Because our plugin sets UVs with individual face-varying vertices,
Maya interprets the buffer as discontinuous everywhere. Adding a
node in the graph that merges UVs along non-boundary edges resolves
this problem (until the plugin outputs the UV vertex indices in
an aggregated manner).
- added a _stringify function to top CMakeLists
- switched all stringification tasks to use the macro
- all suffixes are now .gen.h instead of .inc (to help cmake track dependencies)
- set OBJECT targets for osd cpu & gpu libs, and use the obj target for
static and dynamic linking
- add a new examples_common_obj OBJECT target
- replace direct source dependencies to obj target in all examples CMakeLists
This change makes it possible to not re-compile the same source files
multiple times when they are used in multiple targets. Thanks to jcowles
for uncovering the CMake functionality.
Note: it seems that multi-process build is working again (gmake -j <x>)
Do feature adaptive refinement, then use the cpuEvalLimit API to evaluate
grids of points on faces.
Test harness is tessellateObjFile which has a -blender option to trigger
the gridding tessellation code.
Important notice: all client shader code must have following functions and compose them to osd intrinsic shaders (vertex/tessEval/tessControl)
mat4 OsdModelViewMatrix()
mat4 OsdProjectionMatrix()
mat4 OsdModelViewProjectionMatrix()
float OsdTessLevel()
int OsdGreogryQuadOffsetBase()
int OsdPrimitiveIdBase()
We probably should write a utility class for basic binding of them, to make client code simpler.
The previous fix pointed far indexing tables to the origin vertex
of duped singular verts.
This fix goes one step further and actually shifts all vertex indexing
to start at the end of the coarse mesh vertices, using the space for
data that was previously occupied by duplicated singular verts.
The consequence is that client code no longer needs to duplicate vertex
data in vertex buffers (huzzah !).
- fix FarSubdivisionTablesFactory to shift factory vertex table offsets using Hbr's
singular verts map
- fix schema table factories (Catmark, Loop...) to correctly use these offsets
- remove vertex data duplication code from osdPolySmooth example
- remove some (unrelated) cruft from glViewer example
- shape_utils unfortunately still needs to dubplicate the singular verts to
allow the coarse edge drawing in our example viewers to work correctly
(although it could be fixed to avoid data duplication too...)
fixes#241
- Add a vector of index pairs to HbrMesh to track the index of a split
vertex and its origin vertex
- Correct the Far remap tables in FarSubdivisionTablesFactory to point split
vertices to their origin instead of themselves
- Fix regression/common/shape_utils.h to use the new HbrMesh::GetSplitVertices()
method.
- Fix the osdPolySmooth example to use the new HbrMesh::GetSplitVertices()
method.
- Add a paragraph to the documentation
fixes#241
Moving Takahito's implementation into the core API:
- added <gl/d3d11>PtexCommon.<glsl/hlsl> shader code
- added control to enable Ptex common trunk in <gl/d3d11>DrawRegistryBase classes
- fixed GL & D3D11 ptexViewer examples to use the new API
Also:
- add logic to locate the GUI mel scripts where the binary is located, then default to script search paths
- remove min/max macro defines
- remove iso646.h header (covered by CMake build)
- remove redundant Osd includes
- remove some build warnings
- code style fixes
- build tweak: move the mel scripts to the correct location in the build area
fixes#239
- remove unused variables
- isolate MSVC specific pragmas (these should eventually be cleaned up from the code...)
- add the plugin to the general build
The Chaikin crease interpolation mode seems to be broken:
- Catmark / Loop / Bilinear are passing the wrong halfedge vertex to the
SubdivideCreaseWeight function which results in sub-edge crease weights
being swapped
- the loop that iterates over adjacent edges needs to check against both
the original edge and its opposite, otherwise it may be incorrectly
accumulated into summation of these adjacent edges (with a 0.25 weight)
The proposed fix:
- Swaps the Dest/Org vertex passed to the SubdivideCreaseWeight (and
we probably want Julian to confirm that this the correct fix)
- Checks against both the original edge and its opposite in the iteration
over adjacent edges
- Replaces the std::vector based query with an HbrHalfedgeOperator for
better performance (hopefully)
The similar fix to OpenSubdiv been reviewed by Tony DeRose.
