Based on a patch by Stefan Dösinger.
Metal cannot do signedness conversion on vertex attributes, and for good
reason. Putting a `uint4` into an `int4`, or a `char4` into a `uint4`,
would lose those values that are outside the range of the target type.
But putting a `uchar4` into a `short4` or an `int4`, or a `ushort4` into
an `int4`, should work. In that case, force the signedness in the shader
to match the declared type of the host.
Unfortunately, I don't really know how to automatically test this. This
remapping is done based on input parameters normally supplied by
MoltenVK. I'm not sure how we'd set this up for the command-line
`spirv-cross` tool.
Don't use `addsat()`/`subsat()`; that'll erroneously flag cases where
the sum is exactly the maximum integer value, or the difference is
exactly 0. Also, correct the condition for the `select()` function; it's
basically `mix()` with a boolean factor.
(What was I *thinking*?)
In GLSL, 8-bit types require GL_EXT_shader_8bit_storage. 16-bit types
can use either GL_AMD_gpu_shader_int16/GL_AMD_gpu_shader_half_float or
GL_EXT_shader_16bit_storage.
When trying to validate buffer sizes, we usually need to bail out when
using SpecConstantOps, but for some very specific cases where we allow
unsized arrays currently, we can safely allow "unknown" sized arrays as
well.
This is probably the best we can do, when we have even more difficult
cases than this, we throw a more sensible error message.
This is a large refactor which splits out the SPIR-V parser from
Compiler and moves it into its more appropriately named Parser module.
The Parser is responsible for building a ParsedIR structure which is
then consumed by one or more compilers.
Compiler can take a ParsedIR by value or move reference. This should
allow for optimal case for both multiple compilations and single
compilation scenarios.
Even as of Metal 2.1, MSL still doesn't support arrays of buffers
directly. Therefore, we must manually expand them. In the prologue, we
define arrays holding the argument pointers; these arrays are what the
transpiled code ends up referencing. We might be able to do similar
things for textures and samplers prior to MSL 2.0.
Speaking of which, also enable texture arrays on iOS MSL 1.2.
It'll be useful to have an "auxiliary buffer" for other builtins--e.g.
`DrawIndex` (which should be easier to implement now), or `ViewIndex`
when someone gets around to implementing multiview.
Pass this buffer to leaf functions as well.
Test that we handle this for integer textures as well.
It's intended to be used with MoltenVK to support arbitrary
`VkComponentMapping` settings. The idea is that MoltenVK will pass a
buffer (which it set to some buffer index that isn't being used)
containing packed versions of the `VkComponentMapping` struct, one for
each sampled image.
Yes, this is horribly ugly. It is unfortunately necessary. Much of the
ugliness is to support swizzling gather operations, where we need to
alter the component that the gather operates on--something complicated
by the `gather()` method requiring the passed-in component to be a
constant expression. It doesn't even support swizzling gathers on depth
textures, though I could add that if it turns out we need it.
This requires MSL 2.0+.
Also, force `ViewportIndex` and `Layer` to be defined as the correct
type, which is always `uint` in MSL.
Since Metal doesn't yet have geometry shaders, the vertex shader (or
tessellation evaluation shader == "post-tessellation vertex shader" in
Metal jargon) is the only kind of shader that can set this output. This
currently requires an extension to Vulkan, which causes validation of
the SPIR-V binaries for the test cases to fail. Therefore, the test
cases are marked "invalid", even though they're actually perfectly valid
SPIR-V--they just won't work without the
`SPV_EXT_shader_viewport_index_layer` extension.
This is somewhat tricky, because in MSL this value is obtained through a
function, `get_sample_position()`. Since the call expression is an
rvalue, it can't be passed by reference, so functions get a copy
instead.
This was the last piece preventing us from turning on sample-rate
shading support in MoltenVK.
Implement this by flattening outputs and unflattening inputs explicitly.
This allows us to pass down a single struct instead of dealing with the
insanity that would be passing down each flattened member separately.
Remove stage_uniforms_var_id.
Seems to be dead code. Naked uniforms do not exist in SPIR-V for Vulkan,
which this seems to have been intended for. It was also unused elsewhere.
We were passing a constant '1' to `emit_atomic_func_op()`--which caused
us to refer to SPIR-V value `%1`, which is almost certainly not what we
want! What we really want is to add/subtract the literal constant '1'
to/from the memory location.
