Limit inline blocks to one per descriptor set.
This should avoid the need for complicated code to calculate the
argument buffer ID stride of an inline uniform block. If there's demand
for more inline blocks, we can revisit this.
Here, the inline uniform block is explicit: we instantiate the buffer
block itself in the argument buffer, instead of a pointer to the buffer.
I just hope this will work with the `MTLArgumentDescriptor` API...
Note that Metal recursively assigns individual members of embedded
structs IDs. This means for automatic assignment that we have to
calculate the binding stride for a given buffer block. For MoltenVK,
we'll simply increment the ID by the size of the inline uniform block.
Then the later IDs will never conflict with the inline uniform block. We
can get away with this because Metal doesn't require that IDs be
contiguous, only monotonically increasing.
- Fixes issue with clip_distance flattening in MSL where member to
flatten from would come from to_member_name, where it should have used
the builtin name directly. This member name was modified by this patch
and broke clip distance test shaders.
- Some cleanups with ir.meta, use ir.find_meta instead to not create
unnecessary hashmap nodes.
This is implied in both GL and GLES. Emitting memoryBarrierShared() was
based on earlier confusion in the spec which has since been fixed and
clarified.
MSL does not support this, so we have to emulate it by passing it around
as a varying between stages. We use a special "user(clipN)" attribute
for this rather than locN which is used for user varyings.
This CL updates the test runner to only run spirv-opt if the generated
SPIR-V is valid. If validation is skipped it's possible to hit aborts
and other memory errors in the optimizer as it assumes the SPIR-V is
valid.
There was a hack to workaround a bug in DXC where control point -> patch
constant phase was passed in Function storage, but we have to use
Workgroup here. We will not support these kinds of hacks for invalid
SPIR-V, so hack the reference files to use the "proper" fix and remove
the hack for time being.
Need to make output 100% exact for MSVC and GCC libc testing, but they are 1 ULP
off when converting fp32 to string in some weird corner cases.
Roundtrip should be correct though, but that outside the scope of
SPIRV-Cross.
We had output dependent on complex_continue being set, but setting that
flag was dependent on unordered_set declaration order. Make it invariant
to ordering and change the implementation so it knows about the new
temporary hoisting for access chains.
To support loading array of array properly in tessellation, we need a
rewrite of how tessellation access chains are handled.
The major change is to remove the implicit unflatten step inside
access_chain which does not take into account the case where you load
directly from a control point array variable.
We defer unflatten step until OpLoad time instead.
This fixes cases where we load array of {array,matrix,struct}.
Removes the hacky path for MSL access chain index workaround.
Non-patch arrays of IO variables in tesc/tese have their array index
stripped, and access chains are specially handled, we shouldn't attempt
to create "normal" arrays of these.
This avoids a lot of huge code changes.
Arrays generally cannot be copied in and out of buffers, at least no
compiler frontend seems to do it.
Also avoids a lot of issues surrounding packed vectors and matrices.
If there are enough members in an IAB, we cannot use the constant
address space as MSL compiler complains about there being too many
members. Support emitting the device address space instead.
There is no direct way to express this, so invert boolean results to
force any NaN -> true. glslang emits Ordered compare instructions
everywhere, and the GLSL spec is not clear on this, so assume this is
fine.
It is possible for a shader to declare two plain struct types which
simply share the same OpName without there being an implicit
value/buffer alias relationship.
For to_member_name(), make sure to use the type alias master when
resolving member names. The member name may be different in a type alias
master if the SPIR-V is being intentionally difficult.
Rolled the hashes used for glslang, SPIRV-Tools, and SPIRV-Headers to
HEAD, which includes the update to 1.5.
Added passing '--amb' to glslang, so I didn't have to explicitly set
bindings in a large number of test shaders that currently don't, and
now glslang considers them invalid.
Marked all shaders that no longer pass spirv-val as .invalid.
Vulkan has two types of buffer descriptors,
`VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC` and
`VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`, which allow the client to
offset the buffers by an amount given when the descriptor set is bound
to a pipeline. Metal provides no direct support for this when the buffer
in question is in an argument buffer, so once again we're on our own.
These offsets cannot be stored or associated in any way with the
argument buffer itself, because they are set at bind time. Different
pipelines may have different offsets set. Therefore, we must use a
separate buffer, not in any argument buffer, to hold these offsets. Then
the shader must manually offset the buffer pointer.
This change fully supports arrays, including arrays of arrays, even
though Vulkan forbids them. It does not, however, support runtime
arrays. Perhaps later.
Writable textures cannot use argument buffers on iOS. They must be
passed as arguments directly to the shader function. Since we won't know
if a given storage image will have the `NonWritable` decoration at the
time we encode the argument buffer, we must therefore pass all storage
images as discrete arguments. Previously, we were throwing an error if
we encountered an argument buffer with a writable texture in it on iOS.