Also in the fix:
- fix "obj" tag parsing of the smooth triangle tag that was incorrectly
associated with the crease method (and reporting the wrong errors)
- add regression shapes for both Loop & Catmark schemes to hbr_regression
- add same shapes to the glViewer
- improve hbr_regression output to be more readable
- add command-line argument parsing to hbr_regression
- add functionality to dump an obj file when regression fails for comparison
fixes#235
Also:
- add 2 shape examples with Chaikin rule tag
- add shapes to the glViewer
- add a stub in the documentation
Note: the Chaikin rule currently applied by Hbr appears to be somewhat off...
fixes#236
New text:
Copyright 2013 Pixar
Licensed under the Apache License, Version 2.0 (the "Apache License")
with the following modification; you may not use this file except in
compliance with the Apache License and the following modification to it:
Section 6. Trademarks. is deleted and replaced with:
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor
and its affiliates, except as required to comply with Section 4(c) of
the License and to reproduce the content of the NOTICE file.
You may obtain a copy of the Apache License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the Apache License with the above modification is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the Apache License for the specific
language governing permissions and limitations under the Apache License.
- Adding FarStencilTables and FarStencilTablesFactory classes
- Adding Osd EvalStencil context & controllers for CPU, OMP and TBB backends
- Adding the code example glStencilViewer
- Adding reST documentation
- Changing version to 2.2.0_dev
- Fix HbrMesh::Unrefine function
- Fix "CanEval" function in OsdVertexBufferDescriptor
Note 0: there is no stencil support for hierarchical edits
Note 1: there is no support for face-varying data stencils yet
Note 2: the current stencil factory is lazy but the caching system is not re-entrant
- new RST pages for our excample code
- fix doxygen documentation link from the nav tab
- fix cmake build rules (still not quite working as intended)
- adding API RST documentation all around
GLFW 3.0.1 made the reshape callback explicit. Since we are using it to setup some framebuffers,
we need to call this function ourselves before starting the main-loop.
fixes#181
- fix FindGLFW.cmake to match the new locations
- fix all viewer & examples to build with 3.0, 3.0.1 and 3.0.2
Note : ptxViewer and paintTest do not work with 3.0.1 and 3.0.2 (yet)
- Replaced EvalData and EvalVertexData classes with a simpler DataStream class that only
accesses a single data stream, binds and unbinds it
- DataStream has both an input and an output version which avoids much of the const-ness
const-related ambiguity of the previous design pattern
- Vertex, varying and face-varying data now all have a dedicate struct (VertexData, VaryingData, FaceVaryingData)
as a way of gathering the various data-streams required to perform sampling
- renamd some "Buffers" into "Tables" for better naming consistency with Far
- remove PatchMap from FarPatchTables
- add a new FarPatchMap quad-tree class (constructed from FarPatchTables)
- refactor the EvalLimitController to use the quad-tree search instead of a
serial loop access
fixes#174
that do not have that type of data
- fix some regression shapes that had "empty" uv values
(including some minor topo surgery that luckily appears to not break
regression baselines)
set all the point colors (if face-varying data is missing on the test shape for instance)
and we don't want random values creeping from unset memory allocations.
- minor refactoring of the LimitEvalContext to accomodate all the data buffers
- pushing some minor sub-patch functionality back to FarPatchParams
- extend example code with randomly generated varying vertex colors
and adding the requisite accessors
Note : all our example code goes through the same boiler-plate texture
binding code - we might want to move it as a member function of the DrawContext.
Cleanup the batching classes so that DrawCollection() no longer caches
current batch and effect. Any kind of binding optimization will be
handled in client's delegate class.
Also remove InitializeVertexBuffer method and add some arguments to
constructor instead.
be used as intended to specify an installation directory, which can be located anywhere on the
file system.
Also improved the doxygen target and made the doxy build "quiet".
fixes#154
- replace ptex indexing with the FarPtexCoord structure as a way to pass per-patch
ptex data to the shaders.
We are replacing a vector<int> arranged as :
int[0] : ptex face index
int[1] : (u,v) as 16 bits encoding the log2 coordinate of the top left corner
Instead we are now using a struct arranged as :
int[0] : ptex face index
int[1] : is a bit-field containing u,v, rotation, depth and non-quad
The u,v coordinates have been reduced to 10 bits instead of 16, which still
gives us a lot of margin.
