/sysdep.h (JUMPTARGET)[BIND_NOW]: Defined to
indirect branch via the GOT slot.
X86-64 memset-vec-unaligned-erms.S aligns many jump targets, which
increases code sizes, but not necessarily improve performance. As
memset benchtest data of align vs no align on various Intel and AMD
processors
https://sourceware.org/bugzilla/attachment.cgi?id=9277
shows that aligning jump targets isn't necessary.
[BZ #20115]
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S (__memset):
Remove alignments on jump targets.
In static executable, since init_cpu_features is called early from
__libc_start_main, there is no need to call it again in dl_platform_init.
[BZ #20072]
* sysdeps/i386/dl-machine.h (dl_platform_init): Call
init_cpu_features only if SHARED is defined.
* sysdeps/x86_64/dl-machine.h (dl_platform_init): Likewise.
Merge x86 ifunc-defines.sym with x86 cpu-features-offsets.sym. Remove
x86 ifunc-defines.sym and rtld-global-offsets.sym. No code changes on
i686 and x86-64.
* sysdeps/i386/i686/multiarch/Makefile (gen-as-const-headers):
Remove ifunc-defines.sym.
* sysdeps/x86_64/multiarch/Makefile (gen-as-const-headers):
Likewise.
* sysdeps/i386/i686/multiarch/ifunc-defines.sym: Removed.
* sysdeps/x86/rtld-global-offsets.sym: Likewise.
* sysdeps/x86_64/multiarch/ifunc-defines.sym: Likewise.
* sysdeps/x86/Makefile (gen-as-const-headers): Remove
rtld-global-offsets.sym.
* sysdeps/x86_64/multiarch/ifunc-defines.sym: Merged with ...
* sysdeps/x86/cpu-features-offsets.sym: This.
* sysdeps/x86/cpu-features.h: Include <cpu-features-offsets.h>
instead of <ifunc-defines.h> and <rtld-global-offsets.h>.
Move sysdeps/x86_64/cacheinfo.c to sysdeps/x86. No code changes on x86
and x86_64.
* sysdeps/i386/cacheinfo.c: Include <sysdeps/x86/cacheinfo.c>
instead of <sysdeps/x86_64/cacheinfo.c>.
* sysdeps/x86_64/cacheinfo.c: Moved to ...
* sysdeps/x86/cacheinfo.c: Here.
The large memcpy micro benchmark in glibc shows that there is a
regression with large data on Haswell machine. non-temporal store in
memcpy on large data can improve performance significantly. This
patch adds a threshold to use non temporal store which is 6 times of
shared cache size. When size is above the threshold, non temporal
store will be used, but avoid non-temporal store if there is overlap
between destination and source since destination may be in cache when
source is loaded.
For size below 8 vector register width, we load all data into registers
and store them together. Only forward and backward loops, which move 4
vector registers at a time, are used to support overlapping addresses.
For forward loop, we load the last 4 vector register width of data and
the first vector register width of data into vector registers before the
loop and store them after the loop. For backward loop, we load the first
4 vector register width of data and the last vector register width of
data into vector registers before the loop and store them after the loop.
[BZ #19928]
* sysdeps/x86_64/cacheinfo.c (__x86_shared_non_temporal_threshold):
New.
(init_cacheinfo): Set __x86_shared_non_temporal_threshold to 6
times of shared cache size.
* sysdeps/x86_64/multiarch/memmove-avx-unaligned-erms.S
(VMOVNT): New.
* sysdeps/x86_64/multiarch/memmove-avx512-unaligned-erms.S
(VMOVNT): Likewise.
* sysdeps/x86_64/multiarch/memmove-sse2-unaligned-erms.S
(VMOVNT): Likewise.
(VMOVU): Changed to movups for smaller code sizes.
(VMOVA): Changed to movaps for smaller code sizes.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S: Update
comments.
(PREFETCH): New.
(PREFETCH_SIZE): Likewise.
(PREFETCHED_LOAD_SIZE): Likewise.
(PREFETCH_ONE_SET): Likewise.
Rewrite to use forward and backward loops, which move 4 vector
registers at a time, to support overlapping addresses and use
non temporal store if size is above the threshold and there is
no overlap between destination and source.
Prepare memmove-vec-unaligned-erms.S to make the SSE2 version as the
default memcpy, mempcpy and memmove.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S
(MEMCPY_SYMBOL): New.
(MEMPCPY_SYMBOL): Likewise.
(MEMMOVE_CHK_SYMBOL): Likewise.
Replace MEMMOVE_SYMBOL with MEMMOVE_CHK_SYMBOL on __mempcpy_chk
symbols. Replace MEMMOVE_SYMBOL with MEMPCPY_SYMBOL on
__mempcpy symbols. Provide alias for __memcpy_chk in libc.a.
Provide alias for memcpy in libc.a and ld.so.
Prepare memset-vec-unaligned-erms.S to make the SSE2 version as the
default memset.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(MEMSET_CHK_SYMBOL): New. Define if not defined.
(__bzero): Check VEC_SIZE == 16 instead of USE_MULTIARCH.
Disabled fro now.
Replace MEMSET_SYMBOL with MEMSET_CHK_SYMBOL on __memset_chk
symbols. Properly check USE_MULTIARCH on __memset symbols.
Since memmove and memset in ld.so don't use IFUNC, don't put SSE2, AVX
and AVX512 memmove and memset in ld.so.
* sysdeps/x86_64/multiarch/memmove-avx-unaligned-erms.S: Skip
if not in libc.
* sysdeps/x86_64/multiarch/memmove-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-avx2-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-avx512-unaligned-erms.S:
Likewise.
__mempcpy_erms and __memmove_erms can't be placed between __memmove_chk
and __memmove it breaks __memmove_chk.
Don't check source == destination first since it is less common.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S:
(__mempcpy_erms, __memmove_erms): Moved before __mempcpy_chk
with unaligned_erms.
(__memmove_erms): Skip if source == destination.
(__memmove_unaligned_erms): Don't check source == destination
first.
Implement x86-64 memset with unaligned store and rep movsb. Support
16-byte, 32-byte and 64-byte vector register sizes. A single file
provides 2 implementations of memset, one with rep stosb and the other
without rep stosb. They share the same codes when size is between 2
times of vector register size and REP_STOSB_THRESHOLD which defaults
to 2KB.
Key features:
1. Use overlapping store to avoid branch.
2. For size <= 4 times of vector register size, fully unroll the loop.
3. For size > 4 times of vector register size, store 4 times of vector
register size at a time.
[BZ #19881]
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
memset-sse2-unaligned-erms, memset-avx2-unaligned-erms and
memset-avx512-unaligned-erms.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Test __memset_chk_sse2_unaligned,
__memset_chk_sse2_unaligned_erms, __memset_chk_avx2_unaligned,
__memset_chk_avx2_unaligned_erms, __memset_chk_avx512_unaligned,
__memset_chk_avx512_unaligned_erms, __memset_sse2_unaligned,
__memset_sse2_unaligned_erms, __memset_erms,
__memset_avx2_unaligned, __memset_avx2_unaligned_erms,
__memset_avx512_unaligned_erms and __memset_avx512_unaligned.
* sysdeps/x86_64/multiarch/memset-avx2-unaligned-erms.S: New
file.
* sysdeps/x86_64/multiarch/memset-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-sse2-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S:
Likewise.
Implement x86-64 memmove with unaligned load/store and rep movsb.
Support 16-byte, 32-byte and 64-byte vector register sizes. When
size <= 8 times of vector register size, there is no check for
address overlap bewteen source and destination. Since overhead for
overlap check is small when size > 8 times of vector register size,
memcpy is an alias of memmove.
A single file provides 2 implementations of memmove, one with rep movsb
and the other without rep movsb. They share the same codes when size is
between 2 times of vector register size and REP_MOVSB_THRESHOLD which
is 2KB for 16-byte vector register size and scaled up by large vector
register size.
Key features:
1. Use overlapping load and store to avoid branch.
2. For size <= 8 times of vector register size, load all sources into
registers and store them together.
3. If there is no address overlap bewteen source and destination, copy
from both ends with 4 times of vector register size at a time.
4. If address of destination > address of source, backward copy 8 times
of vector register size at a time.
5. Otherwise, forward copy 8 times of vector register size at a time.
6. Use rep movsb only for forward copy. Avoid slow backward rep movsb
by fallbacking to backward copy 8 times of vector register size at a
time.
7. Skip when address of destination == address of source.
[BZ #19776]
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
memmove-sse2-unaligned-erms, memmove-avx-unaligned-erms and
memmove-avx512-unaligned-erms.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Test
__memmove_chk_avx512_unaligned_2,
__memmove_chk_avx512_unaligned_erms,
__memmove_chk_avx_unaligned_2, __memmove_chk_avx_unaligned_erms,
__memmove_chk_sse2_unaligned_2,
__memmove_chk_sse2_unaligned_erms, __memmove_avx_unaligned_2,
__memmove_avx_unaligned_erms, __memmove_avx512_unaligned_2,
__memmove_avx512_unaligned_erms, __memmove_erms,
__memmove_sse2_unaligned_2, __memmove_sse2_unaligned_erms,
__memcpy_chk_avx512_unaligned_2,
__memcpy_chk_avx512_unaligned_erms,
__memcpy_chk_avx_unaligned_2, __memcpy_chk_avx_unaligned_erms,
__memcpy_chk_sse2_unaligned_2, __memcpy_chk_sse2_unaligned_erms,
__memcpy_avx_unaligned_2, __memcpy_avx_unaligned_erms,
__memcpy_avx512_unaligned_2, __memcpy_avx512_unaligned_erms,
__memcpy_sse2_unaligned_2, __memcpy_sse2_unaligned_erms,
__memcpy_erms, __mempcpy_chk_avx512_unaligned_2,
__mempcpy_chk_avx512_unaligned_erms,
__mempcpy_chk_avx_unaligned_2, __mempcpy_chk_avx_unaligned_erms,
__mempcpy_chk_sse2_unaligned_2, __mempcpy_chk_sse2_unaligned_erms,
__mempcpy_avx512_unaligned_2, __mempcpy_avx512_unaligned_erms,
__mempcpy_avx_unaligned_2, __mempcpy_avx_unaligned_erms,
__mempcpy_sse2_unaligned_2, __mempcpy_sse2_unaligned_erms and
__mempcpy_erms.
* sysdeps/x86_64/multiarch/memmove-avx-unaligned-erms.S: New
file.
* sysdeps/x86_64/multiarch/memmove-avx512-unaligned-erms.S:
Likwise.
* sysdeps/x86_64/multiarch/memmove-sse2-unaligned-erms.S:
Likwise.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S:
Likwise.
On AMD processors, memcpy optimized with unaligned SSE load is
slower than emcpy optimized with aligned SSSE3 while other string
functions are faster with unaligned SSE load. A feature bit,
Fast_Unaligned_Copy, is added to select memcpy optimized with
unaligned SSE load.
[BZ #19583]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set
Fast_Unaligned_Copy with Fast_Unaligned_Load for Intel
processors. Set Fast_Copy_Backward for AMD Excavator
processors.
* sysdeps/x86/cpu-features.h (bit_arch_Fast_Unaligned_Copy):
New.
(index_arch_Fast_Unaligned_Copy): Likewise.
* sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Check
Fast_Unaligned_Copy instead of Fast_Unaligned_Load.
Bug 19848 reports cases where powl on x86 / x86_64 has error
accumulation, for small integer exponents, larger than permitted by
glibc's accuracy goals, at least in some rounding modes. This patch
further restricts the exponent range for which the
small-integer-exponent logic is used to limit the possible error
accumulation.
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #19848]
* sysdeps/i386/fpu/e_powl.S (p3): Rename to p2 and change value
from 8 to 4.
(__ieee754_powl): Compare integer exponent against 4 not 8.
* sysdeps/x86_64/fpu/e_powl.S (p3): Rename to p2 and change value
from 8 to 4.
(__ieee754_powl): Compare integer exponent against 4 not 8.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Since we have loaded address of PREINIT_FUNCTION into %rax, we can
avoid extra branch to PLT slot.
[BZ #19745]
* sysdeps/x86_64/crti.S (_init): Replace PREINIT_FUNCTION@PLT
with *%rax in call.
Since __libc_start_main is called very early, lazy binding isn't relevant
here. Use indirect branch via GOT to avoid extra branch to PLT slot.
[BZ #19745]
* sysdeps/x86_64/start.S (_start): __libc_start_main@PLT
with *__libc_start_main@GOTPCREL(%rip) in call.
Chek Fast_Unaligned_Load, instead of Slow_BSF, and also check for
Fast_Copy_Backward to enable __memcpy_ssse3_back. Existing selection
order is updated with following selection order:
1. __memcpy_avx_unaligned if AVX_Fast_Unaligned_Load bit is set.
2. __memcpy_sse2_unaligned if Fast_Unaligned_Load bit is set.
3. __memcpy_sse2 if SSSE3 isn't available.
4. __memcpy_ssse3_back if Fast_Copy_Backward bit it set.
5. __memcpy_ssse3
[BZ #18880]
* sysdeps/x86_64/multiarch/memcpy.S: Check Fast_Unaligned_Load,
instead of Slow_BSF, and also check for Fast_Copy_Backward to
enable __memcpy_ssse3_back.
No need to compile x86_64 _mcount.S with -pg. We can just copy the
normal static object.
* gmon/Makefile (noprof): Add $(sysdep_noprof).
* sysdeps/x86_64/Makefile (sysdep_noprof): Add _mcount.
Since __mcount_internal and __sigjmp_save are internal to x86-64 libc.so:
3532: 0000000000104530 289 FUNC LOCAL DEFAULT 13 __mcount_internal
3391: 0000000000034170 38 FUNC LOCAL DEFAULT 13 __sigjmp_save
they can be called directly without PLT.
* sysdeps/x86_64/_mcount.S (C_LABEL(_mcount)): Call
__mcount_internal directly.
(C_LABEL(__fentry__)): Likewise.
* sysdeps/x86_64/setjmp.S __sigsetjmp): Call __sigjmp_save
directly.
Due to GCC bug:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
__tls_get_addr may be called with 8-byte stack alignment. Although
this bug has been fixed in GCC 4.9.4, 5.3 and 6, we can't assume
that stack will be always aligned at 16 bytes. Since SSE optimized
memory/string functions with aligned SSE register load and store are
used in the dynamic linker, we must set DL_RUNTIME_UNALIGNED_VEC_SIZE
to 8 so that _dl_runtime_resolve_sse will align the stack before
calling _dl_fixup:
Dump of assembler code for function _dl_runtime_resolve_sse:
0x00007ffff7deea90 <+0>: push %rbx
0x00007ffff7deea91 <+1>: mov %rsp,%rbx
0x00007ffff7deea94 <+4>: and $0xfffffffffffffff0,%rsp
^^^^^^^^^^^ Align stack to 16 bytes
0x00007ffff7deea98 <+8>: sub $0x100,%rsp
0x00007ffff7deea9f <+15>: mov %rax,0xc0(%rsp)
0x00007ffff7deeaa7 <+23>: mov %rcx,0xc8(%rsp)
0x00007ffff7deeaaf <+31>: mov %rdx,0xd0(%rsp)
0x00007ffff7deeab7 <+39>: mov %rsi,0xd8(%rsp)
0x00007ffff7deeabf <+47>: mov %rdi,0xe0(%rsp)
0x00007ffff7deeac7 <+55>: mov %r8,0xe8(%rsp)
0x00007ffff7deeacf <+63>: mov %r9,0xf0(%rsp)
0x00007ffff7deead7 <+71>: movaps %xmm0,(%rsp)
0x00007ffff7deeadb <+75>: movaps %xmm1,0x10(%rsp)
0x00007ffff7deeae0 <+80>: movaps %xmm2,0x20(%rsp)
0x00007ffff7deeae5 <+85>: movaps %xmm3,0x30(%rsp)
0x00007ffff7deeaea <+90>: movaps %xmm4,0x40(%rsp)
0x00007ffff7deeaef <+95>: movaps %xmm5,0x50(%rsp)
0x00007ffff7deeaf4 <+100>: movaps %xmm6,0x60(%rsp)
0x00007ffff7deeaf9 <+105>: movaps %xmm7,0x70(%rsp)
[BZ #19679]
* sysdeps/x86_64/dl-trampoline.S (DL_RUNIME_UNALIGNED_VEC_SIZE):
Renamed to ...
(DL_RUNTIME_UNALIGNED_VEC_SIZE): This. Set to 8.
(DL_RUNIME_RESOLVE_REALIGN_STACK): Renamed to ...
(DL_RUNTIME_RESOLVE_REALIGN_STACK): This. Updated.
(DL_RUNIME_RESOLVE_REALIGN_STACK): Renamed to ...
(DL_RUNTIME_RESOLVE_REALIGN_STACK): This.
* sysdeps/x86_64/dl-trampoline.h
(DL_RUNIME_RESOLVE_REALIGN_STACK): Renamed to ...
(DL_RUNTIME_RESOLVE_REALIGN_STACK): This.
