Support BuiltInFragDepth.
Emit interface block for StorageClassUniformConstant.
Throw exception when output or fragment input structs contain matrix or array.
Dynamically created interface structs sorted by location number instead of alphabetically.
Add Compiler::is_array() function.
CompilerMSL add emit_custom_functions() function.
CompilerMSL restrict use of as_type<> cast to necessary conditions.
CompilerMSL refactor get_declared_struct_member_size() and
get_declared_struct_member_alignment() functions, and remove
unnecessary get_declared_type_size() functions.
Add test shaders-msl/vulkan/frag/spec-constant.vk.frag.
Add bool members is_read and is_written to SPIRType::Image.
Output correct texture read/write access by marking whether textures
are read from and written to by the shader.
Override bitcast_glsl_op() to use Metal as_type<type> functions.
Add implementations of SPIR-V functions inverse(), degrees() & radians().
Map inverseSqrt() to rsqrt().
Map roundEven() to rint().
GLSL functions imageSize() and textureSize() map to equivalent
expression using MSL get_width() & get_height() functions.
Map several SPIR-V integer bitfield functions to MSL equivalents.
Map SPIR-V atomic functions to MSL equivalents.
Map texture packing and unpacking functions to MSL equivalents.
Refactor existing, and add new, image query functions.
Reorganize header lines into includes and pragmas.
Simplify type_to_glsl() logic.
Add MSL test case vert/functions.vert for added function implementations.
Add MSL test case comp/atomic.comp for added function implementations.
test_shaders.py use macOS compilation for MSL shader compilation validations.
This is kinda tricky, because if we only conditionally write to a
function parameter variable it is implicitly preserved in SPIR-V, so we must force
an in qualifier on the parameter to get the same behavior in GLSL.
CompilerMSL accesses options using same design pattern as CompilerGLSL and CompilerHLSL.
CompilerMSL support setting VA & rez binding specs via either constructor or compile() method overload.
CompilerMSL support single UBO packing and padding in single pass.
spriv_cross app (main.cpp) supports turning off UBO packing and padding via command line option.
Add MSL UBO alignment test shader.
Compiler MSL support DimBuffer as image dimension.
CompilerMSL check texture coordinate result type dimension before adding swizzles.
Update MSL reference shaders affected by this update.
In some cases, the compiler decided to emit continue block first,
which invalidated the expressions used by the condition.
Parameters to functions can be evaluated in any order which caused
"random" behavior.
Add to suite of MSL tests and references any existing GLSL tests
that successfully convert GLSL->SPIRV->MSL and compile as MSL.
test_shaders_helper() ignores hidden files that start with '.',
to avoid accidentally finding hidden OSX files such as .DS_Store.
Use xcrun to compile MSL shaders instead of hard-coded path to Metal compiler.
Wrap calls to xcrun in exception handling to ignore if Xcode not installed.
For MSL tests, move call to validate_shader_msl() to after call to
regression_check() to allow a converted MSL shader to be saved for
manual review even if it doesn't successfully compile as MSL.
If we run on a system with Xcode installed to a default path, run Xcode
Metal shader compiler to validate the generated MSL shader.
This uncovers an issue in the existing MSL test - MSL backend currently
does not auto-assign attribute locations, which means that translating
GLSL shader without location layout produces an invalid MSL which
generates "error: 'attribute' index '0' is used more than once".
To extract a column from row-major matrix, we need to do a strided load one
component at a time. In this case flattened_access_chain_offset still returns
the offset to the first element, but the stride is equal to matrix stride
instead of vector stride.
For this to work, we need to pass matrix stride (and transpose flag) through,
similar to how matrix flattening works.
Additionally slightly clean up recursive flattened_access_chain structure -
specifically, instead of deciding mid-traversal that we need matrix stride
information, we can just pass the matrix stride through - for access chains
that end in matrix/vector this gets us what we need, and for access chains
that end in structs the flattened_access_chain_struct code will recompute
correct stride/transposition data to pass through further.
We currently only support access chains that end in a matrix by propagating
"needs transpose" flag upstream which flips the matrix multiplication order.
It's possible to support indexed extraction as well, however it would have to
generate code like this:
vec4 row = vec4(UBO[0].y, UBO[1].y, UBO[2].y, UBO[3].y);
for a column equivalent of:
vec4 row = UBO[1];
It is definitely possible to do so but it requires signaling the vector output
that it needs to switch to per-component extraction which is a bit more trouble
than this is worth for now.