This only affects the builtin when it is used, and not when it's passed
to a function. It's a lot cleaner than the way I was doing it before.
Remove the `to_expression()` hack.
In SPIR-V, builtin integral vectors can be either signed or unsigned,
but in MSL they're always unsigned. Unfortunately, the MSL spec forbids
implicit conversions between vector types--even if the corresponding
scalar types would implicitly convert. If you try, the result is a
cryptic error message such as:
```
program_source:37:60: error: cannot convert between vector values of different size ('int4' (aka 'vector_int4') and 'vector_uint4' (vector of 4 'unsigned int' values))
float4 r3 = as_type<float4>((as_type<int4>(r0) * gl_LocalInvocationID.xyyy) + as_type<int4>(r2));
~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~
```
Therefore, uses of these builtins must be explicitly cast, since the
rest of the binary likely assumes that the builtin is of its declared
type.
Two varyings (vertex outputs/fragment inputs) might have the same
location but be in different components--e.g. the compiler may have
packed what were two different varyings into a single varying vector.
Giving both varyings the same `[[user]]` attribute won't work--it may
yield unexpected results, or flat out fail to link. We could eventually
pack such varyings into a single vector, but that would require us to
handle the case where the varyings are different types--e.g. a `float`
and a `uint` packed into the same vector. For now, it seems most
prudent to give them unique `[[user]]` locations and let Apple's
compiler work out the best way to pack them.
This roughly matches their semantics in SPIR-V and MSL. For `FMin`,
`FMax`, and `FClamp`, and the Metal functions `fast::min()`,
`fast::max()`, and `fast::clamp()`, the result is undefined if any
operand is NaN. For the 'N' operations and their corresponding MSL
`precise::` functions, the result is consistent with IEEE 754 (first
non-NaN wins; result is NaN if all operands are NaN).
We can only do this with 32-bit floats, though, because Metal only
provides these variants for `float`. `half` only has one variant of
these functions that is presumably consistent with IEEE 754. I guess
that's OK; the SPIR-V spec only says that `F{Min,Max,Clamp}` are
undefined for NaNs. Performance might suffer, though.
The SPIR-V spec says that these check if the operands either are
unordered or satisfy the given condition. So that's just what we'll do,
using Metal's `isunordered()` stdlib function. Apple's optimizers ought
to be able to collapse that to a single unordered compare.
When the name of an alias global variable collides with a global
declaration, MSL would emit inconsistent names, sometimes with the
naming fix, sometimes without, because names were being tracked in two
separate meta blocks. Fix this by always redirecting parameter naming to
the original base variable as necessary.
MSL would force thread const& which would not work if the input argument
came from a different storage class.
Emit proper non-reference arguments for such values.
Add CompilerMSL::Options::disable_rasterization input/output API flag.
Disable rasterization via API flag or when writing to textures.
Disable rasterization when shader declares no output.
Add test shaders for vertex no output and write texture forcing void output.
Some projects build SPIRV-Cross as a single translation unit
and this causes a lot of warnings because the same macro is redeclared
multiple times in the different backends. This make sure that each
backend has its own namespace for internal macros.
Add CompilerMSL::Options::texture_width_max.
Emit and use spvTexelBufferCoord() function to convert 1D
texel buffer coordinates to 2D Metal texture coordinates.
Support flattening StorageOutput & StorageInput matrices and arrays.
No longer move matrix & array inputs to separate buffer.
Add separate SPIRFunction::fixup_statements_in & SPIRFunction::fixup_statements_out
instead of just SPIRFunction::fixup_statements.
Emit SPIRFunction::fixup_statements at beginning of functions.
CompilerMSL track vars_needing_early_declaration.
Pass global output variables as variables to functions that access them.
Sort input structs by location, same as output structs.
Emit struct declarations in order output, input, uniforms.
Regenerate reference shaders to new formats defined by above.
Replace with common/hlsl/msl instead. The old interface had some bad
interaction with overloading which meant you had to up-cast to base
class to be able to use set_options, which was awkward.
Support MSL typedefs to declare 3-row row-major matrices as 3-column matrices.
Allow those matrices to be decorated as packed.
Support transposing those matrices when used.
Modify how member alignments are calculated.
We've hit a bizarre bug on NVidia / macOS 10.13 where if two subsequent draw
calls use two different shaders that both have VS use buffers 0 & 1, but one
declares them in the increasing binding order and another one declares them
in the decreasing binding order, then the second draw call (with the decreasing
order) doesn't get correct data in some cases.