Since libmvec_nonshared.a may be linked into shared objects, ALIAS_IMPL
should use PIC relocation.
[BZ #19590]
* sysdeps/x86_64/fpu/svml_finite_alias.S (ALIAS_IMPL): Use PIC
relocation.
It shows improvement up to 28% over AVX2 memset (performance results
attached at <https://sourceware.org/ml/libc-alpha/2015-12/msg00052.html>).
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S: New file.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Added new file.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c: Added new tests.
* sysdeps/x86_64/multiarch/memset.S: Added new IFUNC branch.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
* sysdeps/x86/cpu-features.h (bit_Prefer_No_VZEROUPPER,
index_Prefer_No_VZEROUPPER): New.
* sysdeps/x86/cpu-features.c (init_cpu_features): Set the
Prefer_No_VZEROUPPER for Knights Landing.
Old workaround based on assembly aliases can lead to link fail (bug 19058).
This patch makes workaround in another way to avoid it.
[BZ #19058]
* math/Makefile ($(inst_libdir)/libm.so): Added libmvec_nonshared.a
to AS_NEEDED.
* sysdeps/x86/fpu/bits/math-vector.h: Removed code with old workaround.
* sysdeps/x86_64/fpu/Makefile (libmvec-support,
libmvec-static-only-routines): Added new file.
* sysdeps/x86_64/fpu/svml_finite_alias.S: New file.
For the -ffinite-math-only versions of various x86_64 and x86 log*
functions, a zero result from log* (1) is returned with incorrect sign
in round-downward mode. This patch fixes this in a similar way to the
previous fixes for the non-*_finite versions of the functions.
Tested for x86_64 and x86 (including an i586 build), together with a
patch that will be applied separately to enable the main libm-test.inc
tests for the finite-math-only functions.
[BZ #19213]
* sysdeps/i386/fpu/e_log.S (__log_finite): Ensure +0 is always
returned for argument 1.
* sysdeps/i386/fpu/e_logf.S (__logf_finite): Likewise.
* sysdeps/i386/fpu/e_logl.S (__logl_finite): Likewise.
* sysdeps/i386/i686/fpu/e_logl.S (__logl_finite): Likewise.
* sysdeps/x86_64/fpu/e_log10l.S (__log10l_finite): Likewise.
* sysdeps/x86_64/fpu/e_log2l.S (__log2l_finite): Likewise.
* sysdeps/x86_64/fpu/e_logl.S (__logl_finite): Likewise.
There are configure tests for the cpuid.h header for x86 / x86_64.
GCC 4.3 and later install this header, so those tests are obsolete.
This patch removes them.
Tested for x86_64 and x86 (testsuite, and that installed shared
libraries are unchanged by the patch).
* sysdeps/i386/configure.ac (cpuid.h): Do not test for header.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure.ac (cpuid.h): Do not test for header.
* sysdeps/x86_64/configure: Regenerated.
fenv_t should include architecture-specific floating-point modes and
status flags. i386 and x86_64 fesetenv limit which bits they use from
the x87 status and control words, when using saved state, and limit
which parts of the state they set to fixed values, when using
FE_DFL_ENV / FE_NOMASK_ENV. The following should be included but are
excluded in at least some cases: status and masking for the "denormal
operand" exception (which isn't part of FE_ALL_EXCEPT); precision
control (explicitly mentioned in Annex F as something that counts as
part of the floating-point environment); MXCSR FZ and DAZ bits (for
FE_DFL_ENV and FE_NOMASK_ENV). This patch arranges for this extra
state to be handled by fesetenv (and thereby by feupdateenv, which
calls fesetenv).
(Note that glibc functions using floating point are not generally
expected to work correctly with non-default values of this state,
especially precision control, but it is still logically part of the
floating-point environment and should be handled as such by fesetenv.
Changes to the state relating to subnormals ought generally to work
with libm functions when the arguments aren't subnormal and neither
are the expected results; that's a consequence of functions avoiding
spurious internal underflows.)
A question arising from this is whether FE_NOMASK_ENV should or should
not mask the "denormal operand" exception. I decided it should mask
that exception. This is the status quo - previously that exception
could only be unmasked by direct manipulation of control registers
(possibly via <fpu_control.h>). In addition, it means that use of
FE_NOMASK_ENV leaves a floating-point environment the same as could be
obtained by fesetenv (FE_DFL_ENV); feenableexcept (FE_ALL_EXCEPT);,
rather than an environment in which an exception is unmasked that
could only be masked again by using fesetenv with FE_DFL_ENV (or a
previously saved environment) - this exception not being usable with
other <fenv.h> functions because it's outside FE_ALL_EXCEPT.
Tested for x86_64 and x86.
[BZ #16068]
* sysdeps/i386/fpu/fesetenv.c: Include <fpu_control.h>.
(FE_ALL_EXCEPT_X86): New macro.
(__fesetenv): Use FE_ALL_EXCEPT_X86 in most places instead of
FE_ALL_EXCEPT. Ensure precision control is included in
floating-point state. Ensure that FE_DFL_ENV and FE_NOMASK_ENV
handle "denormal operand exception" and clear FZ and DAZ bits.
* sysdeps/x86_64/fpu/fesetenv.c: Include <fpu_control.h>.
(FE_ALL_EXCEPT_X86): New macro.
(__fesetenv): Use FE_ALL_EXCEPT_X86 in most places instead of
FE_ALL_EXCEPT. Ensure precision control is included in
floating-point state. Ensure that FE_DFL_ENV and FE_NOMASK_ENV
handle "denormal operand exception" and clear FZ and DAZ bits.
* sysdeps/x86/fpu/test-fenv-sse-2.c: New file.
* sysdeps/x86/fpu/test-fenv-x87.c: Likewise.
* sysdeps/x86/fpu/Makefile [$(subdir) = math] (tests): Add
test-fenv-x87 and test-fenv-sse-2.
[$(subdir) = math] (CFLAGS-test-fenv-sse-2.c): New variable.
The i386 and x86_64 versions of fesetenv, when called with FE_DFL_ENV
or FE_NOMASK_ENV as argument, do not clear SSE exceptions raised in
MXCSR. These arguments should, like other fenv_t values, represent
the whole of the floating-point state, so such exceptions should be
cleared; this patch adds the required clearing. (Discovered while
working on bug 16068.)
Tested for x86_64 and x86.
[BZ #19181]
* sysdeps/i386/fpu/fesetenv.c (__fesetenv): Clear already-raised
SSE exceptions when argument is FE_DFL_ENV or FE_NOMASK_ENV.
* sysdeps/x86_64/fpu/fesetenv.c (__fesetenv): Likewise.
* math/test-fenv-clear-main.c: New file.
* math/test-fenv-clear.c: Likewise.
* math/Makefile (tests): Add test-fenv-clear.
* sysdeps/x86/fpu/test-fenv-clear-sse.c: New file.
* sysdeps/x86/fpu/Makefile [$(subdir) = math] (tests): Add
test-fenv-clear-sse.
[$(subdir) = math] (CFLAGS-test-fenv-clear-sse.c): New variable.
There are configure tests for the -mavx2 compiler option. AVX2
support was added in GCC 4.7, so these tests are now obsolete; this
patch removes them.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch).
* sysdeps/i386/configure.ac (libc_cv_cc_avx2): Remove configure
test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure.ac (libc_cv_cc_avx2): Remove configure
test.
* sysdeps/x86_64/configure: Regenerated.
* config.h.in (HAVE_AVX2_SUPPORT): Remove #undef.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
memset-avx2 unconditionally instead of conditionally on
[$(config-cflags-avx2) = yes].
* sysdeps/x86_64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list) [HAVE_AVX2_SUPPORT]: Make code
unconditional.
* sysdeps/x86_64/multiarch/memset.S [HAVE_AVX2_SUPPORT]: Likewise.
* sysdeps/x86_64/multiarch/memset_chk.S
[IS_IN (libc) && SHARED && HAVE_AVX2_SUPPORT]: Change conditional
to [IS_IN (libc) && SHARED].
The implementations of nearbyint functions using x87 floating point
(i386 all versions, x86_64 long double only) use the fclex
instruction, which clears any exceptions that were raised before the
function was called. These functions must not clear exceptions that
were raised before they were called.
This patch fixes these functions to save and restore the whole
floating-point environment (fnstenv / fldenv) as the way of avoiding
raising "inexact" (recall that there isn't an x87 instruction for
loading just the status word, so the whole environment has to be saved
and loaded instead - the code already saved and loaded the control
word, which is now obtained from the saved environment after this
patch, to disable traps on "inexact"). In the case of the long double
functions, any "invalid" exception from frndint (applied to a
signaling NaN) needs merging into the saved state; this issue doesn't
apply to the float and double functions because that exception would
have been raised when the argument is loaded, before the environment
is saved.
[BZ #15491]
* sysdeps/i386/fpu/s_nearbyint.S (__nearbyint): Save and restore
floating-point environment instead of clearing all exceptions.
* sysdeps/i386/fpu/s_nearbyintf.S (__nearbyintf): Likewise.
* sysdeps/i386/fpu/s_nearbyintl.S (__nearbyintl): Likewise,
merging in "invalid" exceptions from frndint.
* sysdeps/x86_64/fpu/s_nearbyintl.S (__nearbyintl): Likewise.
* math/test-nearbyint-except.c: New file.
* math/Makefile (tests): Add test-nearbyint-except.
Since x86 _dl_unmap and _dl_make_tlsdesc_dynamic are only used
internally in ld.so, they can be made hidden.
[BZ #19122]
* sysdeps/i386/dl-lookupcfg.h (_dl_unmap): Add attribute_hidden.
* sysdeps/i386/dl-tlsdesc.h (_dl_make_tlsdesc_dynamic):
Likewise.
* sysdeps/x86_64/dl-tlsdesc.h (_dl_make_tlsdesc_dynamic):
Likewise.
* sysdeps/x86_64/dl-lookupcfg.h (_dl_unmap): Likewise.
Linker in binutils 2.26 and newer generate GOT references instead
PLT references when -z now is passed to linker. We need to extend
scripts/localplt.awk to allow PLT or GOT references.
[BZ #19007]
* scripts/localplt.awk: Also allow GOT references.
* sysdeps/unix/sysv/linux/i386/localplt.data: Mark
_Unwind_Find_FDE, calloc, memalign, realloc and __libc_memalign
with "+ REL R_386_GLOB_DAT".
* sysdeps/x86_64/localplt.data: Mark calloc, memalign, realloc
and __libc_memalign with "+ RELA R_X86_64_GLOB_DAT".
When x86-64 assmebler doesn't support AVX512, we should make
_dl_runtime_resolve_avx512/_dl_runtime_profile_avx512 as aliases of
_dl_runtime_resolve_avx/_dl_runtime_profile_avx. Tested on x86-64
using GCC 5.2 with binutils 20151008 and GCC 4.8 with binutils 20130219.
There are no differences in ld.so with binutils 20151008. There are no
unexpected failures with binutils 20130219 and 20151008.
[BZ #19124]
* sysdeps/x86_64/dl-trampoline.S [!HAVE_AVX512_ASM_SUPPORT]
(_dl_runtime_resolve_avx512): Make it a hidden alias of
_dl_runtime_resolve_avx.
(_dl_runtime_profile_avx512): Make it a hidden alias of
_dl_runtime_profile_avx.
The x86_64 versions of lrint/lrintf/ lrintl are aliases for the long
long versions which isn't correct for x32, where exceptions must respect
overflow for 32-bit long. Separate versions of the long functions for
x32 that convert to 32-bit long and raise the right exceptions for that
conversion, while keeping the aliases in the non-x32 case.
Tested on x86_64 and x32. There are no code changes in libm.so on
x86_64.
* sysdeps/x86_64/fpu/s_llrint.S (__lrint): Add alias only if
__ILP32__ isn't defined.
(lrint): Likewise.
* sysdeps/x86_64/fpu/s_llrintf.S (__lrintf): Likewise.
(lrintf): Likewise.
* sysdeps/x86_64/fpu/s_llrintl.S (__lrintl): Likewise.
(lrintl): Likewise.
* sysdeps/x86_64/x32/fpu/s_lrint.S: New file.
* sysdeps/x86_64/x32/fpu/s_lrintf.S: Likewise.
* sysdeps/x86_64/x32/fpu/s_lrintl.S: Likewise.
GCC added support for -mno-vzeroupper in version 4.6. Thus the
configure tests for this support are obsolete, and this patch removes
them.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by this patch).
* sysdeps/i386/configure.ac (libc_cv_cc_novzeroupper): Remove
configure test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure.ac (libc_cv_cc_novzeroupper): Remove
configure test.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/Makefile [$(config-cflags-novzeroupper) = yes]:
Make code unconditional.
The implementation of lround in dbl-64/wordsize-64 as an alias or
wrapper for llround is always incorrect when long is not 64-bit,
because it misses required exceptions in overflow cases, as shown by
my recently added tests. This patch removes that alias / wrapper in
the non-LP64 case, together with the REGISTER_CAST_INT32_TO_INT64
macro, restoring the previous version of lround for dbl-64/wordsize-64
(newly conditioned on !_LP64).
Tested for x86_64, and for mips64 with use of dbl-64/wordsize-64
enabled.
[BZ #19079]
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Restore previous
file, conditioned on [!_LP64].
* sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c
[!_LP64] (__lround): Do not define as function or alias.
[!_LP64] (lround): Likewise.
[!_LP64] (__lroundl): Likewise.
[!_LP64] (lroundl): Likewise.
* sysdeps/tile/sysdep.h (REGISTER_CAST_INT32_TO_INT64): Remove
macro.
* sysdeps/x86_64/x32/sysdep.h (REGISTER_CAST_INT32_TO_INT64):
Likewise.
GCC added support for -msse4 in version 4.3. Thus the configure tests
for it are obsolete, and this patch removes them.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by this patch).
* sysdeps/i386/configure.ac (libc_cv_cc_sse4): Remove configure
test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/i386/i686/multiarch/Makefile
[$(config-cflags-sse4) = yes]: Make code unconditional.
* sysdeps/i386/i686/multiarch/strcspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/i386/i686/multiarch/strspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/x86_64/configure.ac (libc_cv_cc_sse4): Remove configure
test.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/multiarch/Makefile [$(config-cflags-sse4) = yes]:
Make code unconditional.
* sysdeps/x86_64/multiarch/strcspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/x86_64/multiarch/strspn.S [HAVE_SSE4_SUPPORT]: Likewise.
* config.h.in (HAVE_SSE4_SUPPORT): Remove #undef.
This patch improves test coverage of the real libm functions [a-e]*,
ensuring that special cases and ranges of input values of potential
significance (such as close to overflow and underflow thresholds) are
more systematically covered.
This is a followup to
<https://sourceware.org/ml/libc-alpha/2013-12/msg00757.html> which
covered [a-c]* (however, I found more weaknesses in the coverage of
those functions when preparing this patch, hence the additional tests
being added for them here).
Addition of a test for acosh (-qNaN) is temporarily deferred, to be
included as part of a fix for bug 19032 which was discovered in the
course of adding these tests (and which illustrates the use of testing
-qNaN as well as +qNaN as input even to functions for which the sign
of a NaN isn't meant to be significant).
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add more tests of acos, acosh, asin,
atan, atan2, atanh, cbrt, cos, cosh, erf, erfc, exp, exp10, exp2
and expm1.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (acos_test_data): Add more tests.
(asin_test_data): Likewise.
(asinh_test_data): Likewise.
(atan_test_data): Likewise.
(atanh_test_data): Likewise.
(atan2_test_data): Likewise.
(cbrt_test_data): Likewise.
(ceil_test_data): Likewise.
(copysign_test_data): Likewise.
(cos_test_data): Likewise.
(cosh_test_data): Likewise.
(erf_test_data): Likewise.
(erfc_test_data): Likewise.
(exp_test_data): Likewise.
(exp10_test_data): Likewise.
(exp2_test_data): Likewise.
(expm1_test_data): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The flt-32 version of powf can be inaccurate because of bugs in the
extra-precision calculation of (x-1)/(x+1) or (x-1.5)/(x+1.5) as part
of calculating log(x) with extra precision: a constant used (as part
of adding 1 or 1.5 through integer arithmetic) is incorrect, and then
the code fails to mask a computed high part before using it in
arithmetic that relies on s_h*t_h being exactly representable. This
patch fixes these bugs.
Tested for x86_64 and x86. x86_64 ulps for powf removed and
regenerated to reflect reduced ulps from the increased accuracy for
existing tests.
[BZ #18956]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Add 0x00400000
not 0x0040000 for high bit of mantissa. Mask with 0xfffff000 when
extracting high part.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero. This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18825]
* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
New macro.
(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
DBL_NARROW_EVAL, reloading the PIC register as needed.
* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
FLT_NARROW_EVAL. Use separate return path for case when first
argument is NaN.
* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
PIC register.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
underflow for subnormal result.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
math_check_force_underflow_nonneg.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
math_check_force_underflow.
