We can't just pretend we have an identity matrix when we are actually
scaling. This fixes the node editor sometimes not drawing things when
rendering to a texture. We were mistakenly discaring render nodes
because the bounds transformation was wrong.
We stuff both gl-drawn and cairo-drawn textures into the same cache, so
we can't really assume that we need to draw any of them flipped or not.
Fix this by drawing fallback stuff upside down and then using
upside-down vertex data for everything.
Fixes#1897
Apparently genTextures and friends only "reserves names", initializing
them will actually create them. Using glObjectLabel on textures before
initializing them will throw a GL_INVALID_VALUE error.
When rendering to a texture, collecting the render ops might bind a
different framebuffer, so bind the one we want again before doing the
actual rendering.
This adds debug groups in various places, including the debug
nodes if those are in use. This makes the traces in tools like
renderdoc much easier to read.
GL keeps the unoform state per-program, but not per-frame. So, we can't
pretend that this works for us. Keep the RenderOpBuilder around for the
entire lifetime of the renderer instead.
This fixes rendering to a texture on intel hardware. The glClear calls
would throw a GL_FRAMEBUFFER_INCOMPLETE error here, because the
gsk_gl_driver_begin_frame() call in do_render() reset the framebuffer
object in use.
We don't want the new transform while drawing things on a texture.
Instead, only apply the new transform matrix when adding the final
texture drawing ops.
This fixes the stack cube rotation transition to at least look somewhat
better.
Make the API expect a tranform of the proper category instead of
doing the check ourselves and returning TRUE/FALSE.
The benefit is that the mai use case is switch (transform->category)
statements and in those we know the category and don't need to check
TRUE/FALSE.
Using the wrong matrix will now cause a g_warning().
Since we can do partial redraws, dropping every shadow that's been
unused for one frame happens too fast. This is also a problem when a
shadow gets drawn on a texture for a few frames.
This can happen for certain transform nodes. The transform node's
child's bounds are fine, but the transform node bounds are all nan.
Just ignore those bounds since we can't meaningfully render them anyway.
They were a neat idea while they lasted. But now, it's time for
categorized transform nodes, where matrices with
GSK_MATRIX_CATEGORY_2D_TRANSLATE are the exact replacement.
Renderers have not been adapted for this purpose, so they (continue to)
run slow paths.
The first set of glyphs is created with a timestamp of 1. Later we
subtract the glyph timestamp from the cache timestamp, meaning we end up
with numbers ending in 9, e.g. 59. Now unfortunately !(60 <= 59), so we
do not end up incrasing the old_pixels count of the cache. Later we then
call lookup() and DEcrease the old_pixels count, which makes the
unsigned int wrap and cause a huge old_pixels value, which causes us to
drop the cache.
Some of the flags got lost in the meson transition or were demoted from
error flags to warning flags.
This commit reintroduces them.
It also includes fixes for the code that had warnings with those flags.
The big one being -Wshadow.
This broke the overlay blur demoe when resizing the window to a size
that would completely move the image below a button, causing the
GtkSnapshot code to remove the clip node below the blur node.