- Replace OsdVertexBufferDescriptor with something more adequate for general
primvar representation (this name will probably eventually change...)
- Improve OsdPatchDescriptor
- add a "loop" boolean (true if the patch is of loop type)
- add a GetPatchSize() accessor
- OsdPatchArray :
- remove some redundant elements (still more to do there)
- Fix all shader / examples / regressions & stuff to make this all work.
fixes#143
2 client APIs are changed.
- VertexBuffer::UpdateData() takes start vertex offset
- ComputeController::Refine() takes FarKernelBatchVector
Also, ComputeContext no longer holds farmesh.
Client can free farmesh after OsdComputeContext is created.
(but still need FarKernelBatchVector to apply subdivision kernels)
- add tag parsing for h-hole in shape_utils
- re-create Renderman's test shape from the documentation (catmark_square_hedit.h)
- fix Hbr to correctly pass the hole tag from parent to child face
- fix FarSubdivisionTables to handle disconnected face-vertices without crashing
fixes#75
while retaining a necessary 1-ring on the inside of a hole edge
- add IsInsideHole() function to HbrHalfEdge
- add HasChild() function to HbrVertex and HbrHalfedge
- add a regression shape with adjacent holes and creases (tests dart, crease & boundaries)
Note : this does not address hierarchical edits inside holes or hole tags in hierarchical edits
fixes#78
Now a ComputeController is passed as an
argument to OsdMesh::Create(). This is
a better match to the underlying object
model and can be much more efficient for
compute controllers that have expensive
resources, e.g. compiled shader kernels.
Fixes#103
- make sure HBR passes down the hole tag to children when subdividing faces
- minor API modification : allow to unset the hole flag on a face
- modify uniform / adaptive FarMeshFactory to be aware of the flag
- make the FarSubdivisionTableFactory assert when finding unconnected HBR vertices (as it should)
* Uniform subdivision :
The refinement scheme only creates faces & vertices necessary
to maintain the one-ring around the edges of a hole, so this solution
is quite efficient.
* Adaptive subdivision :
At the moment we are still performing full topological analysis on holes and
only skipping patches associated to holes. This is sub-optimal in 2 ways :
1. the topological analysis can potentially be cranking on a lot of unnecessary
geometry
2. even though we may not be drawing the patches, the compute stage is still
applying kernels on all the control vertices of these patches.
We will have to revisit feature adaptive subdivision & holes, so keep the issue active.
fixes#78
Python Bindings for Grandma
This is probably not the final word on python bindings... but it gives us a place to start.
Note : tested only in linux environments so far
- add bool OsdGLDrawContext::SupportsAdaptiveTessellation() method
- modify glViewer to use that instead of #ifdefs
Note : this is not the final word on this as OSD really needs a more comprehensive
system to provide run-time information about available features to the client code.
fixes#111
- remove ptexViewer from the build on OSX (doesnt work)
- remove maya plugins from the build on OSX (until we have a compatible version available)
glViewer fixes :
- fix incorrect GLFW version check in #ifdefs (now done in cmake)
- fix default program GL version (downgraded to 1.5 where necessary)
- remove non core-profile GL calls (triggering errors)
this should allow OSX 10.7 builds to produce a functional, if restricted, glViewer.
fixes#111
- add #ifdefs to work around the different versions of glfw
- add cmake logic to parse other packages versions and set minimum requirements
- fix X11 dependencies for static builds of glfw
- general Find.cmake cleanup
fixes#101
In example code, GLUT has been replaced with GLFW so that glViewer/ptexViewer can run on OSX (10.7 or later).
OSX note: still have some problem with clang, may need to explicitly specify gcc on cmake cmdline
-DCMAKE_CXX_COMPILE=/usr/bin/g++
fixes#98
- remove the GL error check in cudaGLVertexBuffer :
* unrelated GL errors left on the stack were triggering erroneous
vertexBuffer allocation errors
* we should not be checking for GL errors here anyway (as most other
buffer allocations aren't checked either)
- add some pointer checking in the GL / D3D drawContexts in case the
vertexBuffer pointers passed are NULL
- add some additional typedefs in OsdError to report some of the new
CUDA / GL related errors