* sysdeps/x86_64/fpu/x86_64-math-asm.h
(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
This patch refactors code in sysdeps/x86_64/fpu that forces underflow
exceptions and closely follows corresponding i386 code to use common
macros in x86_64-math-asm.h for that purpose. This is mainly about
keeping the code similar to the i386 code as far as possible, since
each macro apart from DEFINE_LDBL_MIN ends up used only once. It
would be possible to do a further refactoring to share these macros
between i386 and x86_64 (with i386 using the fcomip / fucomip versions
when building for i686 and above), but I have no immediate plans to do
so.
Tested for x86_64.
* sysdeps/x86_64/fpu/x86_64-math-asm.h: New file.
* sysdeps/x86_64/fpu/e_exp2l.S: Include <x86_64-math-asm.h>.
(ldbl_min): Replace with use of DEFINE_LDBL_MIN.
(__ieee754_exp2l): Use LDBL_CHECK_FORCE_UFLOW_NONNEG_NAN.
* sysdeps/x86_64/fpu/e_expl.S: Include <x86_64-math-asm.h>.
[!USE_AS_EXPM1L] (cmin): Replace with use of DEFINE_LDBL_MIN.
(IEEE754_EXPL): Use LDBL_CHECK_FORCE_UFLOW_NONNEG.
The x86_64 fma4 version of pow fails to disable contraction of
operations other than those explicitly intended to use fma
instructions, so resulting in large ulps errors on processors with
fma4 instructions, as in bug 18104 (165ulp for the test added for that
bug; error originally reported by "blaaa" on #glibc). This patch adds
$(config-cflags-nofma) for e_pow-fma4.c, corresponding to the use for
e_pow.c in sysdeps/ieee754/dbl-64/Makefile.
Tested for x86_64 on a processor with fma4.
[BZ #19003]
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma4.c): Add
$(config-cflags-nofma).
As noted in bug 6803, scalbn fails to set errno on overflow and
underflow. This patch fixes this by making scalbn an alias of ldexp,
which has exactly the same semantics (for floating-point types with
radix 2) and already has wrappers that deal with setting errno,
instead of an alias of the internal __scalbn (which ldexp calls).
Notes:
* Where compat symbols were defined for scalbn functions, I didn't
change what they point to (to keep the patch minimal), so such
compat symbols continue to go directly to the non-errno-setting
functions.
* Mike, I didn't do anything with the IA64 versions of these
functions, where I think both the ldexp and scalbn functions already
deal with setting errno. As a cleanup (not needed to fix this bug)
however you might want to make those functions into aliases for
IA64; there is no need for them to be separate function
implementations at all.
* This concludes the fix for bug 6803 since the scalb and scalbln
cases of that bug were fixed some time ago.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6803]
* math/s_ldexp.c (scalbn): Define as weak alias of __ldexp.
[NO_LONG_DOUBLE] (scalbnl): Define as weak alias of __ldexp.
* math/s_ldexpf.c (scalbnf): Define as weak alias of __ldexpf.
* math/s_ldexpl.c (scalbnl): Define as weak alias of __ldexpl.
* sysdeps/i386/fpu/s_scalbn.S (scalbn): Remove alias.
* sysdeps/i386/fpu/s_scalbnf.S (scalbnf): Likewise.
* sysdeps/i386/fpu/s_scalbnl.S (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/s_scalbn.c (scalbn): Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_scalbn.c (scalbn):
Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/flt-32/s_scalbnf.c (scalbnf): Likewise.
* sysdeps/ieee754/ldbl-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (scalbnl): Remove
long_double_symbol calls.
* sysdeps/ieee754/ldbl-64-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-opt/s_ldexpl.c (__ldexpl_2): Define as
strong alias of __ldexpl.
(scalbnl): Define using long_double_symbol.
* sysdeps/m68k/m680x0/fpu/s_scalbn.c (__CONCATX(scalbn,suffix)):
Remove alias.
* sysdeps/sparc/sparc64/soft-fp/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/x86_64/fpu/s_scalbnl.S (scalbnl): Likewise.
* math/libm-test.inc (scalbn_test_data): Add errno expectations.
(scalbln_test_data): Add more errno expectations.
Various exp2 implementations in glibc can miss underflow exceptions
when the scaling down part of the calculation is exact (or, in the x86
case, when the conversion from extended precision to the target
precision is exact). This patch forces the exception in a similar way
to previous fixes.
The x86 exp2f changes may in fact not be needed for this purpose -
it's likely to be the case that no argument of type float has an exp2
result so close to an exact subnormal float value that it equals that
value when rounded to 64 bits (even taking account of variation
between different x86 implementations). However, they are included
for consistency with the changes to exp2 and so as to fix the exp2f
part of bug 18875 by ensuring that excess range and precision is
removed from underflowing return values.
Tested for x86_64, x86 and mips64.
[BZ #16521]
[BZ #18875]
* math/e_exp2l.c (__ieee754_exp2l): Force underflow exception for
small results.
* sysdeps/i386/fpu/e_exp2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_exp2): For small results, force underflow exception and
remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_exp2f): For small results, force underflow exception
and remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* sysdeps/x86_64/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* math/auto-libm-test-in: Add more tests or exp2.
* math/auto-libm-test-out: Regenerated.
This patch adds more libm test inputs found through random test
generation to increase previously known ulps. This particular test
generation was run for mips64, so most of the increased ulps are for
ldbl-128 (float and double having been fairly well covered by such
testing for x86_64), but there's the odd ulps increase for other
formats.
Tested for x86_64, x86 and mips64.
* math/auto-libm-test-in: Add more tests of acos, acosh, asin,
asinh, atan, atan2, atanh, cabs, carg, cos, csqrt, erfc, exp,
exp10, exp2, log, log1p, log2, pow, sin, sincos, sinh, tan and
tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/mips/mips32/libm-test-ulps: Likewise.
* sysdeps/mips/mips64/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/atomic.h to atomic-machine.h to follow that
convention.
This is the only change in this series that needs to change the
filename rather than simply removing a directory level (because both
atomic.h and bits/atomic.h exist at present).
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* sysdeps/aarch64/bits/atomic.h: Move to ...
* sysdeps/aarch64/atomic-machine.h: ...here.
(_AARCH64_BITS_ATOMIC_H): Rename macro to
_AARCH64_ATOMIC_MACHINE_H.
* sysdeps/alpha/bits/atomic.h: Move to ...
* sysdeps/alpha/atomic-machine.h: ...here.
* sysdeps/arm/bits/atomic.h: Move to ...
* sysdeps/arm/atomic-machine.h: ...here. Update comments.
* bits/atomic.h: Move to ...
* sysdeps/generic/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/i386/bits/atomic.h: Move to ...
* sysdeps/i386/atomic-machine.h: ...here.
* sysdeps/ia64/bits/atomic.h: Move to ...
* sysdeps/ia64/atomic-machine.h: ...here.
* sysdeps/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/m68k/m680x0/m68020/bits/atomic.h: Move to ...
* sysdeps/m68k/m680x0/m68020/atomic-machine.h: ...here.
* sysdeps/microblaze/bits/atomic.h: Move to ...
* sysdeps/microblaze/atomic-machine.h: ...here.
* sysdeps/mips/bits/atomic.h: Move to ...
* sysdeps/mips/atomic-machine.h: ...here.
(_MIPS_BITS_ATOMIC_H): Rename macro to _MIPS_ATOMIC_MACHINE_H.
* sysdeps/powerpc/bits/atomic.h: Move to ...
* sysdeps/powerpc/atomic-machine.h: ...here. Update comments.
* sysdeps/powerpc/powerpc32/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc32/atomic-machine.h: ...here. Update
comments. Include <atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/powerpc/powerpc64/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc64/atomic-machine.h: ...here. Include
<atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/s390/bits/atomic.h: Move to ...
* sysdeps/s390/atomic-machine.h: ...here.
* sysdeps/sparc/sparc32/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/sparc/sparc32/sparcv9/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/sparcv9/atomic-machine.h: ...here.
* sysdeps/sparc/sparc64/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc64/atomic-machine.h: ...here.
* sysdeps/tile/bits/atomic.h: Move to ...
* sysdeps/tile/atomic-machine.h: ...here.
* sysdeps/tile/tilegx/bits/atomic.h: Move to ...
* sysdeps/tile/tilegx/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/tile/tilepro/bits/atomic.h: Move to ...
* sysdeps/tile/tilepro/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/arm/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/arm/atomic-machine.h: ...here. Include
<sysdeps/arm/atomic-machine.h> instead of
<sysdeps/arm/bits/atomic.h>.
* sysdeps/unix/sysv/linux/hppa/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/hppa/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/nios2/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/nios2/atomic-machine.h: ...here.
(_NIOS2_BITS_ATOMIC_H): Rename macro to _NIOS2_ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/sh/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/sh/atomic-machine.h: ...here.
* sysdeps/x86_64/bits/atomic.h: Move to ...
* sysdeps/x86_64/atomic-machine.h: ...here.
* include/atomic.h: Include <atomic-machine.h> instead of
<bits/atomic.h>.
This patch adds more libm test inputs found through random test
generation to increase observed ulps on x86_64.
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add more tests of acosh, atanh, cbrt,
cosh, csqrt, erfc, expm1 and lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Since x86-64 ld.so preserves vector registers now, we can use SSE in
x86-64 ld.so. We should run tst-ld-sse-use.sh only on i386.
* sysdeps/x86/Makefile [$(subdir) == elf] (CFLAGS-.os,
tests-special, $(objpfx)tst-ld-sse-use.out): Moved to ...
* sysdeps/i386/Makefile [$(subdir) == elf] (CFLAGS-.os,
tests-special, $(objpfx)tst-ld-sse-use.out): Here. Update
comments.
* sysdeps/x86_64/Makefile [$(subdir) == elf] (CFLAGS-.os): Add
-mno-mmx for $(all-rtld-routines).
* sysdeps/x86/tst-ld-sse-use.sh: Moved to ...
* sysdeps/i386/tst-ld-sse-use.sh: Here. Replace x86-64 with
i386.
Since ld.so preserves vector registers now, we can use the same SSE2
optimized strcmp in x86-64 libc and ld.so.
* sysdeps/x86_64/strcmp.S: Remove "#if !IS_IN (libc)".
Since ld.so preserves vector registers now, we can use %xmm[0-4] to
avoid the REX prefix.
* sysdeps/x86_64/strlen.S: Replace %xmm[8-12] with %xmm[0-4].
Hi, as I wrote in previous patches a performance of checked strcpy and
stpcpy is terrible as these don't use sse2 and are around four times
slower that strcpy and stpcpy now.
As this bug shows that these functions are not performance sensitive I
decided just to improve generic implementation instead for easier
maintainance.
* debug/strcpy_chk.c: Improve performance.
* debug/stpcpy_chk.c: Likewise.
* sysdeps/x86_64/strcpy_chk.S: Remove.
* sysdeps/x86_64/stpcpy_chk.S: Remove.
This patch adds SSE, AVX and AVX512 versions of _dl_runtime_resolve
and _dl_runtime_profile, which save and restore the first 8 vector
registers used for parameter passing. elf_machine_runtime_setup
selects the proper _dl_runtime_resolve or _dl_runtime_profile based
on _dl_x86_cpu_features. It avoids race condition caused by
FOREIGN_CALL macros, which are only used for x86-64.
Performance impact of saving and restoring 8 vector registers are
negligible on Nehalem, Sandy Bridge, Ivy Bridge and Haswell when
ld.so is optimized with SSE2.
[BZ #15128]
* sysdeps/x86_64/Makefile [$(subdir) == elf] (tests): Add
ifuncmain8.
(modules-names): Add ifuncmod8.
($(objpfx)ifuncmain8): New rule.
* sysdeps/x86_64/dl-machine.h: Include <dl-procinfo.h> and
<cpuid.h>.
(elf_machine_runtime_setup): Use _dl_runtime_resolve_sse,
_dl_runtime_resolve_avx, or _dl_runtime_resolve_avx512,
_dl_runtime_profile_sse, _dl_runtime_profile_avx, or
_dl_runtime_profile_avx512, based on HAS_ARCH_FEATURE.
* sysdeps/x86_64/dl-trampoline.S: Rewrite.
* sysdeps/x86_64/dl-trampoline.h: Likewise.
* sysdeps/x86_64/ifuncmain8.c: New file.
* sysdeps/x86_64/ifuncmod8.c: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym (RTLD_SAVESPACE_SSE):
Removed.
* sysdeps/x86_64/nptl/tls.h (__128bits): Removed.
(tcbhead_t): Change rtld_must_xmm_save to __glibc_unused1.
Change rtld_savespace_sse to __glibc_unused2.
(RTLD_CHECK_FOREIGN_CALL): Removed.
(RTLD_ENABLE_FOREIGN_CALL): Likewise.
(RTLD_PREPARE_FOREIGN_CALL): Likewise.
(RTLD_FINALIZE_FOREIGN_CALL): Likewise.
sysdeps/i386/i686/multiarch/strcasestr-c.c became unused after
commit 1818483b15
Author: Andreas Schwab <schwab@suse.de>
Date: Wed Dec 18 11:53:27 2013 +1000
Remove use of SSE4.2 functions for strstr on i686
which contains
-sysdep_routines += strcspn-c strpbrk-c strspn-c strstr-c strcasestr-c
+sysdep_routines += strcspn-c strpbrk-c strspn-c
sysdeps/x86_64/multiarch/strcasestr.c became useless after
t 584b18eb4d
Author: Ondřej Bílka <neleai@seznam.cz>
Date: Sat Dec 14 19:33:56 2013 +0100
Add strstr with unaligned loads. Fixes bug 12100.
which changes sysdeps/x86_64/multiarch/strcasestr.c to
libc_ifunc (__strcasestr, __strcasestr_sse2);
This patch removes these file.
* i386/i686/multiarch/strcasestr-c.c: Removed.
* x86_64/multiarch/strcasestr.c: Likewise.
* x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list):
Remove strcasestr.
Move sysdeps/x86_64/multiarch/init-arch.h to sysdeps/x86/init-arch.h
which can be used for both i386 and x86_64.
* sysdeps/i386/i686/multiarch/init-arch.h: Removed.
* sysdeps/unix/sysv/linux/x86/init-arch.h: Likewise.
* sysdeps/x86_64/cacheinfo.c: Include <init-arch.h> instead
of "multiarch/init-arch.h".
* sysdeps/x86_64/multiarch/init-arch.h: Renamed to ...
* sysdeps/x86/init-arch.h: This.
Fix the bind-now case when DT_REL and DT_JMPREL sections are separate
and there is a gap between them.
[BZ #14341]
* elf/dynamic-link.h (elf_machine_lazy_rel): Properly handle the
case when there is a gap between DT_REL and DT_JMPREL sections.
* sysdeps/x86_64/Makefile (tests): Add tst-split-dynreloc.
(LDFLAGS-tst-split-dynreloc): New.
(tst-split-dynreloc-ENV): Likewise.
* sysdeps/x86_64/tst-split-dynreloc.c: New file.
* sysdeps/x86_64/tst-split-dynreloc.lds: Likewise.
The change in 0b5395f052 replaced calls
to __get_cpu_features@plt followed by a mov from rax to rdx, with a
single macro LOAD_RTLD_GLOBAL_RO_RDX. It is pretty clear that there
was a typo in s_floorf and __nearbyint due to which the (now incorrect)
mov was not removed. This patch removes that mov.
* sysdeps/x86_64/fpu/multiarch/s_floorf.S (__floorf): Remove
unnecessary movq.
* sysdeps/x86_64/fpu/multiarch/s_nearbyint.S (__nearbyint):
Likewise.
This patch adds more test inputs to various libm functions found
through random generation to have larger ulps errors than previously
listed in libm-test-ulp, on at least one of x86_64 and x86.
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add more tests of acos, acosh, asin,
asinh, atan, atan2, atanh, cabs, cbrt, cosh, csqrt, erf, erfc,
exp, exp2, lgamma, log, log1p, log2, pow, sin, sincos, tan, tanh
and tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more tests of various libm functions found through
random test generation to give increased ulps on 32-bit x86.
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add more tests of acosh, asin, asinh,
atanh, cabs, carg, cbrt, cosh, csqrt, erf, erfc, exp, exp10,
expm1, hypot, log, log10, log1p, log2, pow, sinh, tan and tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
{memcpy,strcmp}-sse2-unaligned.S aren't needed in ld.so.
* sysdeps/x86_64/multiarch/memcpy-sse2-unaligned.S: Compile
only for libc.
* sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S: Likewise.
On x86, linker in binutils 2.26 and newer consolidates R_*_JUMP_SLOT with
R_*_GLOB_DAT relocation against the same symbol. This patch extends
local PLT reference check to support alternate relocations.
[BZ #18078]
* scripts/check-localplt.awk: Support alternate relocations.
* scripts/localplt.awk: Also check relocations in DT_RELA/DT_REL
sections.
* sysdeps/unix/sysv/linux/i386/localplt.data: Mark free and
malloc entries with + REL R_386_GLOB_DAT.
* sysdeps/x86_64/localplt.data: New file.
These tests were skipped by the use-test-skeleton conversion done in
commit 29955b5d because they were reused in other tests via the #include
directive, and so deemed worth an inspection before they were modified.