This has been reported to Apple and they will probably fix it at some point;
to work around that it's sufficient to sort resources by their binding index.
For consistency we also sort by type to get a stable order, and output builtins
after that to prevent random bugs like this from happening.
Certain patterns with OpVectorShuffle (and probably others) will cascade
to so large, that they can cause OOM. After we have observed
force_recompile, don't spend unnecessary memory emitting code which will
never be used.
Allow function calls to include globals as arguments.
Allow function calls to include built-ins as arguments.
Include all meta info when creating function args from globals.
Do not manufacture a sampler for Buffer-type sampled images.
Add code option to test_shaders.py to preserve SPIR-V code for interactive debugging.
Support Workgroup (threadgroup) variables.
Mark if SPIRConstant is used as an array length, since it cannot be specialized.
Resolve specialized array length constants.
Support passing an array to MSL function.
Support emitting GLSL array assignments in MSL via an array copy function.
Support for memory and control barriers.
Struct packing enhancements, including packing nested structs.
Enhancements to replacing illegal MSL variable and function names.
Add Compiler::get_entry_point_name_map() function to retrieve entry point renamings.
Remove CompilerGLSL::clean_func_name() as obsolete.
Fixes to types in bitcast MSL functions.
Add Variant::get_id() member function.
Add CompilerMSL::Options::msl_version option.
Add numerous MSL compute tests.
Emit input struct assignment by assigning member by member from stage_in struct.
Map qualified member name from pointer type, not base type.
Add Comiler::expression_type_id() function, similar to expression_type().
Remove unsupported sampler1DShadow from shaders-msl/frag/texture-proj-shadow.frag.
Improve error message response from unsupported depth texture formats.
Fix several integer cast warnings in unrelated code.
Run ./format_all.sh on unrelated files.
They might potentially be used as part of OpStore in the SPIRV-Tools
inliner in some cases.
Implement these as declared variables but without any initializer.
Support BuiltInFragDepth.
Emit interface block for StorageClassUniformConstant.
Throw exception when output or fragment input structs contain matrix or array.
Dynamically created interface structs sorted by location number instead of alphabetically.
Add Compiler::is_array() function.
CompilerMSL add emit_custom_functions() function.
CompilerMSL restrict use of as_type<> cast to necessary conditions.
CompilerMSL refactor get_declared_struct_member_size() and
get_declared_struct_member_alignment() functions, and remove
unnecessary get_declared_type_size() functions.
Add test shaders-msl/vulkan/frag/spec-constant.vk.frag.
CompilerGLSL type_to_glsl() and image_type_glsl() functions support optional object ID.
Add SPIRType::Image::access member to support SPIR-V OpTypeImage access qualifier.
Remove SPIRType::Image::is_read and ::is_written members.
Use DecorationNonReadable and DecorationNonWritable to mark read/write access for image variables.
CompilerMSL emit access qualifiers per image variable, instead of per image type.
CompilerGLSL and CompilerHLSL behaviour is unchanged.
Add bool members is_read and is_written to SPIRType::Image.
Output correct texture read/write access by marking whether textures
are read from and written to by the shader.
Override bitcast_glsl_op() to use Metal as_type<type> functions.
Add implementations of SPIR-V functions inverse(), degrees() & radians().
Map inverseSqrt() to rsqrt().
Map roundEven() to rint().
GLSL functions imageSize() and textureSize() map to equivalent
expression using MSL get_width() & get_height() functions.
Map several SPIR-V integer bitfield functions to MSL equivalents.
Map SPIR-V atomic functions to MSL equivalents.
Map texture packing and unpacking functions to MSL equivalents.
Refactor existing, and add new, image query functions.
Reorganize header lines into includes and pragmas.
Simplify type_to_glsl() logic.
Add MSL test case vert/functions.vert for added function implementations.
Add MSL test case comp/atomic.comp for added function implementations.
test_shaders.py use macOS compilation for MSL shader compilation validations.
WebGL supports lod texture funcs only in fragment
shaders but SPIR-V supports only lod texture funcs
in vertex shaders. This reverts calls which were
forced (infered from using a 0 constant) to use
an lod to plain calls in vertex shaders when
using legacy es.
Remove unnecessary use of std:: prefix in spirv_msl.cpp.
Use typedef instead of #define.
spirv-cross deprecate --metal CLI option and replace with --msl option.