This has now been done.
ChangeLog:
2015-07-09 Arjun Shankar <arjun.is@lostca.se>
* elf/tst-leaks1.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* localedata/tst-langinfo.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* math/test-fpucw.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* math/test-tgmath.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* math/test-tgmath2.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* setjmp/tst-setjmp.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* stdio-common/tst-sscanf.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
* sysdeps/x86_64/tst-audit6.c (main): Converted to ...
(do_test): ... this.
(TEST_FUNCTION): New macro.
Include test-skeleton.c.
If x86-64 assembler doesn't support MPX, we encode bndmov instruction by
hand. When displacement is zero, assembler generates shorter encoding.
This patch improves bndmov encoding with zero displacement so that ld.so
is identical when using assemblers with and without MPX support.
* sysdeps/x86_64/dl-trampoline.S (_dl_runtime_resolve): Improve
bndmov encoding with zero displacement.
We need to save/restore bound registers and add a BND prefix before
branches in _dl_runtime_profile so that bound registers for pointer
pass and return are preserved when LD_AUDIT is used.
[BZ #18134]
* sysdeps/i386/configure.ac: Set HAVE_MPX_SUPPORT.
* sysdeps/i386/configure: Regenerated.
* sysdeps/i386/dl-trampoline.S (PRESERVE_BND_REGS_PREFIX): New.
(_dl_runtime_profile): Save and restore Intel MPX return bound
registers when calling _dl_call_pltexit. Add
PRESERVE_BND_REGS_PREFIX before return.
* sysdeps/i386/link-defines.sym (LRV_BND0_OFFSET): New.
(LRV_BND1_OFFSET): Likewise.
* sysdeps/x86/bits/link.h (La_i86_retval): Add lrv_bnd0 and
lrv_bnd1.
* sysdeps/x86_64/dl-trampoline.S (_dl_runtime_profile): Fix
typo in bndmov encoding.
* sysdeps/x86_64/dl-trampoline.h: Properly save and restore
Intel MPX bound registers. Add PRESERVE_BND_REGS_PREFIX before
branch instructions to preserve bounds.
la_symbind32 is used for x32 in x86-64 audit tests. We should define
both la_symbind32 and la_symbind64 in x86-64 audit tests.
* sysdeps/x86_64/tst-auditmod10b.c (la_symbind32): New.
* sysdeps/x86_64/tst-auditmod4b.c (la_symbind32): Likewise.
* sysdeps/x86_64/tst-auditmod5b.c (la_symbind32): Likewise.
* sysdeps/x86_64/tst-auditmod6b.c (la_symbind32): Likewise.
* sysdeps/x86_64/tst-auditmod6c.c (la_symbind32): Likewise.
* sysdeps/x86_64/tst-auditmod7b.c (la_symbind32): Likewise.
This patch combines BUSY_WAIT_NOP and atomic_delay into a new
atomic_spin_nop function and adjusts all clients. The new function is
put into atomic.h because what is best done in a spin loop is
architecture-specific, and atomics must be used for spinning. The
function name is meant to tell users that this has no effect on
synchronization semantics but is a performance aid for spinning.
In non-default rounding modes, tgamma can be slightly less accurate
than permitted by glibc's accuracy goals.
Part of the problem is error accumulation, addressed in this patch by
setting round-to-nearest for internal computations. However, there
was also a bug in the code dealing with computing pow (x + n, x + n)
where x + n is not exactly representable, providing another source of
error even in round-to-nearest mode; it was necessary to address both
bugs to get errors for all testcases within glibc's accuracy goals.
Given this second fix, accuracy in round-to-nearest mode is also
improved (hence regeneration of ulps for tgamma should be from scratch
- truncate libm-test-ulps or at least remove existing tgamma entries -
so that the expected ulps can be reduced).
Some additional complications also arose. Certain tgamma tests should
strictly, according to IEEE semantics, overflow or not depending on
the rounding mode; this is beyond the scope of glibc's accuracy goals
for any function without exactly-determined results, but
gen-auto-libm-tests doesn't handle being lax there as it does for
underflow. (libm-test.inc also doesn't handle being lax about whether
the result in cases very close to the overflow threshold is infinity
or a finite value close to overflow, but that doesn't cause problems
in this case though I've seen it cause problems with random test
generation for some functions.) Thus, spurious-overflow markings,
with a comment, are added to auto-libm-test-in (no bug in Bugzilla
because the issue is with the testsuite, not a user-visible bug in
glibc). And on x86, after the patch I saw ERANGE issues as previously
reported by Carlos (see my commentary in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>), which
needed addressing by ensuring excess range and precision were
eliminated at various points if FLT_EVAL_METHOD != 0.
I also noticed and fixed a cosmetic issue where 1.0f was used in long
double functions and should have been 1.0L.
This completes the move of all functions to testing in all rounding
modes with ALL_RM_TEST, so gen-libm-have-vector-test.sh is updated to
remove the workaround for some functions not using ALL_RM_TEST.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18613]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Take log of
X_ADJ not X when adjusting exponent.
(__ieee754_gamma_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammaf_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* math/libm-test.inc (tgamma_test_data): Remove one test. Moved
to auto-libm-test-in.
(tgamma_test): Use ALL_RM_TEST.
* math/auto-libm-test-in: Add one test of tgamma. Mark some other
tests of tgamma with spurious-overflow.
* math/auto-libm-test-out: Regenerated.
* math/gen-libm-have-vector-test.sh: Do not check for START.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Some existing jn tests, if run in non-default rounding modes, produce
errors above those accepted in glibc, which causes problems for moving
tests of jn to use ALL_RM_TEST. This patch makes jn set rounding
to-nearest internally, as was done for yn some time ago, then computes
the appropriate underflowing value for results that underflowed to
zero in to-nearest, and moves the tests to ALL_RM_TEST. It does
nothing about the general inaccuracy of Bessel function
implementations in glibc, though it should make jn more accurate on
average in non-default rounding modes through reduced error
accumulation. The recomputation of results that underflowed to zero
should as a side-effect fix some cases of bug 16559, where jn just
used an exact zero, but that is *not* the goal of this patch and other
cases of that bug remain unfixed.
(Most of the changes in the patch are reindentation to add new scopes
for SET_RESTORE_ROUND*.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16559]
[BZ #18602]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
round-to-nearest internally then recompute results that
underflowed to zero in the original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
cexp, ccos, ccosh, csin and csinh have spurious underflows in cases
where they compute sin of the smallest normal, that produces an
underflow exception (depending on which sin implementation is in use)
but the final result does not underflow. ctan and ctanh may also have
such underflows, or they may be latent (the issue there is that
e.g. ctan (DBL_MIN) should, rounded upwards, be the next double value
above DBL_MIN, which under glibc's accuracy goals may not have an
underflow exception, but the intermediate computation of sin (DBL_MIN)
would legitimately underflow on before-rounding architectures).
This patch fixes all those functions so they use plain comparisons (>
DBL_MIN etc.) instead of comparing the result of fpclassify with
FP_SUBNORMAL (in all these cases, we already know the number being
compared is finite). Note that in the case of csin / csinf / csinl,
there is no need for fabs calls in the comparison because the real
part has already been reduced to its absolute value.
As the patch fixes the failures that previously obstructed moving
tests of cexp to use ALL_RM_TEST, those tests are moved to ALL_RM_TEST
by the patch (two functions remain yet to be converted).
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #18594]
* math/s_ccosh.c (__ccosh): Compare with least normal value
instead of comparing class with FP_SUBNORMAL.
* math/s_ccoshf.c (__ccoshf): Likewise.
* math/s_ccoshl.c (__ccoshl): Likewise.
* math/s_cexp.c (__cexp): Likewise.
* math/s_cexpf.c (__cexpf): Likewise.
* math/s_cexpl.c (__cexpl): Likewise.
* math/s_csin.c (__csin): Likewise.
* math/s_csinf.c (__csinf): Likewise.
* math/s_csinh.c (__csinh): Likewise.
* math/s_csinhf.c (__csinhf): Likewise.
* math/s_csinhl.c (__csinhl): Likewise.
* math/s_csinl.c (__csinl): Likewise.
* math/s_ctan.c (__ctan): Likewise.
* math/s_ctanf.c (__ctanf): Likewise.
* math/s_ctanh.c (__ctanh): Likewise.
* math/s_ctanhf.c (__ctanhf): Likewise.
* math/s_ctanhl.c (__ctanhl): Likewise.
* math/s_ctanl.c (__ctanl): Likewise.
* math/auto-libm-test-in: Add more tests of ccos, ccosh, cexp,
csin, csinh, ctan and ctanh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (cexp_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
csin and csinh can produce bad results when overflowing in directed
rounding modes, because a multiplication that can overflow is followed
by a possible negation. This patch fixes this by negating one of the
arguments of the multiplication before the multiplication instead of
negating the result.
The new tests for this issue are added to auto-libm-test-in, starting
use of that file for csin and csinh. The issue was found in the
course of moving existing tests for csin and csinh (existing tests, by
being enabled in more cases than previously, showed the issue for
float and double but not for long double); that move will now be done
separately.
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #18593]
* math/s_csin.c (__csin): Negate before rather than after possibly
overflowing multiplication.
* math/s_csinf.c (__csinf): Likewise.
* math/s_csinh.c (__csinh): Likewise.
* math/s_csinhf.c (__csinhf): Likewise.
* math/s_csinhl.c (__csinhl): Likewise.
* math/s_csinl.c (__csinl): Likewise.
* math/auto-libm-test-in: Add some tests of csin and csinh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (csin_test_data): Use AUTO_TESTS_c_c.
(csinh_test_data): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This fixes BZ #17403 by defining atomic_full_barrier,
atomic_read_barrier, and atomic_write_barrier on x86 and x86_64. A full
barrier is implemented through an atomic idempotent modification to the
stack and not through using mfence because the latter can supposedly be
somewhat slower due to having to provide stronger guarantees wrt.
self-modifying code, for example.
In the x86 / x86_64 implementations of expm1l, when expm1l's result
should underflow to 0 (argument minus the least subnormal, in some
rounding modes), it can be a zero of the wrong sign. This patch fixes
this by returning the argument with underflow forced in that case
(this is a 1ulp error relative to the correctly rounded result of -0,
which is OK in terms of the documented accuracy goals, whereas a
result with the wrong sign never is).
Tested for x86_64 and x86.
[BZ #18569]
* sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Force
underflow and return argument in case of subnormal argument.
* sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]:
Likewise.
* math/auto-libm-test-in: Add more tests of expm1.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, the x86 and x86_64
implementations of expl / exp10l can fail to produce underflow
exceptions when the unscaled result has trailing 0 bits so the scaling
down to subnormal precision is exact. This patch fixes this by
forcing the exception in the case of tiny results.
Tested for x86_64 and x86.
[BZ #16361]
* sysdeps/i386/fpu/e_expl.S [!USE_AS_EXPM1L] (cmin): New object.
[!USE_AS_EXPM1L] (IEEE754_EXPL): Force underflow exception for
tiny results.
* sysdeps/x86_64/fpu/e_expl.S [!USE_AS_EXPM1L] (cmin): New object.
[!USE_AS_EXPM1L] (IEEE754_EXPL): Force underflow exception for
tiny results.
* math/auto-libm-test-in: Add more tests of exp and exp10. Do not
mark underflow exceptions as possibly missing for bug 16361.
* math/auto-libm-test-out: Regenerated.
Here is implementation of vectorized sin containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* bits/libm-simd-decl-stubs.h: Added stubs for sin.
* math/bits/mathcalls.h: Added sin declaration with __MATHCALL_VEC.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: SIMD declaration for sin.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Added vector sin test.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Likewise.
* NEWS: Mention addition of x86_64 vector sin.
Binutils 2.24 doesn't support some AVX512 instructions with ZMM
registers, so we need add more strict check.
* configure.ac: Added more strict check.
* configure: Regenerated.
regcomp brings in references to wcscoll, which isn't in all the
standards that contain regcomp. In turn, wcscoll brings in references
to wcscmp, also not in all those standards. This patch fixes this by
making those functions into weak aliases of __wcscoll and __wcscmp and
calling those names instead as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18497]
* wcsmbs/wcscmp.c [!WCSCMP] (WCSCMP): Define as __wcscmp instead
of wcscmp.
(wcscmp): Define as weak alias of WCSCMP.
* wcsmbs/wcscoll.c (STRCOLL): Define as __wcscoll instead of
wcscoll.
(USE_HIDDEN_DEF): Define.
[!USE_IN_EXTENDED_LOCALE_MODEL] (wcscoll): Define as weak alias of
__wcscoll. Don't use libc_hidden_weak.
* wcsmbs/wcscoll_l.c (STRCMP): Define as __wcscmp instead of
wcscmp.
* sysdeps/i386/i686/multiarch/wcscmp-c.c
[SHARED] (libc_hidden_def): Define __GI___wcscmp instead of
__GI_wcscmp.
(weak_alias): Undefine and redefine.
* sysdeps/i386/i686/multiarch/wcscmp.S (wcscmp): Rename to
__wcscmp and define as weak alias of __wcscmp.
* sysdeps/x86_64/wcscmp.S (wcscmp): Likewise.
* include/wchar.h (__wcscmp): Declare. Use libc_hidden_proto.
(__wcscoll): Likewise.
(wcscmp): Don't use libc_hidden_proto.
(wcscoll): Likewise.
* posix/regcomp.c (build_range_exp): Call __wcscoll instead of
wcscoll.
* posix/regexec.c (check_node_accept_bytes): Likewise.
* conform/Makefile (test-xfail-XPG3/regex.h/linknamespace): Remove
variable.
(test-xfail-XPG4/regex.h/linknamespace): Likewise.
(test-xfail-POSIX/regex.h/linknamespace): Likewise.
* math/Makefile: Added CFLAGS for new tests.
* math/test-float-vlen16.h: New file.
* math/test-float-vlen4.h: New file.
* math/test-float-vlen8.h: New file.
* math/test-double-vlen2.h: Fixed 2 argument macro and comment.
* sysdeps/x86_64/fpu/Makefile: Added new tests and variables.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/test-float-vlen16-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen16.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen4-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen4.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8.c: New file.
Here is implementation of vectorized cosf containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core_sse4.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core_avx2.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_s_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.h: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cosf.
* NEWS: Mention addition of x86_64 vector cosf.
We test vector math functions using scalar tests infrastructure with
help of special wrappers from scalar versions to vector ones. Wrapper
implemented using platform specific vector types and placed in separate
file for compilation with architecture specific options, main part of
test has no such options. With help of system of definitions unfolding
of which is drived from test code we have wrapper called in individual
testing function instead of scalar function. Also system of definitions
includes generated during make check header math/libm-have-vector-test.h
with series of conditional definitions which help to avoid build fails
for functions having no vector versions; runtime architecture check
to prevent runtime fails of test run on inappropriate hardware.
* math/Makefile: Added rules for vector tests.
* math/gen-libm-have-vector-test.sh: Added generation of wrapper
declaration under condition.
* math/test-double-vlen2.h: New file.
* math/test-double-vlen4.h: New file.
* math/test-double-vlen8.h: New file.
* math/test-vec-loop.h: Added initialization macro.
* sysdeps/x86_64/fpu/Makefile: Added variables for vector tests.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenarated.
* sysdeps/x86_64/fpu/math-tests-arch.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen2.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen8.c: New file.
Here is implementation of cos containing SSE, AVX, AVX2 and AVX512
versions according to Vector ABI which had been discussed in
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
Vector math library build and ABI testing enabled by default for x86_64.
* sysdeps/x86_64/fpu/Makefile: New file.
* sysdeps/x86_64/fpu/Versions: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.h: New file.
* sysdeps/x86_64/fpu/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cos.
* math/bits/mathcalls.h: Added cos declaration with __MATHCALL_VEC.
* sysdeps/x86_64/configure.ac: Options for libmvec build.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/sysdep.h (cfi_offset_rel_rsp): New macro.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New file.
* manual/install.texi (Configuring and compiling): Document
--disable-mathvec.
* INSTALL: Regenerated.
* NEWS: Mention addition of libmvec and x86_64 vector cos.
To make a strtok faster and improve performance in general we need to do one
additional change.
A comment:
/* It doesn't make sense to send libc-internal strcspn calls through a PLT.
The speedup we get from using SSE4.2 instruction is likely eaten away
by the indirect call in the PLT. */
Does not make sense at all because nobody bothered to check it. Gap
between these implementations is quite big, when haystack is empty a
sse2 is around 40 cycles slower because it needs to populate a lookup
table and difference only increases with size. That is much bigger than
plt slowdown which is few cycles.
Even benchtest show a gap which also may be reverse by branch
misprediction but my internal benchmark shown.
simple_strspn stupid_strspn __strspn_sse42 __strspn_sse2
Length 0, alignment 0, acc len 6: 18.6562 35.2344 17.0469 61.6719
Length 6, alignment 0, acc len 6: 59.5469 72.5781 16.4219 73.625
This patch also handles strpbrk which is implemented by including a
x86_64/multiarch/strcspn.S file.
* sysdeps/x86_64/multiarch/strspn.S: Remove plt indirection.
* sysdeps/x86_64/multiarch/strcspn.S: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt, lgamma, log10
and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, cos,
csqrt, erfc, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64. (This process
must eventually converge, when my random test generation stops finding
inputs that increase the listed ulps, except maybe for any cases
uncovered where the errors exceed the maximum allowed 9ulp error and
so indicate actual libm bugs needing fixing.)
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, clog,
clog10, csqrt, erfc, exp2, expm1, log10, log2 and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of atan, clog, clog10,
cos, csqrt, erf, erfc, exp2, lgamma, log1p, sin, sincos, tanh and
tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tanh that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tan that are observed
to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of cos, sin and sincos
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cos, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds a randomly-generated test of pow that is observed to
increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch adds some randomly-generated tests of lgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of log, log10, log1p and
log2 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of log, log10, log2 and
log1p.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of exp, exp10, exp2 and
expm1 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of exp, exp10, exp2 and
expm1.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of erf and erfc that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of erf and erfc.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of csqrt that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some further randomly-generated tests of cosh and sinh
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cosh and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
According to bug 6792, errno is not set to ERANGE/EDOM
by calling log1p/log1pf/log1pl with x = -1 or x < -1.
This patch adds a wrapper which sets errno in those cases
and returns the value of the existing __log1p function.
The log1p is now an alias to the wrapper function
instead of __log1p.
The files in sysdeps are reflecting these changes.
The ia64 implementation sets errno by itself,
thus the wrapper-file is empty.
The libm-test is adjusted for log1p-tests to check errno.
[BZ #6792]
* math/w_log1p.c: New file.
* math/w_log1pf.c: Likewise.
* math/w_log1pl.c: Likewise.
* math/Makefile (libm-calls): Add w_log1p.
* math/s_log1pl.c (log1pl): Remove weak_alias.
* sysdeps/i386/fpu/s_log1p.S (log1p): Likewise.
* sysdeps/i386/fpu/s_log1pf.S (log1pf): Likewise.
* sysdeps/i386/fpu/s_log1pl.S (log1pl): Likewise.
* sysdeps/x86_64/fpu/s_log1pl.S (log1pl): Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c (log1p): Likewise.
[NO_LONG_DOUBLE] (log1pl): Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c (log1pf): Likewise.
* sysdeps/ieee754/ldbl-128/s_log1pl.c (log1pl): Likewise.
* sysdeps/ieee754/ldbl-64-128/s_log1pl.c
(log1p): Remove long_double_symbol.
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (log1pl): Likewise.
* sysdeps/ieee754/ldbl-64-128/w_log1pl.c: New file.
* sysdeps/ieee754/ldbl-128ibm/w_log1pl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_log1p.c: Define empty weak_alias to
remove weak_alias for corresponding log1p function.
* sysdeps/m68k/m680x0/fpu/s_log1pf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_log1pl.c: Likewise.
* sysdeps/ia64/fpu/w_log1p.c: New file.
* sysdeps/ia64/fpu/w_log1pf.c: Likewise.
* sysdeps/ia64/fpu/w_log1pl.c: Likewise.
* math/libm-test.inc (log1p_test_data): Add errno expectations.
This patch adds some randomly-generated tests of clog and clog10 that
are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of atanh that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of atanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of atan that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of atan.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of cbrt that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cbrt.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch adds some randomly-generated tests of cabs that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cabs.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The dbl-64 implementation of atan2 does computations that expect to
run in round-to-nearest mode, and in other modes the errors can
accumulate to more than the maximum accepted 9ulp. This patch makes
it use FE_TONEAREST internally, similar to other functions with such
issues. Tests that previously produced large errors are added for
atan2 and the closely related carg, clog and clog10 functions.
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #18210]
[BZ #18211]
* sysdeps/ieee754/dbl-64/e_atan2.c: Include <fenv.h>.
(__ieee754_atan2): Set FE_TONEAREST mode for internal
computations.
* math/auto-libm-test-in: Add more tests of atan2, carg, clog and
clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Silvermont and Knights Landing have a modular system design with two cores
sharing an L2 cache. If more than 2 cores are detected to shared L2 cache,
it should be adjusted for Silvermont and Knights Landing.
[BZ #18185]
* sysdeps/x86_64/cacheinfo.c (init_cacheinfo): Limit threads
sharing L2 cache to 2 for Silvermont/Knights Landing.
With copy relocation, address of protected data defined in the shared
library may be external. When there is a relocation against the
protected data symbol within the shared library, we need to check if we
should skip the definition in the executable copied from the protected
data. This patch adds ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA and defines
it for x86. If ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA isn't 0, do_lookup_x
will skip the data definition in the executable from copy reloc.
[BZ #17711]
* elf/dl-lookup.c (do_lookup_x): When UNDEF_MAP is NULL, which
indicates it is called from do_lookup_x on relocation against
protected data, skip the data definion in the executable from
copy reloc.
(_dl_lookup_symbol_x): Pass ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA,
instead of ELF_RTYPE_CLASS_PLT, to do_lookup_x for
EXTERN_PROTECTED_DATA relocation against STT_OBJECT symbol.
* sysdeps/generic/ldsodefs.h * (ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA):
New. Defined to 4 if DL_EXTERN_PROTECTED_DATA is defined,
otherwise to 0.
* sysdeps/i386/dl-lookupcfg.h (DL_EXTERN_PROTECTED_DATA): New.
* sysdeps/i386/dl-machine.h (elf_machine_type_class): Set class
to ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA for R_386_GLOB_DAT.
* sysdeps/x86_64/dl-lookupcfg.h (DL_EXTERN_PROTECTED_DATA): New.
* sysdeps/x86_64/dl-machine.h (elf_machine_type_class): Set class
to ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA for R_X86_64_GLOB_DAT.
This patch adds some randomly-generated tests of acosh, asinh and
atanh that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, asinh and
atanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds a randomly-generated test of asin that is observed to
increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add another test of asin.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of asin that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of asin.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of acos that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of expm1 that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of expm1.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of cosh and sinh that
are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cosh and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The x86_64 and x86 libm-test-ulps files hadn't been regenerated from
scratch for some time, as evidenced by the presence of entries for
*_tonearest functions (those tests duplicated the
default-rounding-mode tests, and such duplicates are no longer run).
The aarch64, alpha, hppa, ia64, m68k, microblaze, powerpc, s390, sh,
sparc, tile files similarly could do with from-scratch regeneration as
evidenced by the presence of such entries. (Truncate the existing
file then run "make regen-ulps" and move the resulting file into
place.)
This patch regenerates the x86_64 and x86 files from scratch. It's
likely some of the reduced / removed ulps will need restoring because
they appear on processors or compiler versions other than the one I
tested on, but in such cases I'd like to first see if I can generate
new tests that show such ulps on the Intel processor I'm testing on,
to reduce the effects from different people using different processors
and compilers to regenerate the ulps.
* sysdeps/i386/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
In testing for x86_64 on an AMD processor, I observed libm test
failures of the form:
testing long double (without inline functions)
Failure: Test: log2_downward (0x2.b7e151628aed4p+0)
Result:
is: 1.44269504088896356633e+00 0xb.8aa3b295c17f67600000p-3
should be: 1.44269504088896356622e+00 0xb.8aa3b295c17f67500000p-3
difference: 1.08420217248550443400e-19 0x8.00000000000000000000p-66
ulp : 1.0000
max.ulp : 0.0000
Maximal error of `log2_downward'
is : 1 ulp
accepted: 0 ulp
These issues arise because the maximum ulps when regenerating on one
processor are not the same as on another processor, so regeneration on
several processors may be needed when updating libm-test-ulps to avoid
failures for some users testing glibc - but such regeneration on
multiple processors is inconvenient. Causes can be: on x86 and, for
x86_64, for long double, variation in results of x87 instructions for
transcendental operations between processors; on x86, variation in
compiler excess precision between compiler versions and
configurations; on any processor where the compiler may contract
expressions using fused multiply-add, variation in what contraction
occurs.
Although it's hard to be sure libm-test-ulps covers all ulps that may
be seen in any configuration for the given architecture, in practice
it helps simply to add wider test coverage to make it more likely
that, when testing on one processor, the ulps seen are the biggest
that can be seen for that function on that processor, and hopefully
they are also the biggest that can be seen for that function in other
configurations for that architecture. Thus, this patch adds some
tests of log2 that increase the ulps I see on x86_64 on an Intel
processor, so that hopefully future from-scratch regenerations on that
processor will produce ulps big enough not to have errors from testing
on AMD processors. These tests were found by randomly generating
inputs and seeing what produced ulps larger than those currently in
libm-test-ulps. Of course such increases also improve the accuracy of
the empirical table of known ulps generated from libm-test-ulps files
that goes in the manual.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of log2.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
We need to add a BND prefix before indirect branch at the end of
_dl_runtime_resolve to preserve bound registers.
[BZ #18134]
* sysdeps/x86_64/dl-trampoline.S (PRESERVE_BND_REGS_PREFIX): New.
(_dl_runtime_resolve): Add a BND prefix before indirect branch.
The threshold in ldbl-96 atanhl for when to return the argument,
0x1p-28, is a bit too big, and that in ldbl-128ibm atanhl is much too
big (the relevant condition being x^3/3 being < 0.5ulp of x),
resulting in errors a bit above the limits of those considered
acceptable in glibc in the ldbl-96 case, and in large errors in the
ldbl-128ibm case. This patch changes those implementations to use
more appropriate thresholds and adds tests around the thresholds for
various formats.
Tested for x86_64, x86 and powerpc. x86_64 and x86 ulps updated
accordingly.
[BZ #18046]
[BZ #18047]
* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c (__ieee754_atanhl): Use
0x1p-56L as threshold for just returning the argument.
* sysdeps/ieee754/ldbl-96/e_atanhl.c (__ieee754_atanhl): Use
0x1p-32L as threshold for just returning the argument.
* math/auto-libm-test-in: Add more tests of atanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulp: Likewise.
Similar to various other bugs in this area, some asin implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, powerpc and mips64.
[BZ #16351]
* sysdeps/i386/fpu/e_asin.S (dbl_min): New object.
(MO): New macro.
(__ieee754_asin): Force underflow exception for results with small
absolute value.
* sysdeps/i386/fpu/e_asinf.S (flt_min): New object.
(MO): New macro.
(__ieee754_asinf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/e_asin.c: Include <float.h> and <math.h>.
(__ieee754_asin): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/flt-32/e_asinf.c: Include <float.h>.
(__ieee754_asinf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/x86_64/fpu/multiarch/e_asin.c [HAVE_FMA4_SUPPORT]:
Include <math.h>.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16351.
* math/auto-libm-test-out: Regenerated.
The ldbl-128ibm implementation of asinhl uses cut-offs of 0x1p28 and
0x1p-29 to determine when to use simpler formulas that avoid possible
overflow / underflow. Both those cut-offs are inappropriate for this
format, resulting in large errors. This patch changes the code to use
more appropriate cut-offs of 0x1p56 and 0x1p-56, adding tests around
the cut-offs for various floating-point formats.
Tested for powerpc. Also tested for x86_64 and x86 and updated ulps.
[BZ #18020]
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Use 2**56 and
2**-56 not 2**28 and 2**-29 as thresholds for simpler formulas.
* math/auto-libm-test-in: Add more tests of asinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The ldbl-128ibm implementation of acoshl uses a cut-off of 0x1p28 to
determine when to use log(x) + log(2) as a formula. That cut-off is
too small for this format, resulting in large errors. This patch
changes it to a more appropriate cut-off of 0x1p56, adding tests
around the cut-offs for various floating-point formats.
Tested for powerpc. Also tested for x86_64 and x86 and updated ulps.
[BZ #18019]
* sysdeps/ieee754/ldbl-128ibm/e_acoshl.c (__ieee754_acoshl): Use
2**56 not 2**28 as threshold for log (2x) formula.
* math/auto-libm-test-in: Add more tests of acosh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Various x86 / x86_64 versions of scalb / scalbf / scalbl produce
spurious "invalid" exceptions for (qNaN, -Inf) arguments, because this
is wrongly handled like (+/-Inf, -Inf) which *should* raise such an
exception. (In fact the NaN case of the code determining whether to
quietly return a zero or a NaN for second argument -Inf was
accidentally dead since the code had been made to return a NaN with
exception.) This patch fixes the code to do the proper test for an
infinity as distinct from a NaN.
(Since the existing code does nothing to distinguish qNaNs and sNaNs
here, this patch doesn't either. If in future we systematically
implement proper sNaN semantics following TS 18661-1:2014, there will
be lots of bugs to address - Thomas found lots of issues with his
patch <https://sourceware.org/ml/libc-ports/2013-04/msg00008.html> to
add SNaN tests (which never went in and would now require significant
reworking).)
Tested for x86_64 and x86. Committed.
[BZ #16783]
* sysdeps/i386/fpu/e_scalb.S (__ieee754_scalb): Do not handle
arguments (NaN, -Inf) the same as (+/-Inf, -Inf).
* sysdeps/i386/fpu/e_scalbf.S (__ieee754_scalbf): Likewise.
* sysdeps/i386/fpu/e_scalbl.S (__ieee754_scalbl): Likewise.
* sysdeps/x86_64/fpu/e_scalbl.S (__ieee754_scalbl): Likewise.
* math/libm-test.inc (scalb_test_data): Add more tests.
This patch fixes bug 15319, missing underflows from atan / atan2 when
the result of atan is very close to its small argument (or that of
atan2 is very close to the ratio of its arguments, which may be an
exact division).
The usual approach of doing an underflowing computation if the
computed result is subnormal is followed. For 32-bit x86, there are
extra complications: the inline __ieee754_atan2 in bits/mathinline.h
needs to be disabled for float and double because other libm functions
using it generally rely on getting proper underflow exceptions from
it, while the out-of-line functions have to remove excess range and
precision from the underflowing result so as to return an exact 0 in
the case where errno should be set for underflow to 0. (The failures
I saw without that are similar to those Carlos reported for other
functions, where I haven't seen a response to
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>
confirming if my diagnosis is correct. Arguably all libm functions
with float and double returns should remove excess range and
precision, but that's a separate matter.)
The x86_64 long double case reported in a comment in bug 15319 is not
a bug (it's an argument of LDBL_MIN, and x86_64 is an after-rounding
architecture so the correct IEEE result is not to raise underflow in
the given rounding mode, in addition to treating the result as an
exact LDBL_MIN being within the newly clarified documentation of
accuracy goals). I'm presuming that the fpatan instruction can be
trusted to raise appropriate exceptions when the (long double) result
underflows (after rounding) and so no changes are needed for x86 /
x86_64 long double functions here; empirically this is the case for
the cases covered in the testsuite, on my system.
Tested for x86_64, x86, powerpc and mips64. Only 32-bit x86 needs
ulps updates (for the changes to inlines meaning some functions no
longer get excess precision from their __ieee754_atan2* calls).
[BZ #15319]
* sysdeps/i386/fpu/e_atan2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_atan2): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/e_atan2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_atan2f): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/s_atan.S (dbl_min): New object.
(MO): New macro.
(__atan): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/i386/fpu/s_atanf.S (flt_min): New object.
(MO): New macro.
(__atanf): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/ieee754/dbl-64/e_atan2.c: Include <float.h> and
<math.h>.
(__ieee754_atan2): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/s_atan.c: Include <float.h> and
<math_private.h>.
(atan): Force underflow exception for results with small absolute
value.
* sysdeps/ieee754/flt-32/s_atanf.c: Include <float.h>.
(__atanf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_atanl.c: Include <float.h> and
<math.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_atanl.c: Include <float.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/x86/fpu/bits/mathinline.h
[!__SSE2_MATH__ && !__x86_64__ && __LIBC_INTERNAL_MATH_INLINES]
(__ieee754_atan2): Only define inline for long double.
* sysdeps/x86_64/fpu/multiarch/e_atan2.c
[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Include <math.h>.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 15319. Add more tests of atan2.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (casin_test_data): Do not mark underflow
exceptions as possibly missing for bug 15319.
(casinh_test_data): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
This patch fixes the remaining part of bug 16560, spurious underflows
from exp2 of arguments close to 0 (when the result is close to 1, so
should not underflow), by just using 1+x instead of a more complicated
calculation when the argument is sufficiently small.
Tested for x86_64, x86 and mips64.
[BZ #16560]
* math/e_exp2l.c [LDBL_MANT_DIG == 106] (LDBL_EPSILON): Undefine
and redefine.
(__ieee754_exp2l): Do not multiply small fractional parts by
M_LN2l.
* sysdeps/i386/fpu/e_exp2l.S (__ieee754_exp2l): Just add 1 to
small argument.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* sysdeps/x86_64/fpu/e_exp2l.S (__ieee754_exp2l): Likewise.
* math/auto-libm-test-in: Add more tests of exp2.
* math/auto-libm-test-out: Regenerated.
memcpy with unaligned 256-bit AVX register loads/stores are slow on older
processorsl like Sandy Bridge. This patch adds bit_AVX_Fast_Unaligned_Load
and sets it only when AVX2 is available.