CompilerMSL accesses options using same design pattern as CompilerGLSL and CompilerHLSL.
CompilerMSL support setting VA & rez binding specs via either constructor or compile() method overload.
CompilerMSL support single UBO packing and padding in single pass.
spriv_cross app (main.cpp) supports turning off UBO packing and padding via command line option.
Add MSL UBO alignment test shader.
spirv_msl optionally add padding and packing to allow MSL
struct members to align with SPIR-V struct alignments.
spirv_cross add convenience methods for testing Decorations.
spirv_glsl replace member_decl() function with new emit_stuct_member().
Allow struct member types to be marked as packed via DecorationCPacked decoration.
Compiler MSL support DimBuffer as image dimension.
CompilerMSL check texture coordinate result type dimension before adding swizzles.
Update MSL reference shaders affected by this update.
Don't emit automatic sampler when using texture read().
Convert tex coords to uintN() when using texture read().
Emit face when read()ing cube textures.
Do not emit function prototypes. If secondary functions are used,
suppress compiler -Wmissing-prototypes warnings.
Refactor Compiler::emit_function_prototype() functions to simplify.
Rename Compiler_msl::CustomFunctionHandler to OpCodePreprocessor, and
Compiler_msl::register_custom_functions() to preprocess_op_codes()
to perform more generic preprocessing.
Add space between dynamic header lines and fixed header lines.
Combine all vertex attributes into a single stage_in structure.
Remove unneeded structure members from MSLConfiguration, MSLVertexAttr and Meta::Decoration.
Remove unneeded CompilerMSL functions that supported struct offsets and padding.
CompilerGLSL add to_function_name() and to_function_args() functions to organize
structure of emit_texture_op() function.
CompilerMSL add support for MSL gather(), gather_compare() and sample_compare() functions.
Make Compiler::OpcodeHandler and Compiler::traverse_all_reachable_opcodes protected
instead of private, for use by subclasses.
Add CompilerMSL::CustomFunctionHandler and traverse_all_reachable_opcodes() to detect
active opcodes that require the output of a custom function.
CompilerMSL::custom_function_ops use std::set to retain ordering to improve testability.
CompilerGLSL builtin_to_glsl() function outputs gl_ClipDistance for BuiltInClipDistance
builtin, and includes builtin code in output when handling unknown builtin code.
CompilerMSL uses type ID instead of type object where appropriate to support array types,
where type.self is not consistent with actual type ID, plus support array stride calc
even when not explicitly set by SPIR-V code.
For output consistency, CompilerMSL prefers use of standard builtin names over specified
names, and output builtins qualified with output struct while in entry function.
Previously, we would generate parentheses proactively when generating
binary ops, however, this leads to uglier code and hits warnings in
compilers when used as a conditional.
Add CompilerMSL emit_instruction() and emit_glsl_op() functions
to handle MSL-specific operation and function definitions.
Remove CompilerMSL emit_msl_defines() function.
Use entry point name if no function name provided.
When flattening in/out structs, qualify member names with struct name.
Fix issue when determining declared size of struct types.
Refactor use of m_ name prefix.
Identify header defines in MSL code.
- adds some common macros that correct for intrinsic differences
- adds some inline functions to adapt for GLSL terms
- injects structure member names when the original SPV has been stripped - there is another way to use the correct temporarily assigned member name, but using m_<id> based on the inside SPV code yields metal code that more correctly maps to the original SPV opcodes/slots.
The size of an array can be a specialization constant or a spec constant
op. This complicates things quite a lot.
Reflection becomes very painful in the presence of expressions instead
of literals so add a new array which expresses this.
It is unlikely that we will need to do accurate reflection of interface
types which have specialization constant size.
SSBOs and UBOs will for now throw exception if a dynamic size is used since it
is very difficult to know the real size.
- Only consider I/O variables if part of OpEntryPoint.
- Keep a safe fallback if #entry-points is 1 to avoid potentially
breaking previously working shaders.
Add Decoration qualified_alias element.
Virualize Compiler to_name() function.
MSL use qualified_alias instead of alias when inside entry-point function.
OpName is only for debug information, so we must be very careful that
we do not reuse the same name for different variables.
This was previously done for local variables, but this commit extends
this to global variables as well.
Reformats the entire codebase. Better to do it now than later.
Adds .clang-format and a convenience script format_all.sh which formats
everything automatically.