[BZ #17801]
* sysdeps/x86_64/multiarch/init-arch.c (__init_cpu_features):
Set the bit_AVX_Fast_Unaligned_Load bit for AVX2.
* sysdeps/x86_64/multiarch/init-arch.h (bit_AVX_Fast_Unaligned_Load):
New.
(index_AVX_Fast_Unaligned_Load): Likewise.
(HAS_AVX_FAST_UNALIGNED_LOAD): Likewise.
* sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Check the
bit_AVX_Fast_Unaligned_Load bit instead of the bit_AVX_Usable bit.
* sysdeps/x86_64/multiarch/memcpy_chk.S (__memcpy_chk): Likewise.
* sysdeps/x86_64/multiarch/mempcpy.S (__mempcpy): Likewise.
* sysdeps/x86_64/multiarch/mempcpy_chk.S (__mempcpy_chk): Likewise.
* sysdeps/x86_64/multiarch/memmove.c (__libc_memmove): Replace
HAS_AVX with HAS_AVX_FAST_UNALIGNED_LOAD.
* sysdeps/x86_64/multiarch/memmove_chk.c (__memmove_chk): Likewise.
Concluding the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of feupdateenv by making it a weak alias for
__feupdateenv and making the affected code call __feupdateenv.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch). Also tested for ARM
(soft-float) that the math.h linknamespace tests now pass.
[BZ #17748]
* include/fenv.h (__feupdateenv): Use libm_hidden_proto.
* math/feupdateenv.c (__feupdateenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/arm/feupdateenv.c (feupdateenv): Rename to __feupdateenv
and define as weak alias of __feupdateenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/i386/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/powerpc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feupdateenv.c
(__feupdateenv): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/tile/math_private.h (__feupdateenv): New inline
function.
* sysdeps/x86_64/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/generic/math_private.h (default_libc_feupdateenv): Call
__feupdateenv instead of feupdateenv.
(default_libc_feupdateenv_test): Likewise.
(libc_feresetround_ctx): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of fesetround by making it a weak alias of
__fesetround and making the affected code call __fesetround. An
existing __fesetround function in fenv_libc.h for powerpc is renamed
to __fesetround_inline.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fesetround failures disappear from the linknamespace
test results (feupdateenv remains to be addressed to complete fixing
bug 17748).
[BZ #17748]
* include/fenv.h (__fesetround): Declare. Use libm_hidden_proto.
* math/fesetround.c (fesetround): Rename to __fesetround and
define as weak alias of __fesetround. Use libm_hidden_weak.
* sysdeps/aarch64/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/alpha/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/arm/fesetround.c (fesetround): Likewise.
* sysdeps/hppa/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/i386/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/ia64/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/m68k/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/mips/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/powerpc/fpu/fenv_libc.h (__fesetround): Rename to
__fesetround_inline.
* sysdeps/powerpc/fpu/fenv_private.h (libc_fesetround_ppc): Call
__fesetround_inline instead of __fesetround.
* sysdeps/powerpc/fpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak. Call __fesetround_inline instead of
__fesetround.
* sysdeps/powerpc/nofpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak.
* sysdeps/powerpc/powerpc32/e500/nofpu/fesetround.c (fesetround):
Likewise.
* sysdeps/s390/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/sh/sh4/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/sparc/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/tile/math_private.h (__fesetround): New inline function.
* sysdeps/x86_64/fpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak.
* sysdeps/generic/math_private.h (default_libc_fesetround): Call
__fesetround instead of fesetround.
(default_libc_feholdexcept_setround): Likewise.
(libc_feholdsetround_ctx): Likewise.
(libc_feholdsetround_noex_ctx): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of fesetenv by making it a weak alias of
__fesetenv and making the affected code (including various copies of
feupdateenv which also gets called from C90 functions) call
__fesetenv.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fesetenv failures disappear from the linknamespace
test results (fsetround and feupdateenv remain to be addressed to
complete fixing bug 17748).
[BZ #17748]
* include/fenv.h (__fesetenv): Use libm_hidden_proto.
* math/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv
and define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/alpha/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/arm/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/fesetenv.c (fesetenv): Likewise.
* sysdeps/i386/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/ia64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/m68k/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/mips/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/powerpc/fpu/fesetenv.c (__fesetenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fesetenv.c (__fesetenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fesetenv.c (__fesetenv):
Likewise.
* sysdeps/s390/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fesetenv.c (fesetenv): Likewise.
* sysdeps/sparc/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/tile/math_private.h (__fesetenv): New inline function.
* sysdeps/x86_64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv
and define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/generic/math_private.h (default_libc_fesetenv): Use
__fesetenv instead of fesetenv.
(libc_feresetround_noex_ctx): Likewise.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/hppa/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/i386/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/powerpc/nofpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feupdateenv.c
(__feupdateenv): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/x86_64/fpu/feupdateenv.c (__feupdateenv): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of feholdexcept by making it a weak alias of
__feholdexcept and making the affected code call __feholdexcept.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that feholdexcept failures disappear from the
linknamespace test failures (fesetenv, fsetround and feupdateenv
remain to be addressed to complete fixing bug 17748).
[BZ #17748]
* include/fenv.h (__feholdexcept): Declare. Use
libm_hidden_proto.
* math/feholdexcpt.c (feholdexcept): Rename to __feholdexcept and
define as weak alias of __feholdexcept. Use libm_hidden_weak.
* sysdeps/aarch64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/alpha/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/arm/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/hppa/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/i386/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/ia64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/m68k/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/mips/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/nofpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feholdexcpt.c
(feholdexcept): Likewise.
* sysdeps/s390/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/sh/sh4/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/sparc/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/x86_64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/generic/math_private.h (default_libc_feholdexcept): Use
__feholdexcept instead of feholdexcept.
(default_libc_feholdexcept_setround): Likewise.
Platforms with 64-bit registers where 32-bit values need to have the
high 32 bits set in a particular way need to have an explicit cast
when using the 64-bit sysdeps/ieee754/dbl-64/wordsize-64 version
of llround() as lround(). This includes tilegx32, and likely MIPS.
x32 does not need this, and AArch64 ILP32 will not either. Require
it to be specified in sysdep.h to be explicit.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of fegetround by making it a weak alias of
__fegetround and making the affected code call __fegetround.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fegetround failures disappear from the linknamespace
test failures (feholdexcept, fesetenv, fesetround and feupdateenv
remain to be addressed before bug 17748 is fully fixed, although this
patch may suffice to fix the failures in some cases, when the libc_fe*
functions are implemented but there is no architecture-specific sqrt
implementation in use so there were failures from fegetround used by
sqrt but no other such failures).
[BZ #17748]
* include/fenv.h (__fegetround): Declare. Use libm_hidden_proto.
* math/fegetround.c (fegetround): Rename to __fegetround and
define as weak alias of __fegetround. Use libm_hidden_weak.
* sysdeps/aarch64/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/alpha/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/arm/fegetround.c (fegetround): Likewise.
* sysdeps/hppa/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/i386/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/ia64/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/m68k/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/mips/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/powerpc/fpu/fegetround.c (fegetround): Likewise.
Undefine after rather than before function definition; use
parentheses around function name in definition.
(__fegetround): Also undefine macro after function definition.
* sysdeps/powerpc/nofpu/fegetround.c (fegetround): Rename to
__fegetround and define as weak alias of __fegetround. Use
libm_hidden_weak. Do not undefine as macro.
* sysdeps/powerpc/powerpc32/e500/nofpu/fegetround.c (fegetround):
Likewise.
* sysdeps/s390/fpu/fegetround.c (fegetround): Rename to
__fegetround and define as weak alias of __fegetround. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/sparc/fpu/fegetround.c (fegetround): Likewise.
* sysdeps/tile/math_private.h (__fegetround): New inline function.
* sysdeps/x86_64/fpu/fegetround.c (fegetround): Rename to
__fegetround and define as weak alias of __fegetround. Use
libm_hidden_weak.
* sysdeps/ieee754/dbl-64/e_sqrt.c (__ieee754_sqrt): Use
__fegetround instead of fegetround.
Some C90 libm functions call fegetenv via libc_feholdsetround*
functions in math_private.h. This patch makes them call __fegetenv
instead, making fegetenv into a weak alias for __fegetenv as needed.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fegetenv failures disappear from the linknamespace
test failures (however, similar fixes will also be needed for
fegetround, feholdexcept, fesetenv, fesetround and feupdateenv before
this set of namespace issues covered by bug 17748 is fully fixed and
those linknamespace tests start passing).
[BZ #17748]
* include/fenv.h (__fegetenv): Use libm_hidden_proto.
* math/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv
and define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/alpha/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/arm/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/fegetenv.c (fegetenv): Likewise.
* sysdeps/i386/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/ia64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/m68k/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/mips/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/powerpc/fpu/fegetenv.c (__fegetenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fegetenv.c (__fegetenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fegetenv.c (__fegetenv):
Likewise.
* sysdeps/s390/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fegetenv.c (fegetenv): Likewise.
* sysdeps/sparc/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/tile/math_private.h (__fegetenv): New inline function.
* sysdeps/x86_64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv
and define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/generic/math_private.h (libc_feholdsetround_ctx): Use
__fegetenv instead of fegetenv.
(libc_feholdsetround_noex_ctx): Likewise.
Various C90 and UNIX98 libm functions call feraiseexcept, which is not
in those standards. This causes linknamespace test failures - except
on x86 / x86_64, where feraiseexcept is inline (for the relevant
constant arguments) in bits/fenv.h.
This patch fixes this by making those functions call __feraiseexcept
instead. All changes are applied to all architectures rather than
considering the possibility that some might not be needed in some
cases (e.g. x86) as it seems most maintainable to keep architectures
consistent.
Where __feraiseexcept does not exist, it is added, with feraiseexcept
made a weak alias; where it is a strong alias, it is made weak.
libm_hidden_def / libm_hidden_proto are used with __feraiseexcept
(this might in some cases improve code generation for existing calls
to __feraiseexcept in some code on some architectures). Where there
are dummy feraiseexcept macros (on architectures without
floating-point exceptions support, to avoid compile errors from
references to undefined FE_* macros), corresponding dummy
__feraiseexcept macros are added. And on x86, to ensure
__feraiseexcept calls still get inlined, the inline function in
bits/fenv.h is refactored so that most of it can be reused in an
inline __feraiseexcept in a separate include/bits/fenv.h.
Calls are changed in C90/UNIX98 functions, but generally not in
functions missing from those standards. They are also changed in
libc_fe* functions (on the basis that those might be used in any libm
function), and in feupdateenv (on the same basis - may be used, via
default libc_*, in any libm function - of course feupdateenv will need
changing to __feupdateenv in a subsequent patch to make that fully
namespace-clean).
No __feraiseexcept is added corresponding to the feraiseexcept in
powerpc bits/fenvinline.h, because that macro definition is
conditional on !defined __NO_MATH_INLINES, and glibc libm is built
with -D__NO_MATH_INLINES, so changing internal calls to use
__feraiseexcept should make no difference.
Tested for x86_64 (testsuite; the only change in disassembly of
installed shared libraries is a slight code reordering in clog10, of
no apparent significance). Also tested for MIPS, where (in the
configuration tested) it eliminates math.h linknamespace failures for
n32 and n64 (some for o32 remain because of other issues).
[BZ #17723]
* include/fenv.h (__feraiseexcept): Use libm_hidden_proto.
* math/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/arm/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/hppa/fpu/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/i386/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/ia64/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/m68k/coldfire/fpu/fraiseexcpt.c (feraiseexcept):
Likewise.
* sysdeps/microblaze/math_private.h (__feraiseexcept): New macro.
* sysdeps/mips/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/powerpc/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fraiseexcpt.c (__feraiseexcept): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fraiseexcpt.c
(__feraiseexcept): Likewise.
* sysdeps/s390/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/sparc/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/tile/math_private.h (__feraiseexcept): New macro.
* sysdeps/unix/sysv/linux/alpha/fraiseexcpt.S (__feraiseexcept):
Use libm_hidden_def.
* sysdeps/x86_64/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
(feraiseexcept): Define as weak not strong alias. Use
libm_hidden_weak.
* sysdeps/x86/fpu/bits/fenv.h (__feraiseexcept_invalid_divbyzero):
New inline function. Factored out of ...
(feraiseexcept): ... here. Use __feraiseexcept_invalid_divbyzero.
* sysdeps/x86/fpu/include/bits/fenv.h: New file.
* math/e_scalb.c (invalid_fn): Call __feraiseexcept instead of
feraiseexcept.
* math/w_acos.c (__acos): Likewise.
* math/w_asin.c (__asin): Likewise.
* math/w_ilogb.c (__ilogb): Likewise.
* math/w_j0.c (y0): Likewise.
* math/w_j1.c (y1): Likewise.
* math/w_jn.c (yn): Likewise.
* math/w_log.c (__log): Likewise.
* math/w_log10.c (__log10): Likewise.
* sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/aarch64/fpu/math_private.h
(libc_feupdateenv_test_aarch64): Likewise.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/arm/fenv_private.h (libc_feupdateenv_test_vfp): Likewise.
* sysdeps/arm/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Likewise.
__tls_get_addr/___tls_get_addr is always defined in ld.so. There is
no need to call them via PLT inside ld.so. This patch adds the hidden
__tls_get_addr/___tls_get_addr aliases and calls them directly from
_dl_tlsdesc_dynamic. There is no need to set up the EBX register in
i386 _dl_tlsdesc_dynamic when calling the hidden ___tls_get_addr.
* elf/dl-tls.c (__tls_get_addr): Provide the hidden definition
if not defined.
* sysdeps/i386/dl-tls.h (___tls_get_addr): Provide the hidden
definition.
* sysdeps/i386/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden ___tls_get_addr.
* sysdeps/x86_64/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden __tls_get_addr.
* sysdeps/generic/localplt.data (__tls_get_addr): Removed.
* sysdeps/unix/sysv/linux/i386/localplt.data (___tls_get_addr):
Likewise.
_dl_start_user in ld.so calls the local function _dl_init. There is no
need to go through PLT.
* sysdeps/i386/dl-machine.h (_dl_start_user): Remove @PLT
from "call _dl_init@PLT".
* sysdeps/x86_64/dl-machine.h (_dl_start_user): Likewise.
from "call _dl_init@PLT".
Since x32 returns 32-bit long int and 64-bit long long int in the
same 64-bit register, we make the 32b-bit lround an alias of the
64-bit llround. Add -Wno-error for x32 build to silence the compiler.
On x86_64, memrchr (not a standard function) is defined as a strong
symbol, instead of a weak alias of __memrchr as on other
architectures. This results in linknamespace test failures from the
use of __memrchr from dirname. (Not a conformance issue because of
the mem* reservation, but contrary to glibc conventions.) This patch
makes x86_64 follow other architectures by defining memrchr as a weak
alias.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch).
[BZ #17719]
* sysdeps/x86_64/memrchr.S (memrchr): Rename to __memrchr and
define as weak alias of __memrchr.
(__memrchr): Do not define as strong alias of memrchr.
* conform/Makefile (test-xfail-XPG4/libgen.h/linknamespace):
Remove variable.
(test-xfail-UNIX98/libgen.h/linknamespace): Likewise.
(test-xfail-XOPEN2K/libgen.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/libgen.h/linknamespace): Likewise.
Use of strftime, a C90 function, ends up bringing in wcschr, which is
not a C90 function. Although not a conformance bug (C90 reserves
wcs*), this is still contrary to glibc practice of avoiding relying on
those reservations; this patch arranges for the internal uses to use
__wcschr instead, with wcschr being a weak alias. This is more
complicated than some such patches because of the various IFUNC
definitions of wcschr (which include code redefining libc_hidden_def
in a way that involves creating __GI_wcschr manually and so also needs
to create __GI___wcschr after the change of internal uses to use
__wcschr).
Tested for x86_64 and 32-bit x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
2014-12-10 Joseph Myers <joseph@codesourcery.com>
Adhemerval Zanella <azanella@linux.vnet.ibm.com>
[BZ #17634]
* wcsmbs/wcschr.c [!WCSCHR] (wcschr): Define as __wcschr.
Undefine after defining function. Define as weak alias of
__wcschr. Use libc_hidden_weak.
* include/wchar.h (__wcschr): Declare. Use libc_hidden_proto.
* sysdeps/i386/i686/multiarch/wcschr-c.c [IS_IN (libc) && SHARED]
(libc_hidden_def): Also define __GI___wcschr alias.
* sysdeps/i386/i686/multiarch/wcschr.S (wcschr): Rename to
__wcschr and define as weak alias of __wcschr.
* sysdeps/powerpc/power6/wcschr.c [!WCSCHR] (WCSCHR): Define as
__wcschr.
[!WCSCHR] (DEFAULT_WCSCHR): Define.
[DEFAULT_WCSCHR] (__wcschr): Use libc_hidden_def.
[DEFAULT_WCSCHR] (wcschr): Define as weak alias of __wcschr. Use
libc_hidden_weak. Do not use libc_hidden_def.
* sysdeps/powerpc/powerpc32/power4/multiarch/wcschr-ppc32.c
[IS_IN (libc) && SHARED] (libc_hidden_def): Also define
__GI___wcschr alias.
* sysdeps/powerpc/powerpc32/power4/multiarch/wcschr.c
[IS_IN (libc)] (wcschr): Define as macro expanding to
__redirect_wcschr.
[IS_IN (libc)] (__wcschr_ppc): Use __redirect_wcschr in typeof.
[IS_IN (libc)] (__wcschr_power6): Likewise.
[IS_IN (libc)] (__wcschr_power7): Likewise.
[IS_IN (libc)] (__libc_wcschr): New. Define with libc_ifunc
instead of wcschr.
[IS_IN (libc)] (wcschr): Undefine and define as weak alias of
__libc_wcschr.
[!IS_IN (libc)] (libc_hidden_def): Do not undefine and redefine.
* sysdeps/powerpc/powerpc64/multiarch/wcschr.c (wcschr): Rename to
__wcschr and define as weak alias of __wcschr. Use
libc_hidden_builtin_def.
* sysdeps/x86_64/wcschr.S (wcschr): Rename to __wcschr and define
as weak alias of __wcschr. Use libc_hidden_weak.
* time/alt_digit.c (_nl_get_walt_digit): Use __wcschr instead of
wcschr.
* time/era.c (_nl_init_era_entries): Likewise.
* conform/Makefile (test-xfail-ISO/time.h/linknamespace): Remove
variable.
(test-xfail-XPG3/time.h/linknamespace): Likewise.
(test-xfail-XPG4/time.h/linknamespace): Likewise.
This sets __HAVE_64B_ATOMICS if provided. It also sets
USE_ATOMIC_COMPILER_BUILTINS to true if the existing atomic ops use the
__atomic* builtins (aarch64, mips partially) or if this has been
tested (x86_64); otherwise, this is set to false so that C11 atomics will
be based on the existing atomic operations.
This patch removes a conditional on __GNUC_PREREQ (4, 6) in x86_64
code.
Tested for x86_64 that installed shared libraries are unchanged by
this patch. Committed (I think this file reasonably comes under math
maintainership).
* sysdeps/x86_64/fpu/dla.h [__FMA4__ && __GNUC_PREREQ (4, 6)]
(DLA_FMS): Make definition conditional only on [__FMA4__].
[__FMA4__ && !__GNUC_PREREQ (4, 6)] (DLA_FMS): Remove conditional
definition.
rawmemchr is not an ISO C function, but __rawmemchr is called from ISO
C functions, so rawmemchr should be a weak alias. On most
architecture it is, but x86_64 defines the function as rawmemchr with
__rawmemchr as a strong alias. This patch makes x86_64 follow the
same arrangements as other architectures.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch).
[BZ #17572]
* sysdeps/x86_64/rawmemchr.S (rawmemchr): Rename to __rawmemchr
and define as weak alias of __rawmemchr.
(__rawmemchr): Do not define as strong alias of rawmemchr.
Continuing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch eliminates its use for _dl_init. Since _dl_init was already
declared with hidden visibility, creating a second hidden alias for it
was completely pointless, so this patch replaces all uses of
_dl_init_internal with plain _dl_init instead of using hidden_proto /
hidden_def (which are only needed when you want a hidden alias for a
non-hidden symbol; it's quite possible there are cases where they are
used but don't need to be because the symbol in question is not part
of the public ABI and is only used within a single library, so using
attributes_hidden instead would suffice).
Tested for x86_64 that installed stripped shared libraries are
unchanged by the patch.
[BZ #14132]
* elf/dl-init.c (_dl_init): Don't use INTDEF.
* sysdeps/aarch64/dl-machine.h (RTLD_START): Use _dl_init instead
of _dl_init_internal.
* sysdeps/alpha/dl-machine.h (RTLD_START): Likewise.
* sysdeps/arm/dl-machine.h (RTLD_START): Likewise.
* sysdeps/hppa/dl-machine.h (RTLD_START): Likewise.
* sysdeps/i386/dl-machine.h (RTLD_START): Likewise.
* sysdeps/ia64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/m68k/dl-machine.h (RTLD_START): Likewise.
* sysdeps/microblaze/dl-machine.h (RTLD_START): Likewise.
* sysdeps/mips/dl-machine.h (RTLD_START): Likewise.
* sysdeps/powerpc/powerpc32/dl-start.S (_start): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (RTLD_START): Likewise.
* sysdeps/s390/s390-64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sh/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/tile/dl-start.S (_start): Likewise.
* sysdeps/x86_64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/x86_64/x32/dl-machine.h (RTLD_START): Likewise.
The compiler doesn't know that the cpuid asm statement in intel_check_word
will trash RBX. We are lucky that it doesn't cause any problems since
RBX is also used by compiler for other purposes so that RBX is saved and
restored. This patch replaces it with __cpuid_count.
[BZ #17259]
* sysdeps/x86_64/cacheinfo.c (intel_check_word): Replace cpuid
asm statement with __cpuid_count.
In this patch we take advantage of HSW memory bandwidth, manage to
reduce miss branch prediction by avoiding using branch instructions and
force destination to be aligned with avx instruction.
The CPU2006 403.gcc benchmark indicates this patch improves performance
from 2% to 10%.
Various architectures have files such as sysdeps/<arch>/shlib-versions
whose contents are in fact entirely Linux-specific, relating only to
the symbol / shared library versions for the port to Linux on that
architecture, when any future port to a different OS on that
architecture would use the symbol version of the glibc release it goes
in, as standard for new ports.
This patch moves such files under sysdeps/unix/sysv/linux/, merging in
the contents of sysdeps/<arch>/nptl/shlib-versions in the process.
The only bits not moved are those relating to libgcc_s versions, which
don't appear OS-specific in the same way that glibc's symbol versions
so. It deliberately does not change the regular expressions given for
matching configurations in each file; some match only Linux although
not Linux-specific, or match other OSes although Linux-specific. It
is with a view to at least the following further cleanups:
* Move architecture-specific content from the toplevel shlib-versions
and nptl/shlib-versions into sysdeps shlib-versions files, so
eliminating another difference between ex-ports and non-ex-ports
architectures.
* Likewise, for OS-specific content in shlib-versions files.
* At that point, the first field in shlib-versions files (the regular
expression matching a configuration triplet) should be redundant, so
eliminate that field and leave shlib-versions selection working
purely on a sysdeps basis (with limited use of %ifdef in
shlib-versions files when needed) rather than having its own
separate mechanism to select what configuration information is
relevant.
* Move the build of gnu/lib-names.h to a similar mechanism to that
used for gnu/stubs.h (each library build installing a version of the
header specifically for that build), so we can eliminate the
duplication of soname information in the makefiles and get it purely
from shlib-versions files again.
There may be other cleanups possible as well (in particular, I'm not
sure that all cases where the same "Earliest symbol set" information
is repeated for many different libraries actually should need to
repeat it rather than specifying it just once for DEFAULT for the
given configuration, and separately specifying any non-default choices
of soname).
Tested x86_64 that the installed shared libraries are unchanged by
this patch.
* sysdeps/aarch64/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/aarch64/shlib-versions: ... here.
* sysdeps/alpha/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/alpha/shlib-versions: ... here.
* sysdeps/arm/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/arm/shlib-versions: ... here.
* sysdeps/hppa/shlib-versions: Move all contents except for
libgcc_s entry to ...
* sysdeps/unix/sysv/linux/hppa/shlib-versions: ... here. Merge in
entry from ...
* sysdeps/hppa/nptl/shlib-versions: ... here. Remove file.
* sysdeps/ia64/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/ia64/shlib-versions: ... here. Merge in
entry from ...
* sysdeps/ia64/nptl/shlib-versions: ... here. Remove file.
* sysdeps/m68k/coldfire/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/m68k/coldfire/shlib-versions: ... here.
* sysdeps/microblaze/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/microblaze/shlib-versions: ... here.
* sysdeps/mips/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/mips/shlib-versions: ... here. Merge in
entry from ...
* sysdeps/mips/nptl/shlib-versions: ... here. Remove file.
* sysdeps/tile/shlib-versions: Move to ...
* sysdeps/unix/sysv/linux/tile/shlib-versions: ... here.
* sysdeps/unix/sysv/linux/x86_64/64/shlib-versions: Merge in entry
from ...
* sysdeps/x86_64/64/shlib-versions: ... here. Remove file.
* sysdeps/unix/sysv/linux/x86_64/x32/shlib-versions: Merge in
entry from ...
* sysdeps/x86_64/x32/shlib-versions: ... here. Remove file.
* config.h.in (HAVE_AVX2_SUPPORT): New #undef.
* sysdeps/i386/configure.ac: Set HAVE_AVX2_SUPPORT and
config-cflags-avx2.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
memset-avx2 only if config-cflags-avx2 is yes.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list):
Tests for memset_chk and memset only if HAVE_AVX2_SUPPORT is
defined.
* sysdeps/x86_64/multiarch/memset.S: Define multiple versions
only if HAVE_AVX2_SUPPORT is defined.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
The definition of SHARED is tested with #ifdef pretty much everywhere
apart from these few places. The tlsdesc.c code seems to be copy and
pasted to a few architectures and there is one instance in the hppa
startup code.
ChangeLog:
2014-07-09 Will Newton <will.newton@linaro.org>
* sysdeps/aarch64/tlsdesc.c (_dl_unmap): Test SHARED with #ifdef.
* sysdeps/arm/tlsdesc.c (_dl_unmap): Likewise.
* sysdeps/i386/tlsdesc.c (_dl_unmap): Likewise.
* sysdeps/x86_64/tlsdesc.c (_dl_unmap): Likewise.
* sysdeps/hppa/start.S (_start): Likewise.
shlib-versions files can contain ABI lines that map triplets to a
canonical ABI name. This name was once used for various purposes
where test baseline files for different ABIs went in a single
directory; now these purposes use sysdeps files, generation of headers
which have per-ABI variants uses abi-variants and related Makefile
variables and the shlib-versions ABI names are unused. This patch
duly removes those lines and associated build system support for them.
Tested for x86_64 (both a full testsuite run and confirming the
installed shared libraries are unchanged by the patch).
* Makeconfig ($(common-objpfx)soversions.mk): Do not generate
abi-name definition.
* scripts/soversions.awk: Do not handle or generate ABI lines.
* shlib-versions: Remove ABI entries.
* sysdeps/powerpc/nofpu/shlib-versions: Remove file.
* sysdeps/x86_64/x32/shlib-versions: Remove ABI entry.
This patch fixes bugs 16561 and 16562, bad results of yn in overflow
cases in non-default rounding modes, both because an intermediate
overflow in the recurrence does not get detected if the result is not
an infinity and because an overflowing result may occur in the wrong
sign. The fix is to set FE_TONEAREST mode internally for the parts of
the function where such overflows can occur (which includes the call
to y1 - where yn is used to compute a Bessel function of order -1,
negating the result of y1 isn't correct for overflowing results in
directed rounding modes) and then compute an overflowing value in the
original rounding mode if the to-nearest result was an infinity.
Tested x86_64 and x86 and ulps updated accordingly. Also tested for
mips64 and powerpc32 to test the ldbl-128 and ldbl-128ibm changes.
(The tests for these bugs were added in my previous y1 patch, so the
only thing this patch has to do with the testsuite is enable yn
testing in all rounding modes.)
[BZ #16561]
[BZ #16562]
* sysdeps/ieee754/dbl-64/e_jn.c: Include <float.h>.
(__ieee754_yn): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c: Include <float.h>.
(__ieee754_ynf): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-128/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-96/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/i386/fpu/fenv_private.h [!__SSE2_MATH__]
(libc_feholdsetround_ctx): New macro.
* math/libm-test.inc (yn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps : Likewise.
This patch removes configure tests for assembler CFI support (and
thereby eliminates an architecture-specific case in the main
configure.ac), instead assuming that support is present
unconditionally.
The main test was added in 2003 around the time CFI support was added
to the assembler. cfi_personality and cfi_lsda support were added to
the assembler in 2006. cfi_sections support was added in 2009, a few
weeks before binutils 2.20 was released; it's in 2.20, the minimum
supported version, so even that configure test is obsolete.
Tested x86_64 that the installed shared libraries are unchanged by
this patch.
* configure.ac (libc_cv_asm_cfi_directives): Remove configure
test.
* configure: Regenerated.
* config.h.in (HAVE_ASM_CFI_DIRECTIVES): Remove macro undefine.
* sysdeps/arm/configure.ac (libc_cv_asm_cfi_directive_sections):
Remove configure test.
* sysdeps/arm/configure: Regenerated.
* sysdeps/nptl/configure.ac: Do not check
libc_cv_asm_cfi_directives.
* sysdeps/nptl/configure: Regenerated.
* sysdeps/x86_64/nptl/configure.ac: Remove file.
* sysdeps/x86_64/nptl/configure: Remove generated file.
* b/sysdeps/generic/sysdep.h [HAVE_ASM_CFI_DIRECTIVES]: Make code
unconditional.
[!HAVE_ASM_CFI_DIRECTIVES]: Remove conditional code.
This patch defines ELF_MACHINE_NO_RELA on all architectures. Tested
only on x86_64 to verify that the sources before and after are
identical except for two instructions that pass the current line
number in dl-machine.h to assert_fail.
This patch fixes spurious underflows from exp10 for arguments near 0
(part of bug 16560; that bug also includes spurious underflows from
exp2, which are not fixed by this patch). The problem is underflows
in the internal computation converting the exp10 argument to arguments
for exp (with extra precision), and the fix is simply to return 1
early for arguments near enough to 0 (just as arguments with large
enough magnitude have their own overflow / underflow logic at the
start of the function).
Tested x86_64 and x86 and ulps updated accordingly; also tested for
powerpc32 and mips64 to validate the ldbl-128ibm and ldbl-128 changes.
[BZ #16560]
* sysdeps/ieee754/dbl-64/e_exp10.c (__ieee754_exp10): Return 1 for
arguments close to 0.
* sysdeps/ieee754/ldbl-128/e_exp10l.c (__ieee754_exp10l):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_exp10l.c (__ieee754_exp10l):
Likewise.
* math/auto-libm-test-in: Add more tests of exp10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch fixes bug 16539, spurious underflow exceptions from x86 /
x86-64 expm1l. The problem is that the computation of a base-2
exponent with extra precision involves spurious underflows for
arguments that are small but not subnormal, so a check is added to
just return the argument in those cases. (If the argument *is*
subnormal, underflowing is correct and the existing code will always
underflow, so it suffices to keep using the existing code in that
case; some expm1 implementations have a bug (bug 16353) with missing
underflow exceptions, but I don't think there's such a bug in this
particular version.)
Tested x86_64 and x86; no ulps updates needed.
(auto-libm-test-out diffs omitted below.)
[BZ #16539]
* sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Just
return the argument for normal arguments with exponent below -64.
* sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]:
Likewise.
* math/auto-libm-test-in: Add another test of expm1.
* math/auto-libm-test-out: Regenerated.
This patch enables testing of cpow in all rounding modes using
ALL_RM_TEST. There were two reasons this was previously deferred:
* MPC has complicated rounding-mode-dependent rules for the signs of
exact zero real or imaginary parts in the result of mpc_pow. Annex
G does not impose any such requirements and I don't think glibc
should try to implement any particular logic here. This patch adds
support for gen-auto-libm-tests passing the IGNORE_ZERO_INF_SIGN
flag to libm-test.inc.
* Error accumulations in some tests in non-default rounding modes
exceed the maximum error permitted in libm-test.inc. This patch
marks the problem tests with xfail-rounding. (It might be possible
to reduce the accumulations a bit by using round-to-nearest when
cpow calls clog, but I don't think there's much point; the
implementation approach for cpow is fundamentally deficient, as
discussed in the existing bug for cpow inaccuracy which can
reasonably be considered to cover these less-inaccurate cases as
well. It's possible that the test "cpow 2 0 10 0" will also need
xfail-rounding on some platforms.)
Tested x86_64 and x86 and ulps updated accordingly.
* math/gen-auto-libm-tests.c: Document use of
ignore-zero-inf-sign.
(input_flag_type): Add value flag_ignore_zero_inf_sign.
(input_flags): Add ignore-zero-inf-sign.
(output_for_one_input_case): Handle flag_ignore_zero_inf_sign.
* math/gen-libm-test.pl (generate_testfile): Handle
ignore-zero-inf-sign.
* math/auto-libm-test-in: Mark some cpow tests with
ignore-zero-inf-sign and some with xfail-rounding.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (cpow_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch fixes bug 16315, bad pow handling of overflow/underflow in
non-default rounding modes. Tests of pow are duly converted to
ALL_RM_TEST to run all tests in all rounding modes.
There are two main issues here. First, various implementations
compute a negative result by negating a positive result, but this
yields inappropriate overflow / underflow values for directed
rounding, so either overflow / underflow results need recomputing in
the correct sign, or the relevant overflowing / underflowing operation
needs to be made to have a result of the correct sign. Second, the
dbl-64 implementation sets FE_TONEAREST internally; in the overflow /
underflow case, the result needs recomputing in the original rounding
mode.
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16315]
* sysdeps/i386/fpu/e_pow.S (__ieee754_pow): Ensure possibly
overflowing or underflowing operations take place with sign of
result.
* sysdeps/i386/fpu/e_powf.S (__ieee754_powf): Likewise.
* sysdeps/i386/fpu/e_powl.S (__ieee754_powl): Likewise.
* sysdeps/ieee754/dbl-64/e_pow.c: Include <math.h>.
(__ieee754_pow): Recompute overflowing and underflowing results in
original rounding mode.
* sysdeps/x86/fpu/powl_helper.c: Include <stdbool.h>.
(__powl_helper): Allow negative argument X and scale negated value
as needed. Avoid passing value outside [-1, 1] to f2xm1.
* sysdeps/x86_64/fpu/e_powl.S (__ieee754_powl): Ensure possibly
overflowing or underflowing operations take place with sign of
result.
* sysdeps/x86_64/fpu/multiarch/e_pow.c [HAVE_FMA4_SUPPORT]:
Include <math.h>.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (pow_test): Use ALL_RM_TEST.
(pow_tonearest_test_data): Remove.
(pow_test_tonearest): Likewise.
(pow_towardzero_test_data): Likewise.
(pow_test_towardzero): Likewise.
(pow_downward_test_data): Likewise.
(pow_test_downward): Likewise.
(pow_upward_test_data): Likewise.
(pow_test_upward): Likewise.
(main): Don't call removed functions.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch makes files using __ASSUME_* macros include
<kernel-features.h> explicitly, rather than relying on some other
header (such as tls.h, lowlevellock.h or pthreadP.h) to include it
implicitly. (I omitted cases where I've already posted or am testing
the patch that stops the file from needing __ASSUME_* at all.) This
accords with the general principle of making source files include the
headers for anything they use, and also helps make it safe to remove
<kernel-features.h> includes from any file that doesn't use
__ASSUME_* (some of those may be stray includes left behind after
increasing the minimum kernel version, others may never have been
needed or may have become obsolete after some other change).
Tested x86_64 that the disassembly of installed shared libraries is
unchanged by this patch.
* nptl/pthread_cond_wait.c: Include <kernel-features.h>.
* nptl/pthread_rwlock_timedrdlock.c: Likewise.
* nptl/pthread_rwlock_timedwrlock.c: Likewise.
* nptl/sysdeps/unix/sysv/linux/lowlevelrobustlock.c: Likewise.
* nscd/nscd.c: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
This patch adds ifunc tests for x86_64 memset_chk and memset. It also
defines HAS_AVX2 with AVX2_Usable since AVX2 may not be usable even if
processor has AVX2.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list):
Add tests for memset_chk and memset.
* sysdeps/x86_64/multiarch/init-arch.h (HAS_AVX2): Defined
with AVX2_Usable.
In this patch we take advantage of HSW memory bandwidth, manage to
reduce miss branch prediction by avoiding using branch instructions and
force destination to be aligned with avx & avx2 instruction.
The CPU2006 403.gcc benchmark indicates this patch improves performance
from 26% to 59%.
* sysdeps/x86_64/multiarch/Makefile: Add memset-avx2.
* sysdeps/x86_64/multiarch/memset-avx2.S: New file.
* sysdeps/x86_64/multiarch/memset.S: Likewise.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
* sysdeps/x86_64/multiarch/rtld-memset.S: Likewise.
This patch fixes __ieee754_logl (-LDBL_MAX) on x86_64 and x86 not to
subtract 1 from its argument and so cause spurious overflow in
FE_DOWNWARD mode. (For any argument strictly less than -1, it doesn't
matter whether or not 1 is subtracted before computing log1p, as long
as the result doesn't overflow to -Inf.)
Tested x86_64 and x86. (This particular case lacks test coverage,
since the testsuite doesn't cover -lieee, but it will be covered by
tests after the following patch to test pow in all rounding modes,
which was the context in which this bug was found.)
[BZ #17022]
* sysdeps/i386/fpu/e_logl.S (__ieee754_logl): Do not subtract 1
from arguments -2 or below.
* sysdeps/i386/i686/fpu/e_logl.S (__ieee754_logl): Likewise.
* sysdeps/x86_64/fpu/e_logl.S (__ieee754_logl): Likewise.
As with other issues of this kind, bug 17042 is log2 (1) wrongly
returning -0 instead of +0 in round-downward mode because of
implementations effectively in terms of log1p (x - 1). This patch
fixes the issue in the same way used for log and log10.
Tested x86_64 and x86 and ulps updated accordingly. Also tested for
mips64 to confirm a fix was needed for ldbl-128 and to validate that
fix (also applied to ldbl-128ibm since that version of log2l is
essentially the same as the ldbl-128 one).
[BZ #17042]
* sysdeps/i386/fpu/e_log2.S (__ieee754_log2): Take absolete value
when x - 1 is zero.
* sysdeps/i386/fpu/e_log2f.S (__ieee754_log2f): Likewise.
* sysdeps/i386/fpu/e_log2l.S (__ieee754_log2l): Likewise.
* sysdeps/ieee754/ldbl-128/e_log2l.c (__ieee754_log2l): Return
0.0L for an argument of 1.0L.
* sysdeps/ieee754/ldbl-128ibm/e_log2l.c (__ieee754_log2l):
Likewise.
* sysdeps/x86_64/fpu/e_log2l.S (__ieee754_log2l): Take absolute
value when x - 1 is zero.
* math/libm-test.inc (log2_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
As with various other issues of this kind, bug 16977 is log10 (1)
wrongly returning -0 rather than +0 in round-downward mode because of
an implementation effectively in terms of log1p (x - 1). This patch
fixes the issue in the same way used for log.
Tested x86_64 and x86 and ulps updated accordingly. Also tested for
mips64 to confirm a fix was needed for ldbl-128 and to validate that
fix (also applied to ldbl-128ibm since that version of logl is
essentially the same as the ldbl-128 one).
[BZ #16977]
* sysdeps/i386/fpu/e_log10.S (__ieee754_log10): Take absolute
value when x - 1 is zero.
* sysdeps/i386/fpu/e_log10f.S (__ieee754_log10f): Likewise.
* sysdeps/i386/fpu/e_log10l.S (__ieee754_log10l): Likewise.
* sysdeps/ieee754/ldbl-128/e_log10l.c (__ieee754_log10l): Return
0.0L for an argument of 1.0L.
* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l):
Likewise.
* sysdeps/x86_64/fpu/e_log10l.S (__ieee754_log10l): Take absolute
value when x - 1 is zero.
* math/libm-test.inc (log10_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Bug 16564 is spurious overflow of log1pl (LDBL_MAX) in FE_UPWARD mode,
resulting from log1pl adding 1 to its argument (for arguments not
close to 0), which overflows in that mode. This patch fixes this by
avoiding adding 1 to large arguments (precisely what counts as large
depends on the floating-point format).
Tested x86_64 and x86, and spot-checked log1pl tests on mips64 and
powerpc64.
[BZ #16564]
* sysdeps/i386/fpu/s_log1pl.S (__log1pl): Do not add 1 to positive
arguments with exponent 65 or above.
* sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Do not add 1 to
arguments 0x1p113L or above.
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Do not add 1
to arguments 0x1p107L or above.
* sysdeps/x86_64/fpu/s_log1pl.S (__log1pl): Do not add 1 to
positive arguments with exponent 65 or above.
* math/auto-libm-test-in: Add more tests of log1p.
* math/auto-libm-test-out: Regenerated.
According to C99/C11 Annex G, cacos applied to a value with real part
+Inf and finite imaginary part should produce a result with real part
+0. glibc wrongly produces a result with real part -0 in FE_DOWNWARD
mode. This patch fixes this by checking for zero results in the
relevant case of non-finite arguments (where there should never be a
result with -0 real part), and converts the tests of cacos to
ALL_RM_TEST.
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16928]
* math/s_cacos.c (__cacos): Ensure zero real part of result from
non-finite arguments is +0.
* math/s_cacosf.c (__cacosf): Likewise.
* math/s_cacosl.c (__cacosl): Likewise.
* math/libm-test.inc (cacos_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
According to C99 and C11 Annex F, acosh (1) should be +0 in all
rounding modes. However, some implementations in glibc wrongly return
-0 in round-downward mode (which is what you get if you end up
computing log1p (-0), via 1 - 1 being -0 in round-downward mode).
This patch fixes the problem implementations, by correcting the test
for an exact 1 value in the ldbl-96 implementation to allow for the
explicit high bit of the mantissa, and by inserting fabs instructions
in the i386 implementations; tests of acosh are duly converted to
ALL_RM_TEST. I believe all the other sysdeps/ieee754 implementations
are already OK (I haven't checked the ia64 versions, but if buggy then
that will be obvious from the results of test runs after this patch is
in).
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16927]
* sysdeps/i386/fpu/e_acosh.S (__ieee754_acosh): Use fabs on x-1
value.
* sysdeps/i386/fpu/e_acoshf.S (__ieee754_acoshf): Likewise.
* sysdeps/i386/fpu/e_acoshl.S (__ieee754_acoshl): Likewise.
* sysdeps/ieee754/ldbl-96/e_acoshl.c (__ieee754_acoshl): Correct
for explicit high bit of mantissa when testing for argument equal
to 1.
* math/libm-test.inc (acosh_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Define FEATURE_INDEX_1 and FEATURE_INDEX_MAX as macros
for use by both assembly and C code. This fixes the
-Wundef error for cases where FEATURE_INDEX_1 was not
defined but used the correct value of 0 for an undefined
macro.
This patch saves and restores bound registers in symbol lookup for x86-64:
1. Branches without BND prefix clear bound registers.
2. x86-64 pass bounds in bound registers as specified in MPX psABI
extension on hjl/mpx/master branch at
https://github.com/hjl-tools/x86-64-psABIhttps://groups.google.com/forum/#!topic/x86-64-abi/KFsB0XTgWYc
Binutils has been updated to create an alternate PLT to add BND prefix
when branching to ld.so.
* config.h.in (HAVE_MPX_SUPPORT): New #undef.
* sysdeps/x86_64/configure.ac: Set HAVE_MPX_SUPPORT.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/dl-trampoline.S (REGISTER_SAVE_AREA): New
macro.
(REGISTER_SAVE_RAX): Likewise.
(REGISTER_SAVE_RCX): Likewise.
(REGISTER_SAVE_RDX): Likewise.
(REGISTER_SAVE_RSI): Likewise.
(REGISTER_SAVE_RDI): Likewise.
(REGISTER_SAVE_R8): Likewise.
(REGISTER_SAVE_R9): Likewise.
(REGISTER_SAVE_BND0): Likewise.
(REGISTER_SAVE_BND1): Likewise.
(REGISTER_SAVE_BND2): Likewise.
(_dl_runtime_resolve): Use them. Save and restore Intel MPX
bound registers when calling _dl_fixup.
This patch fixes incorrect results from catan and catanh of certain
special inputs in round-downward mode (bug 16799), and incorrect
results of __ieee754_logf (+/-0) in round-downward mode (bug 16800)
that show up through catan/catanh when tested in all rounding modes,
but not directly in the testing for logf because the bug gets hidden
by the wrappers.
Both bugs involve a zero that should be +0 being -0 instead: one
computed as (1-x)*(1+x) in the catan/catanh case, and one as (x-x) in
the logf case. The fixes ensure positive zero is used. Testing of
catan and catanh in all rounding modes is duly enabled.
I expect there are various other bugs in special cases in __ieee754_*
functions that are normally hidden by the wrappers but would show up
for testing with -lieee (or in future with -fno-math-errno if we
replace -lieee and _LIB_VERSION with compile-time redirection to new
*_noerrno symbol names).
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16799]
[BZ #16800]
* math/s_catan.c (__catan): Avoid passing -0 denominator to atan2
with 0 numerator.
* math/s_catanf.c (__catanf): Likewise.
* math/s_catanh.c (__catanh): Likewise.
* math/s_catanhf.c (__catanhf): Likewise.
* math/s_catanhl.c (__catanhl): Likewise.
* math/s_catanl.c (__catanl): Likewise.
* sysdeps/ieee754/flt-32/e_logf.c (__ieee754_logf): Always divide
by positive zero when computing -Inf result.
* math/libm-test.inc (catan_test): Use ALL_RM_TEST.
(catanh_test): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch fixes bug 16789, incorrect sign of (real part) zero result
from clog and clog10 in round-downward mode, arising from that real
part being computed as 0 - 0. To ensure that an underflow exception
occurred, the code used an underflowing value (the next term in the
series for log1p) in arithmetic computing the real part of the result,
yielding the problematic 0 - 0 computation in some cases even when the
mathematical result would be small but positive. The patch changes
this code to use the math_force_eval approach to ensuring that an
underflowing computation actually occurs. Tests of clog and clog10
are enabled in all rounding modes.
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16789]
* math/s_clog.c (__clog): Use math_force_eval to ensure underflow
instead of using underflowing value in computing result.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/libm-test.inc (clog_test): Use ALL_RM_TEST.
(clog10_test): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch fixes bug 16348, spurious underflows from x86/x86_64 expl
on arguments close to 0. These implementations effectively use expm1
(on the fractional part of the argument) internally, so resulting in
spurious underflows when the result is very close to 1. For arguments
small enough that the round-to-nearest correct result is 1, this patch
uses 1+x instead.
These implementations are also used for exp10l and so the patch fixes
similar issues there (the 0x1p-67 threshold being small enough to be
correct for exp10l as well as expl). But because of spurious
underflows in other exp10 implementations (bug 16560), the tests
aren't added for exp10 at this point - they can be added when the
other exp10 parts of that bug are fixed.
Tested x86_64 and x86; no ulps updates needed.
[BZ #16348]
* sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [!USE_AS_EXPM1L]: Use
1+x for argument with exponent below -67.
* sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [!USE_AS_EXPM1L]:
Likewise.
* math/auto-libm-test-in: Add more tests of exp.
* math/auto-libm-test-out: Regenerated.
Bug 16198 is x86_64 fegetenv wrongly masking exceptions for which
traps are enabled, because that's a side-effect of the fnstenv
instruction. This patch fixes it to use fldenv immediately after
fnstenv, like the i386 version. Tested x86_64 and x86.
[BZ #16198]
* sysdeps/x86_64/fpu/fegetenv.c (fegetenv): Use fldenv after
fnstenv.
* math/test-fenv-preserve.c: New file.
* math/Makefile (tests): Add test-fenv-preserve.
gen-auto-libm-tests presently allows but does not require underflow
exceptions for results with magnitude in the range (greatest
subnormal, least normal].
In some cases, the magnitude of the exact result is very slightly
above the least normal, but rounding in the implementation results in
it effectively computing an infinite-precision result that is slightly
below the least normal, so raising an underflow exception. This is in
accordance with the documented accuracy goals, but results in
testsuite failures.
This patch changes the logic to allow underflows when the mathematical
result is up to 0.5ulp above the least normal (so in any case where
the round-to-nearest result is the least normal). Ideally underflows
in all these cases would be accepted only when an underflow with the
actual result is consistent with the rounding mode (in FE_TOWARDZERO
mode, a return value of the least normal implies that the
infinite-precision result did not underflow so there should be no
underflow exception, for example), so as to match the documented goals
more precisely - whereas at present the tests for exceptions are
completely independent of the tests of the returned values. (The same
applies to overflow exceptions as well - they too should be checked
for consistency with the result, as in FE_TOWARDZERO mode a result
1ulp below the largest finite value should be inconsistent with an
overflow exception and cause a failure with overflow rather than
simply being considered a 1ulp error when overflow is expected.) But
the present patch at least deals with the cases causing spurious
failures so that (a) certain existing tests no longer need to be
marked as having spurious exceptions (such markings in
auto-libm-test-in end up applying to more cases than just those they
are needed for) and (b) log1p can be tested in all rounding modes
without introducing more such failures. This patch duly moves tests
of log1p to ALL_RM_TEST.
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16357]
[BZ #16599]
* math/gen-auto-libm-tests.c (fp_format_desc): Add field
min_plus_half.
(fp_formats): Update initializers.
(init_fp_formats): Initialize new field.
(output_for_one_input_case): Allow underflow for results up to
min_plus_half.
* math/libm-test.inc (log1p_test): Use ALL_RM_TEST.
* math/auto-libm-test-in: Don't mark some underflows from asin and
atanh as spurious.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
My recent exp patch introduced warnings about implicit __isinf
declarations in exp because e_exp.c didn't include <math.h>. This
patch fixes this. Because <math.h> can't be included after
<math_private.h> (because of macro definitions of __nan*), it was
necessary to put an include in sysdeps/x86_64/fpu/multiarch/e_exp.c as
well.
Tested x86_64.
* sysdeps/ieee754/dbl-64/e_exp.c: Include <math.h>.
* sysdeps/x86_64/fpu/multiarch/e_exp.c
[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Likewise.